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Abstract. Co-clustering has emerged as an important technique for
mining contingency data matrices. However, almost all existing co-
clustering algorithms are hard partitioning, assigning each row and col-
umn of the data matrix to one cluster. Recently a Bayesian co-clustering
approach has been proposed which allows a probability distribution
membership in row and column clusters. The approach uses variational
inference for parameter estimation. In this work, we modify the Bayesian
co-clustering model, and use collapsed Gibbs sampling and collapsed
variational inference for parameter estimation. Our empirical evaluation
on real data sets shows that both collapsed Gibbs sampling and collapsed
variational inference are able to find more accurate likelihood estimates
than the standard variational Bayesian co-clustering approach.
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1 Introduction

Co-clustering [2] has emerged as an important approach for mining dyadic and re-
lational data. Often, data can be organized in a matrix, where rows and columns
present a symmetrical relation. For example, documents can be represented as a
matrix, where rows are indexed by the documents, and columns by words. Co-
clustering allows documents and words to be grouped simultaneously: documents
are clustered based on the contained words, and words are grouped based on the
documents they appear in. The two clustering processes are inter-dependent.

Some researchers have proposed a hard-partition version [3], others a soft-
partition version [1] of co-clustering. In the hard-partition case, each row (col-
umn) is assigned to exactly one row (column) cluster. In the soft-partition case,
each row (column) has a probability of belonging to each row (column) cluster.

The Bayesian Co-Clustering (BCC) model proposed in [1] is a kind of gen-
erative model. BCC maintains separate Dirichlet priors for the distribution of
row- and column-clusters given rows and columns. To generate each entry in the
data matrix, the model first generates the row and column clusters of the current
entry according to this Dirichlet distribution. The value of the current entry is
then generated according to the corresponding row-cluster and column-cluster.
The advantage of a generative model is that it can be used to predict unseen
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data. Like the original Latent Dirichlet Allocation (LDA) [5] model, though, BCC
assumes uniform priors for the entry value distributions given row- and column-
clusters. The authors in [1] proposed a variational Bayesian algorithm to perform
inference and estimate the BCC model. A lower bound of the likelihood function
is learned and used to estimate model parameters.

In this work, we extend the BCC model and propose a collapsed Gibbs sam-
pling and a collapsed variational Bayesian algorithm for it. Following [5], first
we smooth the BCC model, by introducing priors for the entry value distribu-
tions given row- and column-clusters. Following [5], we call our approach Latent

Dirichlet Bayesian Co-Clustering (LDCC), since it assumes Dirichlet priors for
row- and column-clusters, which are unobserved in the data contingency matrix.
The collapsed Gibbs sampling and collapsed variational Bayesian algorithms we
propose can learn more accurate likelihood functions than the standard varia-
tional Bayesian algorithm [1]. This result is derived analytically for the collapsed
variational Bayesian algorithm. More accurate likelihood estimates can lead to
higher predictive performance, as corroborated by our experimental results.

The rest of the paper is organized as follows. In Section 2, we discuss re-
lated work. Section 3 introduces the LDCC model and the variational Bayesian
algorithm. We then discuss the collapsed Gibbs sampling and the collapsed vari-
ational Bayesian algorithms. Section 4 demonstrates our empirical evaluation of
the three methods. Finally, Section 5 summarizes the paper.

2 Related Work

Our work is closely related to [1], which we discuss in Section 3.1. Dhillon et
al. proposed an information-theoretic co-clustering approach (hard-partition) in
[3]. Shafiei et al. proposed a soft-partition co-clustering, called “Latent Dirichlet
Co-clustering” in [4]. The proposed model, though, does not cluster rows and
columns simultaneously. It first defines word-topics, i.e., groups of words, and
then defines document-topics, i.e., groups of word-topics. Documents are mod-
eled as mixtures of such document-topics. Thus, the resulting model is similar
to a hierarchical extension of the “Latent Dirichlet Allocation” [5] model, since
the defined document-topics are not groups of documents, but groups of word-
topics. Our LDCC model and BCC [1] model assume independence between
row-clusters and column-clusters, which is the same assumption as in [3].

Blei et al. proposed “Latent Dirichlet Allocation” (LDA) [5], which assumes
that topics are mixtures of words, and documents are mixtures of topics. A
standard variational Bayesian algorithm [5] is used to estimate the posterior
distribution of model parameters given the model evidence. Griffiths et al. used
a collapsed Gibbs sampling method to learn the posterior distribution of pa-
rameters for the LDA model [9]. Recently, Teh et al. proposed a collapsed varia-
tional Bayesian algorithm to perform model inference for LDA and “Hierarchical
Dirichlet Processing”[7, 10].
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3 Latent Dirichlet Co-Clustering

In this section, we first introduce the LDCC model. We then discuss three dif-
ferent learning methods: variational Bayesian, collapsed Gibbs sampling, and
collapsed variational Bayesian. Table 1 gives a summary of the notation used.

