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Abstract. Co-clustering has emerged as an important technique for
mining contingency data matrices. However, almost all existing co-
clustering algorithms are hard partitioning, assigning each row and col-
umn of the data matrix to one cluster. Recently a Bayesian co-clustering
approach has been proposed which allows a probability distribution
membership in row and column clusters. The approach uses variational
inference for parameter estimation. In this work, we modify the Bayesian
co-clustering model, and use collapsed Gibbs sampling and collapsed
variational inference for parameter estimation. Our empirical evaluation
on real data sets shows that both collapsed Gibbs sampling and collapsed
variational inference are able to find more accurate likelihood estimates
than the standard variational Bayesian co-clustering approach.
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1 Introduction

Co-clustering [2] has emerged as an important approach for mining dyadic and re-
lational data. Often, data can be organized in a matrix, where rows and columns
present a symmetrical relation. For example, documents can be represented as a
matrix, where rows are indexed by the documents, and columns by words. Co-
clustering allows documents and words to be grouped simultaneously: documents
are clustered based on the contained words, and words are grouped based on the
documents they appear in. The two clustering processes are inter-dependent.
Some researchers have proposed a hard-partition version [3], others a soft-
partition version [1] of co-clustering. In the hard-partition case, each row (col-
umn) is assigned to exactly one row (column) cluster. In the soft-partition case,
each row (column) has a probability of belonging to each row (column) cluster.
The Bayesian Co-Clustering (BCC) model proposed in [1] is a kind of gen-
erative model. BCC maintains separate Dirichlet priors for the distribution of
row- and column-clusters given rows and columns. To generate each entry in the
data matrix, the model first generates the row and column clusters of the current
entry according to this Dirichlet distribution. The value of the current entry is
then generated according to the corresponding row-cluster and column-cluster.
The advantage of a generative model is that it can be used to predict unseen
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data. Like the original Latent Dirichlet Allocation (LDA) [5] model, though, BCC
assumes uniform priors for the entry value distributions given row- and column-
clusters. The authors in [1] proposed a variational Bayesian algorithm to perform
inference and estimate the BCC model. A lower bound of the likelihood function
is learned and used to estimate model parameters.

In this work, we extend the BCC model and propose a collapsed Gibbs sam-
pling and a collapsed variational Bayesian algorithm for it. Following [5], first
we smooth the BCC model, by introducing priors for the entry value distribu-
tions given row- and column-clusters. Following [5], we call our approach Latent
Dirichlet Bayesian Co-Clustering (LDCC), since it assumes Dirichlet priors for
row- and column-clusters, which are unobserved in the data contingency matrix.
The collapsed Gibbs sampling and collapsed variational Bayesian algorithms we
propose can learn more accurate likelihood functions than the standard varia-
tional Bayesian algorithm [1]. This result is derived analytically for the collapsed
variational Bayesian algorithm. More accurate likelihood estimates can lead to
higher predictive performance, as corroborated by our experimental results.

The rest of the paper is organized as follows. In Section 2, we discuss re-
lated work. Section 3 introduces the LDCC model and the variational Bayesian
algorithm. We then discuss the collapsed Gibbs sampling and the collapsed vari-
ational Bayesian algorithms. Section 4 demonstrates our empirical evaluation of
the three methods. Finally, Section 5 summarizes the paper.

2 Related Work

Our work is closely related to [1], which we discuss in Section 3.1. Dhillon et
al. proposed an information-theoretic co-clustering approach (hard-partition) in
[3]. Shafiei et al. proposed a soft-partition co-clustering, called “Latent Dirichlet
Co-clustering” in [4]. The proposed model, though, does not cluster rows and
columns simultaneously. It first defines word-topics, i.e., groups of words, and
then defines document-topics, i.e., groups of word-topics. Documents are mod-
eled as mixtures of such document-topics. Thus, the resulting model is similar
to a hierarchical extension of the “Latent Dirichlet Allocation” [5] model, since
the defined document-topics are not groups of documents, but groups of word-
topics. Our LDCC model and BCC [1] model assume independence between
row-clusters and column-clusters, which is the same assumption as in [3].

Blei et al. proposed “Latent Dirichlet Allocation” (LDA) [5], which assumes
that topics are mixtures of words, and documents are mixtures of topics. A
standard variational Bayesian algorithm [5] is used to estimate the posterior
distribution of model parameters given the model evidence. Griffiths et al. used
a collapsed Gibbs sampling method to learn the posterior distribution of pa-
rameters for the LDA model [9]. Recently, Teh et al. proposed a collapsed varia-
tional Bayesian algorithm to perform model inference for LDA and “Hierarchical
Dirichlet Processing”[7,10].
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3 Latent Dirichlet Co-Clustering

In this section, we first introduce the LDCC model. We then discuss three dif-
ferent learning methods: variational Bayesian, collapsed Gibbs sampling, and
collapsed variational Bayesian. Table 1 gives a summary of the notation used.

