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Abstract. Community detection in networks is a broad problem with
many proposed solutions. Existing methods frequently make use of edge
density and node attributes; however, the methods ultimately have dif-
ferent definitions of community and build strong assumptions about com-
munity features into their models. We propose a new method for commu-
nity detection, which estimates both per-community feature distributions
(topics) and per-node community membership. Communities are mod-
eled as connected subgraphs with nodes sharing similar attributes. Nodes
may join multiple communities and share common attributes with each.
Communities have an associated probability distribution over attributes
and node attributes are modeled as draws from a mixture distribution.
We make two basic assumptions about community structure: commu-
nities are densely connected and have a small network diameter. These
assumptions inform the estimation of community topics and member-
ship assignments without being too prescriptive. We present competi-
tive results against state-of-the-art methods for finding communities in
networks constructed from NSF awards, the DBLP repository, and the
Scratch online community.

1 Introduction

Given a graph of self-organizing objects, we wish to estimate the latent topics
around which the objects organize and discover community membership. We
hypothesize groups with high edge density in graphs are evidence of communities
whose members have similar attributes within a subset of the feature dimensions.

In this paper we present Seeded Estimation of Network Communities
(SENC). SENC is a probabilistic method which uses both node attributes and
graph structure to simultaneously estimate community feature distributions and
members. We assume a community may exist around seed groups in the network.
Many community detection methods build strong assumptions regarding com-
munity features into their models, which limits generalizability. SENC provides
a flexible means of accounting for a variety of community structures through
the use of configurable lower and upper bounds on discovered communities. The
seed groups define the lower bounds, and they may in turn be defined by net-
work structure or node and edge attributes. In the experiments presented in



this paper, we consider every maximal k-clique in the network to be the core
of a partially defined community. The upper bounds provide an intuitive way
to incorporate knowledge about the degree of clustering in the network. Nodes
may be members of multiple communities and communities may overlap.

Communities are defined by the associated distribution (topic) and a set of
member nodes. Every seed group corresponds to a community, and the initial
feature distributions are a weighted average of the seed members attributes.
We use the features of nodes in each group to compute initial estimates for
the community feature distributions (topics). We then find initial estimates of
the membership weights given these estimated per-community topics. After this
initialization, membership weights and community feature distributions are iter-
atively updated. The feature distributions are updated by aggregating attributes
of community members and finding the maximum likelihood of a mixture distri-
bution where the parameters for all other communities are fixed.

The contributions of this paper are:

— A scalable probabilistic method for simultaneously finding highly inter-
pretable community topics and node memberships (SENC).

— A flexible and intuitive method of influencing community estimation through
the use of bounded seed groups.

— The introduction of several datasets with ground-truth communities used
for comparative experiments with top-performing methods.

2 Related Work

There are many approaches to community detection and the state-of-the-art
methods which use both network structure and node features are based on linking
models [21, 13], heuristic clustering [10, 11, 16], or topic models [15, 14]. Previous
work [17] has also considered initialization with candidate communities.

Linking models estimate the probability of links and node attributes. They
are similar to block models [2, 3] with link probabilities dependent on node at-
tributes and community membership. Recent implementations are efficient and
competitively find communities, but treat node and community features as bi-
nary values [21]. This results in a poor representation of the community’s shared
interest or topic.

There have been attempts at extending clustering methods to support net-
work data, such as subspace clustering [10, 11, 16]. In contrast to linking models,
these methods do not model edge probability and instead use observed edges
and node attributes to identify dense, connected subgraphs with similar node
attributes over a subset of the feature space. These methods are not probabilis-
tic and rely on heuristics for detecting nodes with similar attributes. Further,
they find many duplicates of a single detected community and require a distinct
post-processing step to identify the optimal detected communities.

Topic model approaches extend basic models such as LDA [5] to estimate
latent factors and introduce a dependence of edges on the latent factors. These
models are generative and require a task-specific probabilistic graphical model.



In the past they have been difficult to scale up for larger datasets due to the
sampling methods on which they rely [9].

3 Background

A substantial proportion of community detection techniques do not use node at-
tributes to detect communities or provide per-community feature distributions as
output. Many solely rely on graph structure [8] or independently group objects
by topics and structure [23]. The state-of-the-art methods for community de-
tection have introduced linking models, subspace clustering, topic models, and
heterogeneous networks to improve performance and simultaneously estimate
topics and membership.