Symbol Description
X data matrix
u index for row
v index for column
[u, v] entry of the matrix at row u and column v
xuv value for matrix entry at row u and column v

X entry value set
i index for row clusters
j index for column clusters
N1 number of rows
N2 number of columns
z1 row clusters
z2 column clusters
K1 number of row clusters
K2 number of column clusters
α1 Dirichlet prior hyperparameter for for rows
α2 Dirichlet prior hyperparameter for columns

β
Dirichlet prior hyperparameter for the probabilities of each entry value
given a row- and a column-clusters

π1 The probabilities of each row-cluster given each row
π2 The probabilities of each column-cluster given each column
θijxuv probability of entry value xuv give z1 = i and z2 = j

nijxuv number of entries with value xuv assigned to row cluster i and column cluster j
nui number of entries in row u assigned to row cluster i
nvj number of entries in column v assigned to column cluster j

nij number of entries in matrix assigned to row cluster i and column cluster j
nu number of entries in row u

nv number of entries in column v

Fig. 1. Notation used in this paper

Given an N1 × N2 data matrix X , the values xuv of each entry [u, v], u =
1, . . . , N1, v = 1, . . . , N2 are defined in a value set, xuv ∈ X . For co-clustering, we
assume there are K1 row clusters z1, and K2 column clusters z2. LDCC assumes
two Dirichlet priors3 Dir(α1) and Dir(α2) for rows and columns respectively,
α1 =< α1u

|u = 1, . . . , N1 >, α2 =< α2v
|v = 1, · · · , N2 >, from which the

probabilities of each row-cluster z1 and column-cluster z2 given each row u and
each column v are generated, denoted as π1u

and π2v
respectively. Row clusters

for entries in row u and column clusters for entries in column v are sampled
from multinomial distributions p(z1|π1u

) and p(z2|π2v
) respectively. We denote

π1 =< π1u
|u = 1, . . . , N1 >, π2 =< π2v

|v = 1, . . . , N2 >, z1 =< z1uv
|u =

1, . . . , N1, v = 1, . . . , N2 > and z2 =< z2uv
|u = 1, . . . , N1, v = 1, . . . , N2 >,

where z1 and z2 are row- and column-cluster assignment for all entries in the
data matrix X . A row cluster z1 = i and a column cluster z2 = j together
decide a co-cluster (z1, z2) = (i, j), and entries in the matrix are also sampled
from a multinomial distribution p(x|θz1,z2

) given a co-cluster (z1, z2) = (i, j).
We denote θ =< θz1=i,z2=j |i = 1, . . . , K1, j = 1, . . . , K2 >. Here, z1 and z2 are

3 In the rest of the paper, we assume symmetric Dirichlet priors, which means α1 and
α2 do not depend on u or v.
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Fig. 2. Latent Dirichlet Bayesian Co-clustering Model

latent variables, while π1, π2 and θ are unknown parameters. The generative
process for the whole data matrix is as follows (see Figure 2):

– For each row u, choose π1u
∼ Dir(α1)

– For each column v, choose π2v
∼ Dir(α2)

– To generate the entry of row u and column v:
• choose z1uv

∼ p(z1|π1u
), z2uv

∼ p(z2|π2v
)

• choose θz1uv z2uv
∼ Dir(β)

• choose xuv ∼ p(x|z1uv
, z2uv

, θz1uv ,z2uv
).

The LDCC model proposed here departs from the BCC model [1] by intro-
ducing a prior β for θz1z2

. Thus, LDCC can assign a probability to an unseen
entry value according to p(θz1,z2

|β).
The marginal probability of an entry x in the data matrix X is given by:

p(x|α1, α2, β) =

∫

π1

∫

π2

∫

θ

p(π1|α1)p(π2|α2)p(θz1z2
|β)

·
∑

z1

∑

z2

p(z1|π1)p(z2|π2)p(x|θz1z2
) dπ1dπ2dθz1z2

(1)

Note that the entries in the same row/column are generated from the same
π1u

or π2v
, so the entries in the same row/column are related. Therefore, the

model introduces a coupling between observations in the same row/column [1].
The overall joint distribution over X , π1, π2, z1, z2 and θ is given by:

p(X, π1, π2, z1, z2, θ|α1, α2, β) =
∏

u

p(π1u
|α1)

∏

v

p(π2v
|α2)

·
∏

K1

∏

K2

p(θz1,z2
|β)
∏

u,v

p(z1uv
|π1u

)p(z2uv
|π2v

)p(xuv|θz1,z2
, z1uv

, z2uv
)δuv (2)

where δuv is an indicator function which takes value 0 when xuv is empty, and
1 otherwise (only the non-missing entries are considered); z1uv

∈ {1, . . . , K1} is
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the latent row cluster, and z2uv
∈ {1, . . . , K2} is the latent column cluster for

observation xuv.