Symbol Description

X data matrix
u index for row
v index for column
[u,v]  entry of the matrix at row u and column v
Tow value for matrix entry at row u and column v
X entry value set
i index for row clusters
7 index for column clusters
Ny number of rows
No number of columns
z1 row clusters
zo column clusters
K1 number of row clusters
Ko number of column clusters
aq Dirichlet prior hyperparameter for for rows
[e % Dirichlet prior hyperparameter for columns
Dirichlet prior hyperparameter for the probabilities of each entry value
B given a row- and a column-clusters
T The probabilities of each row-cluster given each row
T2 The probabilities of each column-cluster given each column

0ijx,, probability of entry value x,, give 21 =17 and z2 = j
Nijaz,, number of entries with value x,, assigned to row cluster i and column cluster j

Noi number of entries in row u assigned to row cluster

Moy number of entries in column v assigned to column cluster j

nij number of entries in matrix assigned to row cluster ¢ and column cluster j
Mo number of entries in row u

Ny number of entries in column v

Fig. 1. Notation used in this paper

Given an N; x Ny data matrix X, the values z,, of each entry [u,v], u =
1,...,Ny,v=1,..., Ny are defined in a value set, x,, € X. For co-clustering, we
assume there are K7 row clusters z1, and K5 column clusters z5. LDCC assumes
two Dirichlet priors® Dir(a;) and Dir(az) for rows and columns respectively,
o =< ap,Jlu=1,...,N1 >, as =< ag,|v = 1,---,Na >, from which the
probabilities of each row-cluster z; and column-cluster z given each row w and
each column v are generated, denoted as m, and my, respectively. Row clusters
for entries in row u and column clusters for entries in column v are sampled
from multinomial distributions p(z1|m1,) and p(z2|ms,) respectively. We denote
T =< m,ju=1,...,N; > mo =< mg, Jv =1,...,No > 21 =< 21, Ju =
1,....,Ny,v = 1,...,Na > and z9 =< 29, Ju = 1,...,N;,v = 1,..., Ny >,
where z1 and zy are row- and column-cluster assignment for all entries in the
data matrix X. A row cluster z; = ¢ and a column cluster zo = j together
decide a co-cluster (z1,22) = (4,J), and entries in the matrix are also sampled
from a multinomial distribution p(z|6,, .,) given a co-cluster (z1,2z2) = (4, 7).
We denote 8 =< 0,,—; ,,—jli =1,...,K1,j =1,..., Ky >. Here, z1 and 2z, are

3 In the rest of the paper, we assume symmetric Dirichlet priors, which means «; and
a2 do not depend on u or v.
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Fig. 2. Latent Dirichlet Bayesian Co-clustering Model

latent variables, while 7r1, 72 and 6 are unknown parameters. The generative
process for the whole data matrix is as follows (see Figure 2):

— For each row u, choose w1, ~ Dir(ay)

— For each column v, choose ma, ~ Dir(az)

— To generate the entry of row v and column v:
e choose 21, ~ p(21|m,), 22,, ~ p(22|m2,)
e choose 0., ., ~ Dir(3)

e choose xy, ~ p(x|21,,,22,,, 02, 20, )-

The LDCC model proposed here departs from the BCC model [1] by intro-
ducing a prior g for 6,,,,. Thus, LDCC can assign a probability to an unseen
entry value according to p(0., 2,|5)-

The marginal probability of an entry x in the data matrix X is given by:

plelar, @z, B) = / 1 / 2 /9 p(milan)p(ms|as)p(6-,-,15)

YD p(zlm)p(zalme)p(62, 2, ) dmidmadh, -, (1)

21 22

uwv ? uv )

Note that the entries in the same row/column are generated from the same
71, Or T, so the entries in the same row/column are related. Therefore, the
model introduces a coupling between observations in the same row/column [1].

The overall joint distribution over X, 71, 72, 21, 22 and 6 is given by:

p(X777177T27Z17Z270|0417042aﬁ) = Hp(ﬂ-lulal) Hp(ﬂ-2u|a2)
u v

: H Hp(ezl,zz |6) Hp(zluu

K, Ko u,v

7T21; )p(xuv|9z1,227 Zluv7 Z2uv)6uv (2)

m1,)P(22,,

where 0., is an indicator function which takes value 0 when x,, is empty, and
1 otherwise (only the non-missing entries are considered); z1,, € {1,..., K1} is
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the latent row cluster, and z9,, € {1,..., K>} is the latent column cluster for
observation ..