The intuition of our model is most similar to subspace clustering and topic
models and both are further discussed. We assume community members are
similar across a subset of the feature space and we consider node feature values
to be drawn from per-community feature distributions.

The recent literature on linking models which incorporate node attributes
[21, 13] shows promising results. We aim to perform competitively with those
methods by taking a different approach which is probabilistic but allows the use
of heuristics to select seed groups.

Other literature [6] has focused on topic models for heterogeneous informa-
tion networks. While our model is more general and does not require customiza-
tion to support multiple types of nodes, we are still able to take advantage of the
extra information provided by those networks by adding new features or edges.

3.1 Subspace Clustering

Subspace clustering is used to find clusters of objects that occur when the objects
are embedded in a subset of the feature space dimensions. A survey of subspace
clustering methods is provided in [12] which categorizes various approaches.
Subspace clustering is frequently used on high-dimensional datasets and can be
viewed as online feature selection for clustering [7].

A major challenge of subspace clustering is finding the optimal subspace clus-
ters. A naive approach would exhaustively try every combination of features, but
this is computationally infeasible for all but the smallest datasets. Our method
is able to determine which features are relevant to each community by finding
the maximal likelihood for the target community’s feature distribution in the
context of the mixture distribution which describes the node.

Our work extends research on subspace clustering in networks by introducing
the use of probability distributions to describe the observed features and to
estimate community topics and memberships. We view communities as having
feature distributions which represent a common interest of all members.



3.2 Topic Models

Topic models are probabilistic models used to find the semantic structure of
documents [4]. They are frequently generative and make assumptions about the
relationships between topics, objects, and words. Some models support multiple
topics per object or topic hierarchies, but the model is built with those assump-
tions. Topic models have been designed for networks which group related objects
dependent on network structure [15].

The methods combining topic models with graph clustering tasks such as
community detection are limiting. They either involve complex models which
are only applicable to specific datasets or they independently find topics by
treating vertices as documents and then attempt to fit the topics onto the graph
to find clusters [23].

We represent node attributes as term-weight vectors and associate a topic
with each community. Every cluster we find is a community, and each commu-
nity has a single feature distribution or topic. We can then estimate a node’s
membership to a community by finding mixture weights which best explain the
node’s feature values through community topics.

4 Seeded Estimation of Network Communities

Network communities indicate interaction and attraction among members which
is not shared by non-members. The nature of the interaction may be reflected
in node attributes and we would expect for member nodes to be similar to
one another. However, nodes may participate in multiple communities and the
members of each community may be similar to each other in different ways.

To provide motivation for our method, let us discuss an example using an
unspecified online social network. This social network allows users to join dis-
cussion areas for topics such as “computer science” or “coffee.” Suppose a user
is interested in both CS and coffee and participates in both communities. We
expect the user’s posts to the CS community will be different from her posts to
the coffee community. We also expect the user’s post in the CS community will
be more similar in content to other posts in the CS community than to most
posts in the coffee community.

Now assume we do not have access to individual user posts. Instead we
have aggregated word counts for each user and we do not know which post
contained which words. We can model a user’s word frequencies as a random
variable drawn from a multinomial distribution. Since each user may belong to
different communities or have different levels of involvement then it’s necessary
to use a different multinomial distribution for each user. As previously hinted,
we expect posts within a single community to have similar word frequencies. If
we knew those per-community word distributions we could then represent each
user’s word distribution as a mixture distribution. This is akin to standard topic
models such as LDA [4].

The Seeded Estimation of Network Communities (SENC) method described
here has an advantage over state-of-the-art community detection methods in



Fig. 1: Lower and upper bounds for a seed community. The lower-bound nodes are
black, upper-bound nodes are grey, and excluded nodes are white.

its exploitation of network structure to regularize and guide estimation. This
is possible through the use of seed groups. A seed group is a subgraph with
properties which indicate the nodes are a subset of a community.

Each seed group is considered to be a lower bound of a community and its
members are representative of this corresponding community. The lower-bound
members, or seed members, influence estimation; the members’ attributes are
used as the initial estimate for the corresponding community’s word distribution.
The community topic is updated as additional member nodes beyond the lower
bound are found.