Marginalizing out all unknown parameters π1, π2 and θ, the marginal like-
lihood of observed and latent variables is:

p(X, z1, z2|α1, α2, β) = p(X |z1, z2, β)p(z1|α1)p(z2|α2) = (3)
∫

p(X |θ, z1, z2)p(θ|β) dθ

∫

p(z1|π1)p(π1|α1) dπ1

∫

p(z2|π2)p(π2|α2) dπ2

Summing over all possible latent variables z1 and z2, the probability of ob-
serving the entire matrix X is:

p(X |α1, α2, β) =

∫

π1

∫

π2

∫

θ

(

∏

u

p(π1u
|α1)

)(

∏

v

p(π2v
|α2)

)(

∏

z1,z2

p(θz1,z2
|β)

)

·





∏

u,v

∑

z1uv

∑

z2uv

p(z1uv
|π1u

)p(z2uv
|π2v

)p(xuv |θz1uv ,z2uv
)δuv



 dπ1dπ2dθ (4)

3.1 Variational Bayesian Algorithm for BCC

In this section, we briefly describe the variational Bayesian algorithm for the
original BCC model (see Appendix). The BCC model assumes uniform priors
for θ and assumes that θ has a Gaussian distribution. The authors in [1] derived
a variational algorithm for their model. In this paper, we assume that the values
for each entry in the data matrix are discrete4. We do so for mathematical
convenience of the derivation of the collapsed Gibbs sampling and the collapsed
variational Bayesian algorithms. Thus, unlike [1], we do not assume that θ has
a Gaussian distribution.

The variational Bayesian algorithm introduces
q(z1, z2, π1, π2|γ1, γ2, φ1, φ2) as an approximation of the actual distri-
bution p(z1, z2, π1, π2|X, α1, α2, θ), where γ1, γ2, φ1 and φ2 are called
variational variables, γ1 =< γ1u

|u = 1, · · · , N1 >, γ2 =< γ2v
|v = 1, · · · , N2 >,

φ1 =< φ1u
|u = 1, · · · , N1 >, φ2 =< φ2v

|v = 1, · · · , N2 >, γ1u
and γ2v

are
variational Dirichlet distribution parameters with K1 and K2 dimensions
respectively for rows and columns, φ1u

and φ2v
are multinomial parame-

ters with K1 and K2 dimensions for rows and columns. It is assumed that
q(z1, z2, π1, π2|γ1, γ2, φ1, φ2) can be fully factorized as:

q(z1, z2, π1, π2|γ1, γ2, φ1, φ2) =
(

N1
∏

u=1

q(π1u
|γ1u

)

)(

N2
∏

v=1

q(π2v
|γ2v

)

)(

N1
∏

u=1

N2
∏

v=1

q(z1uv
|φ1u

)q(z2uv
|φ2v

)

)

(5)

4 Technically, our theory applies to any exponential family distribution for data ma-
trix.
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The factorization assumption of q(z1, z2, π1, π2|γ1, γ2, φ1, φ2) means that pa-
rameters and latent variables are independent, and the assignment of z1uv

and
z2uv

for the current entry [u, v] is independent of the assignments for other en-
tries.

The variational Bayesian algorithm can find a lower bound of the true log-
likelihood:

log p(X |α1, α2, θ) ≥ (6)

Eq[log p(X, z1, z2, π1, π2|α1, α2, θ)] − Eq[log q(z1, z2, π1, π2|γ1, γ2, φ1, φ2)]

and we denote the lower bound as L(γ1, γ2, φ1, φ2, α1, α2, θ).
The variational Bayesian algorithm is an EM-style method: the E-step es-

timates the values for γ1, γ2, φ1 and φ2 that maximize the lower bound of
the log-likelihood based on α1, α2 and θ; the M-step estimates α1, α2 and
θ according to the log-likelihood lower bound based on γ1, γ2, φ1 and φ2

learned during the previous E-step. Thus, in the E-step, in order to maximize
L(γ1, γ2, φ1, φ2, α1, α2, θ), one takes the derivative of L w.r.t γ1, γ2, φ1 and φ2

respectively, and sets it to zero. We get:

φ1ui
∝ exp

(

Ψ(γ1ui
) +

∑N1

u=1

∑K1

i=1 δuvφ2vj
log θijxuv

nu

)

(7)

φ2vj
∝ exp

(

Ψ(γ2vj
) +

∑N2

v=1

∑K2

j=1 δuvφ1vi
log θijxuv

nv

)

(8)

γ1ui
∝ α1i

+ nuφ1ui
(9)

γ2vj
∝ α2j

+ nvφ2vj
(10)

where nu and nv are the number of entries in row u and column v respectively,
and Ψ(·) is the digamma function, the first derivative of log Γ (·), the log Gamma
function. In the M-step, to estimate the Dirichlet parameters α1 and α2, one
can use Newton method, as shown in [5] for LDA, to estimate θ, one takes the
derivative of L w.r.t θ and setting it to zero. We get:

θijxuv
∝

N1
∑

u′=1

N2
∑

v′=1

δu′v′(xuv)φ1u′i
φ2v′j

(11)

where δu′v′(xuv) is an indicator function, which equals 1 if the value of the entry
at row u′ and column v′ equals to xuv, 0 otherwise. The variational Bayesian
method iterates through the E-step and the M-step until convergence.