Marginalizing out all unknown parameters 71, wo and 6, the marginal like-
lihood of observed and latent variables is:

P(X, z1, z2|a1, g, B) = p(X|z1, 22, B)p(z1]a1)p(22|az) = (3)

/ (X106, 21, 22)p(6]5) 6 / p(z1]my)p(mi]on) drry / p(zalma)p(malas) dres

Summing over all possible latent variables z; and z2, the probability of ob-
serving the entire matrix X is:

p(Xlaran) = [ | / 2 / (E[pmuml)) <1:[p(7fzu|042)> (H p(@l,mw))

AT D wle,

UV Z1q 2240

2, )p(xuv |9Z1u1} 20 )51“; dmq d7T2d0 (4)

m1,)P(22,,

3.1 Variational Bayesian Algorithm for BCC

In this section, we briefly describe the variational Bayesian algorithm for the
original BCC model (see Appendix). The BCC model assumes uniform priors
for @ and assumes that 0 has a Gaussian distribution. The authors in [1] derived
a variational algorithm for their model. In this paper, we assume that the values
for each entry in the data matrix are discrete?. We do so for mathematical
convenience of the derivation of the collapsed Gibbs sampling and the collapsed
variational Bayesian algorithms. Thus, unlike [1], we do not assume that 6 has
a Gaussian distribution.

The variational Bayesian algorithm introduces
q(z1, z2, ™1, 2 |¥1,¥2, P1,P2) as an approximation of the actual distri-
bution p(z1,z2, 71, 72| X, a1,2,0), where 1, 2, ¢1 and ¢ are called
variational variables, v1 =< vy Ju=1,--- Ny >, y2 =<y, v =1,--+ , Ny >,
¢1 =< ¢, lu=1,--+ Ny > ¢p2 =< ¢, |v = 1,--- ,No >, 1, and 7o, are
variational Dirichlet distribution parameters with K; and Ko dimensions
respectively for rows and columns, ¢;, and ¢, are multinomial parame-
ters with K7 and K5 dimensions for rows and columns. It is assumed that
q(z1, 22, ™1, waly1, Y2, P1, P2) can be fully factorized as:

q(z1, 22, ™1, T2|Y1, 72, b1, P2) =

Ny No N; Ns
<H (J(Wluhlu)) (H Q(Wzvhzv)) (H 11 Q(le|¢1u)Q(Z2w|¢2v)> (5)
u=1 v=1 u=1v=1

4 Technically, our theory applies to any exponential family distribution for data ma-
trix.
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The factorization assumption of ¢(z1, z2, w1, w2|v1, Y2, P1, P2) means that pa-
rameters and latent variables are independent, and the assignment of z;,, and
za,, for the current entry [u,v] is independent of the assignments for other en-
tries.

The variational Bayesian algorithm can find a lower bound of the true log-
likelihood:

log p(X|a1, g, 0) > (6)
Eq[logp(Xv Z1,%22,T1, 71'2|0417 2, 0)] - Eq[logq(zla Z2,T1, 7T2|717727 ¢15 ¢2)]

and we denote the lower bound as L(v1,y2, 1, P2, a1, a2, 0).

The variational Bayesian algorithm is an EM-style method: the E-step es-
timates the values for ~1, 2, ¢1 and ¢2 that maximize the lower bound of
the log-likelihood based on «j, ay and 6; the M-step estimates «a;, as and
0 according to the log-likelihood lower bound based on ~i, 72, ¢1 and ¢o
learned during the previous E-step. Thus, in the E-step, in order to maximize
L(v1,72, @1, 2, a1, aa, ), one takes the derivative of L w.r.t 1, y2, ¢1 and ¢o
respectively, and sets it to zero. We get:

Zﬁgl iK:ll 5UU¢2vj log oijmuv )

Ty

P1,; X exp <W(71m») + (7)

Ny

No Ko
_ .- 5u'u vi 10 91 i T
¢2,; X exp <!I/(72w_) + Ev,1 j=1 ¢1 gUij )

Vi X a1, + Ny, (9)
V2, X Q2; + N2, (10)

where n,, and n, are the number of entries in row v and column v respectively,
and ¥(-) is the digamma function, the first derivative of log I'(-), the log Gamma
function. In the M-step, to estimate the Dirichlet parameters oy and as, one
can use Newton method, as shown in [5] for LDA, to estimate 8, one takes the
derivative of L w.r.t 8 and setting it to zero. We get:

N1 N

eij;ﬂuv X Z Z 5u’v’(xuv)¢lu/i¢2v/j (11)

u'=1v'=1

where 0,y (Zyy) is an indicator function, which equals 1 if the value of the entry
at row v/ and column v’ equals to xy,, 0 otherwise. The variational Bayesian
method iterates through the E-step and the M-step until convergence.
Although efficient and easy to implement, the variational Bayesian algorithm
can potentially lead to inaccurate results. The latent variables z1, z2 and the
parameters 71, 7o, 6 can have a strong inter-dependence in the true poste-
rior p(X, z1, 22, ™1, 2|1, ag, @). This dependence is ignored in the variational
Bayesian algorithm which assumes independence between the latent variables
and the parameters. As a result, the lower bound learned for the log marginal
likelihood can be very loose, leading to inaccurate estimates of the posterior.
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3.2 Collapsed Gibbs Sampling for LDCC

Standard Gibbs sampling [8], which iteratively samples the latent variables z;
and z9, and the parameters 7r1, w2 and 6, may converge very slowly due to the
strong dependencies between the latent variables and the parameters. Collapsed
Gibbs sampling improves upon Gibbs sampling by marginalizing out the param-
eters w1, w9 and 6, and then sampling the latent variables z; and zo only, over
the so called collapsed space. Consider a model in which each matrix element
can have a discrete value from a value set X', with |X| = N. Using a symmetric
Dirichlet prior, the marginal likelihood over X, z; and z3, (Equation (3)), can
be rewritten as:

Ny K1
p(X, 21, z2|on, a2, B) = H ( ALSLo) H T +nm)> (12)

u=1 F(Klal + n“) i=1 F(al)
i e res o) i X 10+
Ul;[l I'(Kyag +ny) 31;[1 HH Nﬂ—i—nu 1;[ rg)

Given all the latent variables but the ones for entry [u,v], the conditional
probability of z1,, = and 2, = j is:

p('zluv :Z Z2uu j|'X z_‘u'U z;uv al,aQ,ﬁ) =
(al_i_nﬁuv)(cm_’_nﬁuv)(ﬁ_i_nﬁuv )

L) ZTuv

(Kiar +nyw)(Kaag + ny ) (NS + i)

(13)

where —uv denotes the corresponding count with x,,, 21,, and z3,, excluded.
The derivation can be found in the Appendix. The conditional probability can
be rewritten as:

p(z1,, =1,22,, =J|X, 27", 25", a1, 00, 8) =
(o + 15t o+ g )5+ g JVG + ) »

Sy S (e + ) (oo + ) (B 4+ ng, Y(NB +ngu)—!

where the numerator covers the factors specific to z1,,, = 4 and 22, = j, and the
denominator serves as a normalization factor by summing over all combination
of z; and z for the current entry [u,v].

Note that since collapsed Gibbs sampling marginalizes out the parameters
71, 72 and 6, it induces new dependencies between the latent variables z,, , 22,
(which are conditionally independent given the parameters) [7]. Equation (14)
shows that z1,, and z2,, depend on 27", 25" only through the counts n, ",
n,” and ng’, which is to say that the dependence of z1,, = i and 29,, = j
on any other variable z1,, = i/, 2z2,, = 7' is very small, especially for large
datasets. This is precisely the right setting for a mean field (i.e., fully factorized
variational) approximation: a particular variable interacts with the remaining
variables only through a summary statistics called the field, and the impact of

any single variable on the field is very small [7]. On the contrary, this is not
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true in the joint space of parameters and latent variables because fluctuations in
parameters can have a signicant impact on latent variables. As a consequence,
the mean field assumption fits better the collapsed space of latent variables than
the joint space of latent variables and parameters.

Given Equation (13) or (14), Gibbs sampling can generate row- and column-
cluster probabilities for the current entry conditioned on row- and column-
clusters for the other entries. One can calculate the following stationary dis-
tributions:

. . Nijzy,, + 5
Ty |21 =1, 22, =) = ————— 15
P(Tuw|21 240 = J) niy + NG (15)
. Nyi + Q1
o, = ifu) = AL (16)
. Nyj + Q2
pon,, = jlo) = L2 (17)

which correspond to 0,,—; ,—;, ™1, and g, .

Although Gibbs sampling leads to unbiased estimators, it also has some draw-
backs: one needs to assess convergence of the Markov chain and to have some idea
of mixing times to estimate the number of samples to collect, and to identify co-
herent topics across multiple samples. In practice, one often ignores these issues
and collects as many samples as is computationally feasible, while the question
of topic identication is often sidestepped by using just one sample. Hence, there
still is a need for more efficient, accurate and deterministic inference procedures.