Along with a lower bound, each seed community has a corresponding upper
bound. The definition of this upper bound can be dependent on the network and
its selection guided by simple network statistics such as the clustering coefficient.
Figure 1 depicts an example of the bound sets for a seed community where the
distance of a node from lower-bound members is used to define the upper-bound
set. The bounds serve as a gentle bias to flexibly model assumptions regarding
the shape of communities in a network.

Table 1: Definition of notation.

number of nodes

number of communities

number of feature dimensions
community topics, C' X D matrix
community memberships, N x C' matrix
graph defined by vertices and edges
members of community c

attributes of a node
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4.1 Notation

Before continuing it is useful to introduce notation and additional terms for de-
scribing the proposed method. We use topic to refer to the characteristic features
of a community as well as the associated probability distribution parameters for
all C communities, ¢, where each row &, . is a parameter for the categorical



distribution associated with community ¢ = 1,...,C with length D, the number
of feature dimensions.

The node attribute vector « is a D-length vector of node feature values. A
membership weight vector or membership vector is denoted as ©,, . and refers to
the probability weight vector associated with node n over all C' communities. The
individual membership vectors make up the N rows of the membership matrix
©. The membership weights indicate the proportion of node features which are
attributed to each community. For quick reference, basic notation used in the
equations is available in Table 1.

4.2 Model

SENC uses an EM algorithm to find the maximum-likelihood estimates for com-
munity topics and node memberships. Per-node community memberships are
estimated as weighted counts of observed feature values given the community
topics in the E-step and per-community topics are maximized in the M-step.

Node memberships for each node n participating in a seed group, n €
Ue1 o Se, are estimated using the community topics. We represent the feature
values of a node x as being drawn from a mixture distribution with per-node
mixture weights ©,, . over all community distributions ¢ using per-community
topic distributions @, .. A single term for a node n is drawn by first selecting
a community ¢ with probabilities @, , and then choosing a specific term with
probabilities @, .. For the data discussed in this paper, the community feature
distributions are categorical distributions and node features x are generated by
multiple trials of a mixture categorical distribution with proportions 6,, ,®. A
multinomial distribution is a categorical distribution with multiple, independent
trials. We refer to the per-node feature distributions as multinomial distribu-
tions.

Nodes may be members of multiple communities and node features will then
be characteristic of multiple community topics. In order to untangle the features
characteristic of a community from those belonging to adjacent communities we
define a mixture categorical likelihood function. This is the standard likelihood
function but with the event probability vector p parameter computed as the
matrix product of some 1 x C' mixture vector and C x D per-community topics
matrix: O, ,P.

We introduce v as the sum of feature values from community members S,
to improve readability:

y=) = (1)
neSe

When estimating @, ., using community members S, the mixture vector 6
is a weighted average of membership vectors {©,, . : n € S;} weighted by the
proportional number of observations contributed by each node n € S,:
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Using 6 and v we can now show how @, ., may be updated. The event prob-
ability vector p is the parameter for a categorical distribution:

p=09 3)
C
=> 05;, (4)
i=1
C
=0De+ > 0,0, (5)
i=1,i%c

We can use the factoring of p in Equation (5) with the multinomial expected
value to find the maximum-likelihood value of @. , given the community member
observations « from Equation (1).

The expected value for a single feature value ¢ in random variable X drawn
from Mult(p,n) is E{X;} = np;, where n is the number of trials and p is
the event probability vector. If we replace the expected value of each feature
dimension with the summation of community members’ S, attributes - then we
can substitute the expected value with the observed value ~; for feature i and
define:

D
Y= () 1a)8%. (6)
d=1

If we replace the expected value of each feature dimension with the summa-
tion of community members’ S, attributes v then we can define the maximum
likelihood of @ . as:
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Using Equation (11) we can easily estimate community topics using node
attributes, per-node community membership weights, and the latest topic esti-
mates for other communities.

We use @’ to reference a modified version of @ with normalized columns, each
summing to 1. The per-node community memberships are found by performing
a weighted count of node attributes over the communities, where a denotes a
normalization scalar:

O, . =adz" 12
n,%

For each observed term, we assign a proportion of the count to each commu-
nity according to the relative probability of that term occurring in each commu-
nity. A community with a higher relative probability of a given term occurring
will receive a larger proportion of the count than the others.