Although efficient and easy to implement, the variational Bayesian algorithm
can potentially lead to inaccurate results. The latent variables z1, z2 and the
parameters π1, π2, θ can have a strong inter-dependence in the true poste-
rior p(X, z1, z2, π1, π2|α1, α2, θ). This dependence is ignored in the variational
Bayesian algorithm which assumes independence between the latent variables
and the parameters. As a result, the lower bound learned for the log marginal
likelihood can be very loose, leading to inaccurate estimates of the posterior.
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3.2 Collapsed Gibbs Sampling for LDCC

Standard Gibbs sampling [8], which iteratively samples the latent variables z1

and z2, and the parameters π1, π2 and θ, may converge very slowly due to the
strong dependencies between the latent variables and the parameters. Collapsed
Gibbs sampling improves upon Gibbs sampling by marginalizing out the param-
eters π1, π2 and θ, and then sampling the latent variables z1 and z2 only, over
the so called collapsed space. Consider a model in which each matrix element
can have a discrete value from a value set X , with |X | = N . Using a symmetric
Dirichlet prior, the marginal likelihood over X , z1 and z2, (Equation (3)), can
be rewritten as:

p(X, z1, z2|α1, α2, β) =

N1
∏

u=1

(

Γ (K1α1)

Γ (K1α1 + nu)

K1
∏

i=1

Γ (α1 + nui)

Γ (α1)

)

(12)

N2
∏

v=1





Γ (K2α2)

Γ (K2α2 + nv)

K2
∏

j=1

Γ (α2 + nvj)

Γ (α2)





K1
∏

i=1

K2
∏

j=1

(

Γ (Nβ)

Γ (Nβ + nij)

N
∏

x=1

Γ (β + nijx)

Γ (β)

)

Given all the latent variables but the ones for entry [u, v], the conditional
probability of z1uv

= i and z2uv
= j is:

p(z1uv
= i, z2uv

= j|X, z¬uv
1 , z¬uv

2 , α1, α2, β) =

(α1 + n¬uv
ui )(α2 + n¬uv

vj )(β + n¬uv
ijxuv

)

(K1α1 + n¬uv
u )(K2α2 + n¬uv

v )(Nβ + n¬uv
ij )

(13)

where ¬uv denotes the corresponding count with xuv, z1uv
and z2uv

excluded.
The derivation can be found in the Appendix. The conditional probability can
be rewritten as:

p(z1uv
= i, z2uv

= j|X, z¬uv
1 , z¬uv

2 , α1, α2, β) =

(α1 + n¬uv
ui )(α2 + n¬uv

vj )(β + n¬uv
ijxuv

)(Nβ + n¬uv
ij )−1

∑K1

i′=1

∑K2

j′ (α1 + n¬uv
ui′ )(α2 + n¬uv

vj′ )(β + n¬uv
i′j′xuv

)(Nβ + n¬uv
i′j′ )−1

(14)

where the numerator covers the factors specific to z1uv
= i and z2uv

= j, and the
denominator serves as a normalization factor by summing over all combination
of z1 and z2 for the current entry [u, v].

Note that since collapsed Gibbs sampling marginalizes out the parameters
π1, π2 and θ, it induces new dependencies between the latent variables z1uv

, z2uv

(which are conditionally independent given the parameters) [7]. Equation (14)
shows that z1uv

and z2uv
depend on z¬uv

1 , z¬uv
2 only through the counts n¬uv

ui′ ,
n¬uv

vj′ and n¬uv
i′j′ , which is to say that the dependence of z1uv

= i and z2uv
= j

on any other variable z1uv
= i′, z2uv

= j′ is very small, especially for large
datasets. This is precisely the right setting for a mean field (i.e., fully factorized
variational) approximation: a particular variable interacts with the remaining
variables only through a summary statistics called the field, and the impact of
any single variable on the field is very small [7]. On the contrary, this is not
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true in the joint space of parameters and latent variables because fluctuations in
parameters can have a signicant impact on latent variables. As a consequence,
the mean field assumption fits better the collapsed space of latent variables than
the joint space of latent variables and parameters.

Given Equation (13) or (14), Gibbs sampling can generate row- and column-
cluster probabilities for the current entry conditioned on row- and column-
clusters for the other entries. One can calculate the following stationary dis-
tributions:

p(xuv|z1uv
= i, z2uv

= j) =
nijxuv

+ β

nij + Nβ
(15)

p(z1uv
= i|u) =

nui + α1

nu + K1α1
(16)

p(z2uv
= j|v) =

nvj + α2

nv + K2α2
(17)

which correspond to θz1=i,z2=j , π1u
and π2v

.
Although Gibbs sampling leads to unbiased estimators, it also has some draw-

backs: one needs to assess convergence of the Markov chain and to have some idea
of mixing times to estimate the number of samples to collect, and to identify co-
herent topics across multiple samples. In practice, one often ignores these issues
and collects as many samples as is computationally feasible, while the question
of topic identication is often sidestepped by using just one sample. Hence, there
still is a need for more efficient, accurate and deterministic inference procedures.

3.3 Collapsed Variational Bayesian Algorithm for LDCC

The collapsed variational Bayesian algorithm for LDCC is similar to the stan-
dard variational Bayesian one, except for the optimization of the lower bound
of the log-likelihood in the collapsed space, which is inspired by collapsed Gibbs
sampling. There are two ways to derive the collapsed variational Bayesian algo-
rithm for LDCC, either in the collapsed space or in the original joint space of
latent variables and parameters.