3.3 Collapsed Variational Bayesian Algorithm for LDCC

The collapsed variational Bayesian algorithm for LDCC is similar to the stan-
dard variational Bayesian one, except for the optimization of the lower bound
of the log-likelihood in the collapsed space, which is inspired by collapsed Gibbs
sampling. There are two ways to derive the collapsed variational Bayesian algo-
rithm for LDCC, either in the collapsed space or in the original joint space of
latent variables and parameters.

We start from the collapsed space with parameters marginalized out. We
introduce g(z1, z2|7) to approximate p(z1, z2| X, a1, ae, §), where v =< Yy |t =
1,---,Ny,v=1,--- ,No > and vyp =< Yuwijli = 1,--- , K1,5 =1,--- , Ko >.
Assume that ¢(z1, z2]7) can be factorized as:

N1 Ns

q(z1,2217) = [[ I 22100 2200 [7u) (18)

u=1v=1

where ¢(z1,,,, 22, [Yuv) is & multinomial with parameters 4.
The lower bound of the log-likelihood is:

log p(X|a1, g, B) >
Eq(zl,Z2|'7) [lng(X, 21 z2|a1, a2, 6)] - Eq(z1,22"7) [log q(Zl, Z2|’7)] (19)
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denoted as L(v, a1, as, B).

When using the original joint latent variables and parameters space, we intro-
duce ¢(z1, z2, w1, 2, 0]y) to approximate p(z1, z2, 71, 72, 0| X, a1, az, ), where
we assume a factorization different from Equation (5):

N1 No
q(zlaz%rlar250|7) = q(T(l,ﬂ'270|21722) H H Q(Zluuszuv|7uv) (20)

u=1v=1

where we model the conditional distribution of parameters 71, 72, and 0 given
latent variables z; and zo without any assumptions on their form. By doing
so, we drop the assumption made in Equation (5) that the parameters and the
latent variables are independent. Furthermore, from Equations (18) and (20),
we can see that we make the same assumption on z;, 29, that is the assignment
of z1,, and z3,, to the current entry [u,v] is independent w.r.t the assignments
of the other entries.
The lower bound of the log-likelihood is:

log p(X|a1, ag, B) > (21)
Ey(zy 20717000 108 D(X, 21, 22, 1, 2, 0] a1, a2, )] —
Eq(z1,20,m1 70,017 108 (21, 22, 1,72, 0]7)] =
BEq(rey 702,0]21,22)a(x1,22|7) 108 P(X, 21, 22, 01, 72, 0], 2, B)] —
Ey(r1,m3.0|21,22)a(21,22|7) 108 ¢(T1, T2, 0|21, 22)q(21, 22]7)] =
Ey(z1 2507 [ Eq(ms 72,021, 22) 108 D(T01, 702, 01X, 21, 22) + log p(X, 21, z2|a1, o, f)]] —
Ey(zy 2ol [Bq(rer,70,0)21,20) 108 4(T1, 2, 0121, 22)|] — Ey(z, 2,)y) [l0g ¢(21, 22|7)]

Since we do not assume any specific form for g(q, 72, 0|21, 22), the lower
bound will reach at the true posterior p(rq, we, 0| X, 21, z2). Therefore, the lower
bound can be rewritten as:

log p(X|au, o, 3) >
Ey(z1 2 logp(X, 21, 22|a1, g, B)] — Eq(z, 2,y [log q(21, 227)]  (22)

which is the same as L(v, a1, a9, 3). Thus, both approaches derive the same
lower bound of the log-likelihood.

Since the collapsed variational Bayesian algorithm makes a strictly weaker
assumption on the variational posterior than the standard variational Bayesian
algorithm, the collapsed approach can find a tighter lower bound, i.e.
L(v, a1, a2, 8) < L(y1,72, $1, P2, 1, 2, 0).

Maximizing Equation (22) w.r.t ,,;; and setting it to zero, we obtain:

Yavig = 4(21,, =1, 21,, = J|Vuw) = (23)
exp(Ey(zue zyuv)logp(X, 277, 25", 21, =14, 21, = jlou, az, B)])

K K _ _ ; ;
Yoty j'2:1 exp(Ey(zue 25wy [logp(X, 277, 25", 21, = 7/, 21, = j'|oa, az, B)])
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According to Equation (??), and setting
f(u7 ’U7 i? ]) =

exp(Eq(zpuv zpun [log(ar +nyi™”) +log(az + nyj™) + log(B + nija,, ) — log(NB + nii™)])

we have:

: : flu,v,i, j)
Yuvij = 9\ 1, = ¥ 214, — J|[Yuv) = 24
’ ( | ) Ezlf;l _52:1 (U,U,i/,j/) ( )