4.3 Algorithm

The SENC algorithm constructs per-community lower- and upper-bound matri-
ces, initializes per-community topics ¢ and per-node community memberships
O, and then performs expectation-maximization iterations until estimates stop
improving or the maximum number of iterations is reached. The algorithm re-
quires the N x N graph adjacency matrix and the N x D node attribute matrix
as input. The lower-bound matrix is a C' x N binary matrix of the seed mem-
bers where 1-values indicate node n belongs to community ¢. The upper-bound
matrix is a binary N x C' matrix where 1-values indicate node n may belong to
community c¢. This prevents nodes from distant communities being assigned to
communities with a similar topic. The construction of lower- and upper-bound
sets for each community is dependent on the network being processed. Two ma-
trices are produced as output: a C' X D community topic matrix and an N x C
community membership matrix. A goal of our method is to remove features
representative of overlapping communities over EM iterations. The node mem-
bership vectors are estimated using the community topics to perform a weighted
count over node attributes. These weighted counts are normalized to sum to one
and used as membership weights.

Algorithm 1 Main Program: initialization, EM, termination.

Input: The graph and node attributes.
Output: The community topics and membership.
1: Construct lower-bound and upper-bound matrices;
2: Initialize community topics ¢ and memberships ©;
3: while Not convergent or max iteration do
4: Call E-step to update membership ©;
5: Call M-step to update community topics @;
6: Check for convergence;
7: end while
8: return Community topics ¢ and membership ©;




Algorithm 2 E-step: update per-node community memberships.

Input: The community topics, upper-bound matriz, and node attributes.
Output: The updated membership.

1: for Each node n do

2: Identify which communities influence node n;

3 Select topics of influential communities;

4 Compute weighted counts from selected topics with Equation (12);
5: Assign normalized counts to membership vector @, «;

6: end for

7: return Updated membership ©;

Algorithm 3 M-step: update per-community topics.
Input: The node attributes, membership, influence, and community topics from the
previous iteration.
Output: The updated community topics.
1: for Each seeded community ¢ do
2: Select all nodes with membership in c;
Compute weighted average of selected nodes’ membership by Equation (2);
Estimate topic with Equation (11);
Assign updated topic to parameter vector @, ., if likelihood improves;
6: end for
7: return Updated topics &;

After initial estimates are calculated, the algorithm alternatively updates the
node memberships and community topics. The per-node and per-community it-
erations within the E- and M-step are independent and computation may be
distributed across multiple threads. The E-step in Algorithm 2 updates the per-
node community memberships for all nodes given the community topics, influ-
ence matrix, and node attributes. This is done by computing the weighted counts
of node attributes using the probability of each attribute for each community, as
shown in Equation (12). The upper-bound complexity of the E-step is O(NCD),
where C and D are the number of communities to which a node may belong and
the number of dimensions relevant to those communities. In practice, C and D
will be much smaller than C' and D.

The M-step, shown in Algorithm 3, updates the per-community feature dis-
tributions. We find a new estimate for @, . using Equation (11) and compare
its log-likelihood to the previous iteration’s estimate. The new estimate is used
if it better explains the feature values of the member nodes. The M-step has
computational complexity of O(C(NC+ ND+CD)), where N is the number of
nodes in the upper-bound set of a community, C is the number of communities
associated with the A/ nodes, and D is the number of feature dimensions relevant
to all C communities and A nodes. Again, C, N, and D are usually much smaller
than C', N, and D.



5 Experiments

We evaluate our proposed method on networks with varying structure to deter-
mine whether SENC’s results are consistently competitive with state-of-the-art
methods. The networks considered are: an NSF research collaboration network,
several DBLP citation networks [19], and a Scratch project collaboration net-
work. For comparison, we evaluate the performance of four state-of-the-art com-
munity detection methods: CESNA [21], CoDA [22], EDCAR [10], and Link
Clustering [1]. CESNA and EDCAR use network structure and node attributes
to detect communities; however, the current implementations struggled to pro-
cess networks with a large number of features. In order to evaluate more methods
we elected to use smaller datasets. CoDA and Link Clustering only use network
structure.

An implementation of SENC and datasets used in experiments will be made
available at the GMU DMML website!.