We start from the collapsed space with parameters marginalized out. We
introduce q(z1, z2|γ) to approximate p(z1, z2|X, α1, α2, β), where γ =< γuv|u =
1, · · · , N1, v = 1, · · · , N2 >, and γuv =< γuvij |i = 1, · · · , K1, j = 1, · · · , K2 >.
Assume that q(z1, z2|γ) can be factorized as:

q(z1, z2|γ) =

N1
∏

u=1

N2
∏

v=1

q(z1uv
, z2uv

|γuv) (18)

where q(z1uv
, z2uv

|γuv) is a multinomial with parameters γuv.
The lower bound of the log-likelihood is:

log p(X |α1, α2, β) ≥

Eq(z1,z2|γ)[log p(X, z1, z2|α1, α2, β)] − Eq(z1,z2|γ)[log q(z1, z2|γ)] (19)
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denoted as L(γ, α1, α2, β).

When using the original joint latent variables and parameters space, we intro-
duce q(z1, z2, π1, π2, θ|γ) to approximate p(z1, z2, π1, π2, θ|X, α1, α2, β), where
we assume a factorization different from Equation (5):

q(z1, z2, π1, π2, θ|γ) = q(π1, π2, θ|z1, z2)

N1
∏

u=1

N2
∏

v=1

q(z1uv
, z2uv

|γuv) (20)

where we model the conditional distribution of parameters π1, π2, and θ given
latent variables z1 and z2 without any assumptions on their form. By doing
so, we drop the assumption made in Equation (5) that the parameters and the
latent variables are independent. Furthermore, from Equations (18) and (20),
we can see that we make the same assumption on z1, z2, that is the assignment
of z1uv

and z2uv
to the current entry [u, v] is independent w.r.t the assignments

of the other entries.

The lower bound of the log-likelihood is:

log p(X |α1, α2, β) ≥ (21)

Eq(z1,z2,π1,π2,θ|γ)[log p(X, z1, z2, π1, π2, θ|α1, α2, β)] −

Eq(z1,z2,π1,π2,θ|γ)[log q(z1, z2, π1, π2, θ|γ)] =

Eq(π1,π2,θ|z1,z2)q(z1,z2|γ)[log p(X, z1, z2, π1, π2, θ|α1, α2, β)] −

Eq(π1,π2,θ|z1,z2)q(z1,z2|γ)[log q(π1, π2, θ|z1, z2)q(z1, z2|γ)] =

Eq(z1,z2|γ)[Eq(π1,π2,θ|z1,z2)[log p(π1, π2, θ|X, z1, z2) + log p(X, z1, z2|α1, α2, β)]] −

Eq(z1,z2|γ)[Eq(π1,π2,θ|z1,z2)[log q(π1, π2, θ|z1, z2)]] − Eq(z1,z2|γ)[log q(z1, z2|γ)]

Since we do not assume any specific form for q(π1, π2, θ|z1, z2), the lower
bound will reach at the true posterior p(π1, π2, θ|X, z1, z2). Therefore, the lower
bound can be rewritten as:

log p(X |α1, α2, β) ≥

Eq(z1,z2|γ)[log p(X, z1, z2|α1, α2, β)] − Eq(z1,z2|γ)[log q(z1, z2|γ)] (22)

which is the same as L(γ, α1, α2, β). Thus, both approaches derive the same
lower bound of the log-likelihood.

Since the collapsed variational Bayesian algorithm makes a strictly weaker
assumption on the variational posterior than the standard variational Bayesian
algorithm, the collapsed approach can find a tighter lower bound, i.e.
L(γ, α1, α2, β) ≤ L(γ1, γ2, φ1, φ2, α1, α2, θ).

Maximizing Equation (22) w.r.t γuvij and setting it to zero, we obtain:

γuvij = q(z1uv
= i, z1uv

= j|γuv) = (23)

exp(Eq(z¬uv
1

,z¬uv
2

)[log p(X, z¬uv
1 , z¬uv

2 , z1uv
= i, z1uv

= j|α1, α2, β)])
∑K1

i′=1

∑K2

j′=1 exp(Eq(z¬uv
1

,z¬uv
2

)[log p(X, z¬uv
1 , z¬uv

2 , z1uv
= i′, z1uv

= j′|α1, α2, β)])
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According to Equation (??), and setting

f(u, v, i, j) =

exp(Eq(z¬uv
1

,z¬uv
2

)[log(α1 + n
¬uv
ui ) + log(α2 + n

¬uv
vj ) + log(β + n

¬uv
ijxuv

) − log(Nβ + n
¬uv
ij )])

we have:

γuvij = q(z1uv
= i, z1uv

= j|γuv) =
f(u, v, i, j)

∑K1

i′=1

∑K2

j′=1 f(u, v, i′, j′)
(24)

The derivation of Equations (23) and (24) can be found in the Appendix.
Following [7], we also apply a Gaussian approximation to Equation (24).