The derivation of Equations (23) and (24) can be found in the Appendix.
Following [7], we also apply a Gaussian approximation to Equation (24).
Here we just illustrate how to calculate Eg(,ouv ,-uwvy[log(ar + n,;*)]. The cal-

culation of the other three expectations is similar. Suppose n, > 0, and note

—uv N1 K> o YA
that ngt" = D200 sy 2ty jrgy 21, = 1,21, = j') is a sum of a large
number of independent Bernoulli variables 1(z1, , = i,21,, = j'), each with

mean parameter y,,i;; thus, it can be accurately approximated by a Gaussian.
The mean and variance are given by the sum of the means and the variances of
the individual Bernoulli variables:

N1 K2
Eq(z;““,z;u”) [n:”uv] = Z Z ”Yuv'ij' (25)
v'=1,0"#v j'=1,5'#j
N1 K2
Varq(z;1bu7z;uv) [n;zw] = Z Z Yuv’ij! (1 - 'Yu'u’ij’) (26)

v=1v'A § =15 A

—uv

We further approximate log(ay + n, ) using a second-order Taylor expan-
sion, and evaluate its expectation under the Gaussian approximation:

Eq(z;1bu7z;uv)[log(a1 +n )] ~ (27)

ﬂuv]

VaT ﬁuu7z;uv)[nui

a(z;
—\71,’0

(al + E‘I(zfuuvz;uu)[nuz ])2

—uv

log(ay + Eq(z;““,z;“”)[”ui ) — D) (28)

As discussed in [7], the Gaussian approximation will be accurate. Finally,
plugging Equation (27) into (24), we have:

Vuvij X (29)
(1 + Eg(apee zyony[nai]) (2 + Eggzpun zpu)[n5"])

—uv —uv -1
(B + Eq(apme 2oy [nigan, 1) (NB + Eqgapuo zgeey[n3;*"])

exp (_ Vargspw spolngt®]  Vargepw sponlngd®]
208+ Eqtarv ayor) gt )? 208 + Bygarir o yun) [n,7])2
Vargzouw zpuy[na? ] Vary(zow ague) [nie] )
28+ Bytapee mpe i ])? 0 2N+ Bgapee 2z [05"])?

An EM-style iterative algorithm can be applied to estimate the ;s by defining
Equation (29) as the recursion equation, we can compute every 7y,,;; for u €



Latent Dirichlet Bayesian Co-Clustering 11

1,---,Ny,vel,--- ,Ny,i€l,--- Ky, j€1,- -, Ko, until the change of vyui;
between two consecutive iterations is less than a certain threshold, which we
consider as converged.

4 Experiments

4.1 Datasets

Two real datasets are used in our experiments: (a) MovieLens®: MovieLens is
a movie recommendation dataset created by the Grouplens Research Project.
It contains 100,000 ratings in a sparse data matrix for 1682 movies rated by
943 users. The ratings are ranged from 1 to 5, with 5 being the highest score.
We use 5-fold cross-validation for training and testing. (b) JesterS: Jester is a
joke rating dataset. The original dataset contains 4.1 million continuous ratings
of 100 jokes from 73,421 users. The ratings are ranged from -10 to 10, with 10
being the highest. Following [1], we pick 1000 users who rate all 100 jokes and
use this dense data matrix in our experiment, and binarize the dataset such that
the non-negative entries become 1 and the negative entries become 0. We held
out 1/4 data to do prediction.

4.2 Methodology

We train the LDCC model using the three methods discussed in Section 3,
and make prediction on the test data using the learned model parameters. For
prediction, we report the perplexity [1], which is defined as:

- logp(X)>

perp(X) = exp ( ~

where N is the number of non-missing entries in X. Perplexity monotonically
decreases as the log-likelihood increases. Thus, a lower perplexity value is an
indication of a better model. In fact, a higher log-likelihood on the training set
means that the model fits the data better, and a higher log-likelihood on the
test set implies that the model can explain the data better.

The variational Bayesian algorithm can find local optima of ay, ag, and 6
for the training data, given a random initialization of these parameters. If the
change in log-likelihood between two consecutive iterations is less than 1.0e-
6, we stop the process. For collapsed Gibbs sampling and collapsed variational
Bayesian algorithms, we use uniform priors to initialize the model parameters
a1, ag, and B. We set to 5000 the maximum number of iterations for Gibbs
sampling, the first 2000 as burn-in, and 500 sample lag. Again, if the maximum
change between the model parameters « of two consecutive iterations is less than
1.0e-6, we assume that the algorithm has converged, and stop the process.

® http://www.grouplens.org/node/73
6 http://goldberg.berkeley.edu/jester-data,/
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Table 1. Perplexity Values

Gibbs|CVB| VB
MovieLens 3.24714.553(5.849
Binarized Jester|2.954 |3.216(4.023

4.3 Experimental Results

In this section, we present two experimental results: perplexity comparison
among the three methods, and the likelihood v.s. number of iterations com-
parison among the three methods.