5.1 Dataset Descriptions

We construct a research collaboration network from NSF awards granted by
the Directorate for Computer and Information Science and Engineering (CISE)
between January 1995 and August 2014. This is accomplished by forming undi-
rected edges between the PI and co-PIs who received funding from the same
award. The awards are associated with programs and we use the programs with
at least three associated researchers as ground truth. We find 90% of researchers
received funding from six or fewer programs; this suggests programs function
well as ground-truth communities. There are a total of 768 programs in the CISE
Directorate. NSF awards data is publicly available from the NSF website?.

An online computer science bibliography, DBLP, contains entries for pub-
lished papers with information about the authors, citations, and publication
venues. The per-year DBLP citation networks were constructed from an existing
citation dataset [19] by forming edges between authors who cited each other
within that year. Papers are linked to a publication venue and these venues were
used to define ground truth. Venues referenced only once were removed from
our dataset. Venues with three or more associated authors were used as ground
truth.

Scratch [18] is an online community where users may write and share projects
(programs) with other users. One way in which Scratch users may interact is
by remixing projects. Remixing allows a user to create a copy of any existing
project which they may then modify. We created a co-remix affiliation network
from the MIT Scratch Team’s dataset containing users, projects, and remixes.
An edge is formed when two users remix the same project. To reduce the total
number of edges we used co-remix edges where users had three or more projects
in common. Users may create project galleries which are curated collections of

! http://cs.gmu.edu/~dmml
2 http:/ /www.nsf.gov/awardsearch /download.jsp



projects. Galleries corresponding to three or more users were used as ground
truth. The Scratch dataset used to construct the network may obtained from
the MIT Media Lab website?.

Table 2: Network statistics. N: number of nodes, F: number of edges, D: number
of node attributes, M C": number of maximal cliques with 3+ members, GCC'" global
clustering coefficient, LC'C": average local clustering coefficient, G: number of ground-
truth communities.

Dataset ‘ N E D MC GCC LCC G
NSF 8,168 38,212 43,445 3,331 0.590 0.683 429
DBLP 2010 | 32,961 130,420 58,007 37,120 0.422 0.440 2,288
DBLP 2011 | 32,614 131,921 56,166 39,955 0.421 0.438 2,215
DBLP 2012 | 33,576 135,883 54,269 42,443 0.381 0.397 1,861
Scratch 1,714 17,824 36,494 7,705  0.584 0.704 718

Several of the methods make use of node attributes and these were provided
as tf-idf weighted values for EDCAR and SENC and binary values for CESNA.
For the NSF CISE network, terms associated with each researcher were taken
from NSF award titles and abstracts. The DBLP author terms were taken from
titles and abstracts of papers they wrote. Scratch user terms were extracted from
titles, descriptions, and tags of their projects. The term features in all networks
had stop words removed and terms stemmed.

Multiple connected components were found in all networks and the smaller
components were removed as they may be trivially considered communities.
Table 2 lists the network statistics for the largest component of each network
used for experiments and analysis. All the networks used for experiments are
undirected, but they vary in structure.

As shown in Table 2, the NSF and Scratch networks have higher cluster-
ing coefficients than the DBLP networks. This is unsurprising as the NSF and
Scratch networks are affiliation networks (co-award and co-remix). Our exper-
iments show that while SENC is able to perform competitively across all the
networks other methods tend to either perform better on networks with higher
or lower clustering coefficients.

5.2 Methods and Evaluation

The public implementations of CESNA, CoDA, EDCAR, and Link Clustering
were used. CESNA and CoDA rely on an estimate of the number of communi-
ties. We provided the number of NSF programs, DBLP publication venues, and
Scratch galleries as estimates. CoDA is designed for directed networks but can
be used to find communities in undirected networks. It does this by processing
the network twice, switching the direction of edges between runs. As a result,

3 https://llk.media.mit.edu/scratch-data



two sets of detected communities are generated. We combined both sets when
evaluating the performance of CoDA. EDCAR requires 10 parameters and the
suggested values from the implementation documentation were used. Link Clus-
tering is parameter-less and only requires the edge list as input. Maximal cliques
of size three and above were used as the lower-bound groups for SENC and the
upper-bound groups were selected based on the clustering coefficient. The high
clustering coefficients of the NSF and Scratch networks indicate tighter upper
bounds should be used than with the DBLP networks. For the DBLP networks
we extend the lower bounds by including all nodes adjacent to any lower-bound
member. The upper bounds for the NSF and Scratch networks are simply the
same maximal cliques.