Here we just illustrate how to calculate Eq(z¬uv
1

,z¬uv
2

)[log(α1 + n¬uv
ui )]. The cal-

culation of the other three expectations is similar. Suppose nu ≫ 0, and note
that n¬uv

ui =
∑N1

v′=1,v′ 6=v

∑K2

j′=1,j′ 6=j 1(z1uv′
= i, z1uv′

= j′) is a sum of a large
number of independent Bernoulli variables 1(z1uv′

= i, z1uv′
= j′), each with

mean parameter γuv′ij′ ; thus, it can be accurately approximated by a Gaussian.
The mean and variance are given by the sum of the means and the variances of
the individual Bernoulli variables:

Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ] =

N1
∑

v′=1,v′ 6=v

K2
∑

j′=1,j′ 6=j

γuv′ij′ (25)

V arq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ] =

N1
∑

v′=1,v′ 6=v

K2
∑

j′=1,j′ 6=j

γuv′ij′ (1 − γuv′ij′ ) (26)

We further approximate log(α1 + n¬uv
ui ) using a second-order Taylor expan-

sion, and evaluate its expectation under the Gaussian approximation:

Eq(z¬uv
1

,z¬uv
2

)[log(α1 + n¬uv
ui )] ≈ (27)

log(α1 + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ]) −

V arq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ]

2(α1 + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ])2

(28)

As discussed in [7], the Gaussian approximation will be accurate. Finally,
plugging Equation (27) into (24), we have:

γuvij ∝ (29)
(

α1 + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ui ]

) (

α2 + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
vj ]

)

(

β + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ijxuv

]
) (

Nβ + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ij ]

)−1

exp

(

−
V arq(z¬uv

1
,z¬uv

2
)[n

¬uv
ui ]

2(β + Eq(z¬uv
1

,z¬uv
2

)[n¬uv
ui ])2

−
V arq(z¬uv

1
,z¬uv

2
)[n

¬uv
vj ]

2(β + Eq(z¬uv
1

,z¬uv
2

)[n¬uv
vj ])2

−

V arq(z¬uv
1

,z¬uv
2

)[n
¬uv
ijxuv

]

2(β + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ijxuv

])2
+

V arq(z¬uv
1

,z¬uv
2

)[n
¬uv
ij ]

2(Nβ + Eq(z¬uv
1

,z¬uv
2

)[n
¬uv
ij ])2

)

An EM-style iterative algorithm can be applied to estimate the γuvij ’s by defining
Equation (29) as the recursion equation, we can compute every γuvij for u ∈
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1, · · · , N1, v ∈ 1, · · · , N2, i ∈ 1, · · · , K1, j ∈ 1, · · · , K2, until the change of γuvij

between two consecutive iterations is less than a certain threshold, which we
consider as converged.

4 Experiments

4.1 Datasets

Two real datasets are used in our experiments: (a) MovieLens5: MovieLens is
a movie recommendation dataset created by the Grouplens Research Project.
It contains 100,000 ratings in a sparse data matrix for 1682 movies rated by
943 users. The ratings are ranged from 1 to 5, with 5 being the highest score.
We use 5-fold cross-validation for training and testing. (b) Jester6: Jester is a
joke rating dataset. The original dataset contains 4.1 million continuous ratings
of 100 jokes from 73,421 users. The ratings are ranged from -10 to 10, with 10
being the highest. Following [1], we pick 1000 users who rate all 100 jokes and
use this dense data matrix in our experiment, and binarize the dataset such that
the non-negative entries become 1 and the negative entries become 0. We held
out 1/4 data to do prediction.

4.2 Methodology

We train the LDCC model using the three methods discussed in Section 3,
and make prediction on the test data using the learned model parameters. For
prediction, we report the perplexity [1], which is defined as:

perp(X) = exp

(

− log p(X)

N

)

where N is the number of non-missing entries in X . Perplexity monotonically
decreases as the log-likelihood increases. Thus, a lower perplexity value is an
indication of a better model. In fact, a higher log-likelihood on the training set
means that the model fits the data better, and a higher log-likelihood on the
test set implies that the model can explain the data better.

The variational Bayesian algorithm can find local optima of α1, α2, and θ

for the training data, given a random initialization of these parameters. If the
change in log-likelihood between two consecutive iterations is less than 1.0e-
6, we stop the process. For collapsed Gibbs sampling and collapsed variational
Bayesian algorithms, we use uniform priors to initialize the model parameters
α1, α2, and β. We set to 5000 the maximum number of iterations for Gibbs
sampling, the first 2000 as burn-in, and 500 sample lag. Again, if the maximum
change between the model parameters γ of two consecutive iterations is less than
1.0e-6, we assume that the algorithm has converged, and stop the process.

5 http://www.grouplens.org/node/73
6 http://goldberg.berkeley.edu/jester-data/
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Table 1. Perplexity Values

Gibbs CVB VB

MovieLens 3.247 4.553 5.849

Binarized Jester 2.954 3.216 4.023

4.3 Experimental Results

In this section, we present two experimental results: perplexity comparison
among the three methods, and the likelihood v.s. number of iterations com-
parison among the three methods.