Following [1], for the MovieLens dataset, we set K1 = 20 and Ko = 19, which
are the numbers of user-clusters and movie-clusters; for the Jester dataset, we set
K7 = 20 and K9 = 5, which are the numbers of user-clusters and joke-clusters;
the matrices of both datasets roughly have 100,000 entries. Table 1 shows the
perplexity values of the three methods on the test data. For the MovieLens
dataset, we report the average perplexity of five-fold cross-validation for all the
three methods. Doing prediction for the MovieLens dataset is harder than for
the binarized Jester dataset. In fact, the binarized Jester data have only two
rating states, while the MovieLens has 5. For this reason the perplexity values
for the MovieLens are smaller than that for the binarized Jester data. From the
table, we can see that collapsed Gibbs sampling achieves the best perplexity
on both datasets, followed by collapsed variational Bayesian (CVB). The worst
performer is the standard variational Bayesian (VB) approach. These results cor-
roborate our theoretical analysis: collapsed Gibbs sampling and collapsed varia-
tional Bayesian can learn more accurate likelihood functions than the standard
variational Bayesian algorithm, thus leading to higher predicting performance.

Figure 3 shows the log-likelihood as a function of the number of iterations
for the three methods on the binarized Jester dataset. As expected, the col-
lapsed Gibbs sampling algorithm provides higher log-likelihood values, but needs
a larger number of iterations, 5000 in our case. Collapsed variational Bayesian
provides better log-likelihood values than the standard variational Bayesian,
but worse than collapsed Gibbs sampling. Collapsed and standard variational
Bayesian algorithms have similar numbers of iterations at convergence (100).

Although collapsed Gibbs sampling is an unbiased estimator and can find
the true likelihood function, it takes a long time to achieve the stationary dis-
tribution. Standard variational Bayesian suffers from the strong assumption of
independence between model parameters and latent variables. As a consequence
it finds a loose lower bound of the true likelihood function. Collapsed variational
Bayesian, however, can find a tighter lower bound of the likelihood function
than standard variational Bayesian, and at the same time it’s much faster than
collapsed Gibbs sampling.
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Fig. 3. Log-likelihood v.s. Number of Iterations

5 Conclusions

In this work, we extended the Bayesian co-clustering model, and proposed a
collapsed Gibbs sampling and a collapsed variational Bayesian algorithm to per-
form estimation and inference. The empirical evaluation proved that collapsed
Gibbs sampling and collapsed variational Bayesian algorithms can learn more
accurate likelihood functions than the standard variational Bayesian algorithm,
thus leading to higher predicting performance in general.
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Appendix
BCC Model

For the BCC model, the marginal probability of an entry x in the data matrix X is:

p(x|ai, az,0) // (m1]aa)p(ma|az) ZZp (z1]|m1)p(22|m2)p(x]02, 2, ) drdTr2
m1d mo

z1 22
The overall joint distribution over all observable and latent variables is given by:
p(X7 ™1, 72,21, Z2|0517 a2, 0) = Hp(ﬂ-lu |051) Hp(Tr2u |062)
Suv
)

. HP(le [T1,)P(2240 |72, )P(T w02y, 20,

The probability of observing the entire matrix X is:

p(X|a, 02,6) = / 1 / 2 / (Hpmml)) <Hp<mv|az>>

H Z Z p(zluu |7T1u )p(ZQHU |7r211 )p(xuv |921uv 1220 )6uv dﬂ-ldﬂ'2

UsV 214, 2240

Derivation of Equation (13)

p(X7zluv :iyzzuv :jvz;uvvz;uu|a17a27/8) = (30)

ﬁ I(Kion) ﬁ I(on +ngty +6970)

AL\ T (Kian + 0 +6u=0) 14 I'(a)

ﬁ I'(Kaa) ﬁ I(az +n,5 +6J’*v)

o \ T(Kz0e + 00 +00—y) 42 F(az)

ﬁ ﬁ I(NB) ﬁ T(B+ngt, + 6570 )

Py \DINB gt + 6420 o2, r®)
p(X7Z;uU7Z;uv|a17a27ﬂ) = (31)

ﬁ I(Kion) ﬁ (o +nJi +6970)

AL\ T (Kian+ 0 +6u-0) 14 I'(a)

ﬁ (Kaaz) K2 Plag + n,5 4 51]},:3))

o \ T(Rz0 + 00 +00—y) 42 I(az2)

i L(NB) ) G )

i’=1j'=1 Nﬂ + TL u”U + 53'—_13) /=1 F(ﬁ)

where 6(') is an indicator function: if all input equations are true, it takes value 1, else