Following [1], for the MovieLens dataset, we set K1 = 20 and K2 = 19, which
are the numbers of user-clusters and movie-clusters; for the Jester dataset, we set
K1 = 20 and K2 = 5, which are the numbers of user-clusters and joke-clusters;
the matrices of both datasets roughly have 100,000 entries. Table 1 shows the
perplexity values of the three methods on the test data. For the MovieLens
dataset, we report the average perplexity of five-fold cross-validation for all the
three methods. Doing prediction for the MovieLens dataset is harder than for
the binarized Jester dataset. In fact, the binarized Jester data have only two
rating states, while the MovieLens has 5. For this reason the perplexity values
for the MovieLens are smaller than that for the binarized Jester data. From the
table, we can see that collapsed Gibbs sampling achieves the best perplexity
on both datasets, followed by collapsed variational Bayesian (CVB). The worst
performer is the standard variational Bayesian (VB) approach. These results cor-
roborate our theoretical analysis: collapsed Gibbs sampling and collapsed varia-
tional Bayesian can learn more accurate likelihood functions than the standard
variational Bayesian algorithm, thus leading to higher predicting performance.

Figure 3 shows the log-likelihood as a function of the number of iterations
for the three methods on the binarized Jester dataset. As expected, the col-
lapsed Gibbs sampling algorithm provides higher log-likelihood values, but needs
a larger number of iterations, 5000 in our case. Collapsed variational Bayesian
provides better log-likelihood values than the standard variational Bayesian,
but worse than collapsed Gibbs sampling. Collapsed and standard variational
Bayesian algorithms have similar numbers of iterations at convergence (100).

Although collapsed Gibbs sampling is an unbiased estimator and can find
the true likelihood function, it takes a long time to achieve the stationary dis-
tribution. Standard variational Bayesian suffers from the strong assumption of
independence between model parameters and latent variables. As a consequence
it finds a loose lower bound of the true likelihood function. Collapsed variational
Bayesian, however, can find a tighter lower bound of the likelihood function
than standard variational Bayesian, and at the same time it’s much faster than
collapsed Gibbs sampling.
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Fig. 3. Log-likelihood v.s. Number of Iterations

5 Conclusions

In this work, we extended the Bayesian co-clustering model, and proposed a
collapsed Gibbs sampling and a collapsed variational Bayesian algorithm to per-
form estimation and inference. The empirical evaluation proved that collapsed
Gibbs sampling and collapsed variational Bayesian algorithms can learn more
accurate likelihood functions than the standard variational Bayesian algorithm,
thus leading to higher predicting performance in general.
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Appendix

BCC Model

For the BCC model, the marginal probability of an entry x in the data matrix X is:

p(x|α1, α2, θ) =

Z

π1

Z

π2

p(π1|α1)p(π2|α2)
X

z1

X

z2

p(z1|π1)p(z2|π2)p(x|θz1z2
) dπ1dπ2

The overall joint distribution over all observable and latent variables is given by:

p(X, π1, π2, z1, z2|α1, α2, θ) =
Y

u

p(π1u |α1)
Y

v

p(π2v |α2)

·
Y

u,v

p(z1uv |π1u)p(z2uv |π2v )p(xuv|θz1uv ,z2uv
)δuv

The probability of observing the entire matrix X is:

p(X|α1, α2, θ) =

Z

π1

Z

π2

Z

θ

 

Y

u

p(π1u |α1)

! 

Y

v

p(π2v |α2)

!

·

0

@

Y

u,v

X

z1uv

X

z2uv

p(z1uv |π1u)p(z2uv |π2v )p(xuv|θz1uv ,z2uv
)δuv

1

A dπ1dπ2

Derivation of Equation (13)

p(X,z1uv = i, z2uv = j, z
¬uv
1 , z

¬uv
2 |α1, α2, β) = (30)

N1
Y

u′=1

 

Γ (K1α1)

Γ (K1α1 + n¬uv
u′ + δu′=u)

K1
Y

i′=1

Γ (α1 + n¬uv
u′i′ + δi′=i

u′=u)

Γ (α1)

!

N2
Y

v′=1

0

@

Γ (K2α2)

Γ (K2α2 + n¬uv
v′ + δv′=v)

K2
Y

j′=1

Γ (α2 + n¬uv
v′j′ + δ

j′=j

v′=v
)

Γ (α2)

1

A

K1
Y

i′=1

K2
Y

j′=1

 

Γ (Nβ)

Γ (Nβ + n¬uv
i′j′

+ δ
j′=j

i′=i
)

N
Y

x′=1

Γ (β + n¬uv
i′j′x′ + δx′=xuv

i′=i,j′=j
)

Γ (β)

!

p(X,z
¬uv
1 , z

¬uv
2 |α1, α2, β) = (31)

N1
Y

u′=1

 

Γ (K1α1)

Γ (K1α1 + n¬uv
u′ + δu′=u)

K1
Y

i′=1

Γ (α1 + n¬uv
u′i′ + δi′=i

u′=u)

Γ (α1)

!