0. Note that if v’ # u, n*” = n,. The same holds for the other counting variables.
Thus, Equation (13) can be derived by taking the ratio of Equations (30) and (31).
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Derivation of Equations (23) and (24)

L(v,0u,02,8) =
N1 No
ST T a1z ) g p(X, 21, 22,02, 8) da(n, 2) —
u=1v=1
N; Ny N1 Ng
ST T a1z tog T] TT a6t 220 o) dan, 221)
u=1v=1 u=1v=1

Taking the derivative of L(y, a1, a2, ) w.rt q¢(z1,,, 214, [ Yuv), We get:
8L(77 ar, 2, ﬂ)

aQ(Zluv s Rluy |7U’U) B
Ny No
/ H H q(zlu/UHZQu/ul |’Yulv/)10gp(X7Z17252|Oé170527ﬁ) dq(z;uv7z;uv|7) -

uw' =1,u'#Zuv'=1,v'#v

Ny N3 N; Ng
—uv —uv
/ IT  II ez, bwe)ios [T TT a0 22, ) da(zr 25 ) -
u/=1,u'#uv'=1v'#v w'=1v'=1

Ny No
H H Q(Zlulumzﬁu/u/"yu’v’) =

u'=1,u'#uv'=1,v"#v

Ny No
/ H H q(zlu/v”ZQu/v, |’)/ulv/)10gp(X7Z17252|Oé170527ﬁ) dq(z;uu7z;uU|7) -

u' =1,u'#Zuv'=1,v'#v

Ny No
108 ¢(21,, , 22,0 [ Yuv) / I T a2, vww) da(zr™, 22" |y) —
uw'=1,u'#uv'=1,v'#v
Ny No Ny Na
/ H H q(zlu/ul y R2,,1 1 |'Yu’11’) 10g H H q(zlulul 3 B2, 141 |7u’v’) dQ(Z;uv7 z;uv|7) -
uw' =1,u'#Zuv'=1,v'#v u'=1,u'#u v/ =1,v"#v
Ny No

H H q(zlu'v' > 22,041 |7u/v/)

u/=1,u'#uv'=1,v"#v
Setting the derivative to zero, it’s clear that:
A(Z10 s 2200 [Yuv) X XP(Eq(zpuv zguo |y [log p(X, 21, 22|a1, az, B)])
from which we derive Equation (23). From Equation (30), we can see that:

uv

Ing(X7 Rlyy = i?’Zzuv :j7z; 7z;uv|a17a27ﬁ) =

Ny K,
z <log I'Kia1) —log I'(Kia1 + ngi + 8yr—y) + Z(log (a1 +nyry + 6,=y,) — log F(al))> +

w/=1 i'=1

Ny Ky -

z log I'(Kaaz) — log I'( Koz + ny™” + 8y1—y) + Z(log I(az +n,% +62,20) —log I'(az)) | +
v/=1 ji=1

K, Ko N

> <10g I(NB) —log I(NB+ny +63,=7) + > (log I'(B+nafly + 5;”,’;3;; ;) —log F(ﬁ)))

i’=1j'=1 z/=1
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Note that if u' = u, I'(Kia1 + 1" + dur—y) = (Kiar +n*)TN(Kiaq +ngit?), as for
other Gamma functions. Then, we have:
lng(X, Rlyy = i, 22y = j7 Z;uv

—uv

log(Kaaz2 + n,

, 22, @z, B) = —log(Kiar +n,"") +log(ar +nyi'™”)—
) +log(aa + n,/s7) —log(NB +n;r5") +1og (B 4+ nirilur ) +

Ny K1
Z <log I'(Kion) —logI'(Kia1 + n, ') + Z(log I'(a1 +ny,/y) — log F(al))> +

u'=1 i’ =1

Ny Ko

Z log I'(K2az) — log I'(Kaaz + ny™”) + Z (log I'(cz +ny757) —log I'(a2)) | +
v/=1 ji=1

K Ky N

SN <1og I(NB) —log [(NB+nyi") + > (log (8 + nih) — log F(ﬁ))) (32)
i'=1j'=1 o/=1

where for a chosen entry [u,v], no matter what 21, and z2,, are, log(Kia1 + n,"?),
log(K2az + ny ™), and the summations in Equation (32) are the same. So it’s clear
that:

q(zluv = i7 Zluv = -7|71“1) X

exp(Eq(zpue zyuv)[log(ar +nyi™”) + log(az + nyj) + log(B + nija,, ) — log(NB + ng™)])

Thus, we derive Equation (24).