N2
Y

v′=1

0

@

Γ (K2α2)

Γ (K2α2 + n¬uv
v′ + δv′=v)

K2
Y

j′=1

Γ (α2 + n¬uv
v′j′ + δ

j′=j

v′=v
)

Γ (α2)

1

A

K1
Y

i′=1

K2
Y

j′=1

 

Γ (Nβ)

Γ (Nβ + n¬uv
i′j′

+ δ
j′=j

i′=i
)

N
Y

x′=1

Γ (β + n¬uv
i′j′x′ + δx′=xuv

i′=i,j′=j
)

Γ (β)

!

where δ
(·)
(·) is an indicator function: if all input equations are true, it takes value 1, else

0. Note that if u′ 6= u, n¬uv
u′ = nu′ . The same holds for the other counting variables.

Thus, Equation (13) can be derived by taking the ratio of Equations (30) and (31).
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Derivation of Equations (23) and (24)

L(γ, α1, α2, β) =
Z N1
Y

u=1

N2
Y

v=1

q(z1uv , z2uv |γuv) log p(X, z1, z2|α1, α2, β) dq(z1, z2|γ) −

Z N1
Y

u=1

N2
Y

v=1

q(z1uv , z2uv |γuv) log

N1
Y

u=1

N2
Y

v=1

q(z1uv , z2uv |γuv) dq(z1, z2|γ)

Taking the derivative of L(γ, α1, α2, β) w.r.t q(z1uv , z1uv |γuv), we get:

∂L(γ , α1, α2, β)

∂q(z1uv , z1uv |γuv)
=

Z N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′) log p(X,z1, z2|α1, α2, β) dq(z¬uv
1 , z

¬uv
2 |γ) −

Z N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′) log

N1
Y

u′=1

N2
Y

v′=1

q(z1u′v′
, z2u′v′

|γu′v′) dq(z¬uv
1 , z

¬uv
2 |γ) −

N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′) =

Z N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1
u′v′

, z2
u′v′

|γu′v′) log p(X,z1, z2|α1, α2, β) dq(z¬uv
1 , z

¬uv
2 |γ) −

log q(z1uv , z2uv |γuv)

Z N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1
u′v′

, z2
u′v′

|γu′v′) dq(z¬uv
1 , z

¬uv
2 |γ) −

Z N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′) log

N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′) dq(z¬uv
1 , z

¬uv
2 |γ) −

N1
Y

u′=1,u′ 6=u

N2
Y

v′=1,v′ 6=v

q(z1u′v′
, z2u′v′

|γu′v′)

Setting the derivative to zero, it’s clear that:

q(z1uv , z2uv |γuv) ∝ exp(Eq(z¬uv
1

,z¬uv
2

|γ)[log p(X,z1, z2|α1, α2, β)])

from which we derive Equation (23). From Equation (30), we can see that:

log p(X, z1uv = i, z2uv = j, z
¬uv
1 , z

¬uv
2 |α1, α2, β) =

N1
X

u′=1

 

log Γ (K1α1) − log Γ (K1α1 + n
¬uv
u′ + δu′=u) +

K1
X

i′=1

(log Γ (α1 + n
¬uv
u′i′ + δ

i′=i
u′=u) − log Γ (α1))

!

+

N2
X

v′=1

0

@log Γ (K2α2) − log Γ (K2α2 + n
¬uv
v′ + δv′=v) +

K2
X

j′=1

(log Γ (α2 + n
¬uv
v′j′ + δ

j′=j

v′=v
) − log Γ (α2))

1

A+

K1
X

i′=1

K2
X

j′=1

 

log Γ (Nβ) − log Γ (Nβ + n
¬uv
i′j′ + δ

j′=j

i′=i
) +

N
X

x′=1

(log Γ (β + n
¬uv
i′j′x′ + δ

x′=xuv

i′=i,j′=j
) − log Γ (β))

!
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Note that if u′ = u, Γ (K1α1 + n¬uv
u′ + δu′=u) = (K1α1 + n¬uv

u′ )Γ (K1α1 + n¬uv
u′ ), as for

other Gamma functions. Then, we have:

log p(X, z1uv = i, z2uv = j, z
¬uv
1 , z

¬uv
2 |α1, α2, β) = − log(K1α1 + n

¬uv
u ) + log(α1 + n

¬uv
ui )−

log(K2α2 + n
¬uv
v ) + log(α2 + n

¬uv
v′j′ ) − log(Nβ + n

¬uv
i′j′ ) + log(β + n

¬uv
i′j′x′) +

N1
X

u′=1

 

log Γ (K1α1) − log Γ (K1α1 + n
¬uv
u′ ) +

K1
X

i′=1

(log Γ (α1 + n
¬uv
u′i′ ) − log Γ (α1))

!

+

N2
X

v′=1

0

@log Γ (K2α2) − log Γ (K2α2 + n
¬uv
v′ ) +

K2
X

j′=1

(log Γ (α2 + n
¬uv
v′j′ ) − log Γ (α2))

1

A+

K1
X

i′=1

K2
X

j′=1

 

log Γ (Nβ) − log Γ (Nβ + n
¬uv
i′j′ ) +

N
X

x′=1

(log Γ (β + n
¬uv
i′j′x′) − log Γ (β))

!

(32)

where for a chosen entry [u, v], no matter what z1uv and z2uv are, log(K1α1 + n¬uv
u ),

log(K2α2 + n¬uv
v ), and the summations in Equation (32) are the same. So it’s clear

that:

q(z1uv = i, z1uv = j|γuv) ∝

exp(Eq(z¬uv
1

,z¬uv
2

)[log(α1 + n
¬uv
ui ) + log(α2 + n

¬uv
vj ) + log(β + n

¬uv
ijxuv

) − log(Nβ + n
¬uv
ij )])

Thus, we derive Equation (24).