Link Clustering and SENC require a post-processing step to define exact
communities. The Link Clustering implementation includes a script to calculate
the optimal dendrogram cut threshold and we use this to determine the commu-
nities for evaluation. SENC defines community membership with probabilities
and does not perform a hard assignment of nodes to communities like the other
evaluated methods. We account for this in our evaluation by filtering weaker
memberships. For all nodes, we sort their memberships in descending order by
weight and take all the assignments until the sum of weights reaches a minimum
threshold value. An optimal threshold is used for each dataset.

We use the evaluation function described in [21,20] and recited in Equation
(13) to compute the F'1 score and Jaccard similarity of detected communities
against ground-truth communities. This function is especially useful when the
numbers of detected communities and ground-truth communities differ as occurs
with several of the methods in our experiments. In Equation (13), C* denotes a
set of ground-truth communities, C' a set of detected communities, and §(+) is a
similarity metric.

1 1
*O00) f —— el 1
31| max (7, ) + 5 2 Jnax 0(C7, ) (13)
Crecr c,eC
5.3 Results

Using the evaluation function defined in Equation (13) we find the F'1 score and
Jaccard similarity between the detected communities from all methods and the
ground-truth communities.

Table 3: F'1 scores for all methods and datasets.

Method | Attr. | NSF DBLP10 DBLP11 DBLP12 Scratch | Avg.
CoDA No | 0216  0.278 0.273 0.263 0.283 | 0.263
Link Clust. | No | 0.303  0.266 0.265 0.258 0.399 | 0.298
CESNA Yes | 0228  0.272 0.263 0.255 0.356 | 0.275
EDCAR Yes | 0.164 N/A N/A N/A N/A | N/A

SENC Yes 0.346 0.301 0.297 0.298 0.365 0.321



Table 4: Jaccard index for all methods and datasets.

Method | Attr. | NSF DBLP10 DBLP11 DBLP12 Scratch | Avg.
CoDA No | 0132  0.172 0.168 0.162 0.174 | 0.162
Link Clust. | No | 0.233  0.166 0.166 0.161 0.265 | 0.198
CESNA Yes | 0.139  0.167 0.161 0.156 0.228 | 0.170
EDCAR Yes | 0.112 N/A N/A N/A N/A | N/A
SENC Yes | 0.269  0.190 0.187 0.190 0.235 | 0.214

Our results are provided in Tables 3 and 4 and show SENC outperforms most
other methods over all datasets and achieves the highest average performance.
Unfortunately, the current implementation of EDCAR was unable to process
most of the networks. We believe this is partly due to the large number of
features.

We note the relative difference in performance of CoDA and CESNA to Link
Clustering flips between the networks with higher and lower clustering coeffi-
cients. In the NSF and Scratch networks, Link Clustering outperforms CoDA
and CESNA but performs worse than CESNA on the DBLP10 network and
worse than CoDA on every DBLP network. This may indicate these other meth-
ods include a biased definition of communities which is not found in all social
networks. SENC performs well across all the networks and avoids this problem
through the use of its configurable bounds chosen based on network statistics
such as clustering coefficients.

5.4 Interpretation of Detected Communities

We also perform a qualitative analysis on communities discovered by SENC to
illustrate the interpretability of its results. Several communities relating to data
mining and machine learning were found in the NSF CISE network.

Table 5: Top-5 researchers of the AMPLab and Computational Learning communities
with corresponding membership weights.

AMPLab Comp. Learning
Peter Bartlett  0.5084 | Laurent El Ghaoui 0.5884
Laurent E1 Ghaoui  0.4116 Peter Bartlett  0.4916
Michael Franklin  0.1346 Jesse Snedeker  0.4647
Michael Jordan  0.1049 Federico Girosi  0.4134
Alexandre Bayen  0.0996 Robert Berwick  0.2830

We present the top-5 researchers and top-40 terms of two such groups in
Table 5 and Figure 2. The first community is associated with Berkeley’s AM-
PLab*, which works on problems involving machine learning, cloud comput-

* https://amplab.cs.berkeley.edu
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Fig. 2: Word clouds of the top-40 terms from the AMPLab community (left) and com-
putational learning community (right).

ing, and crowdsourcing. The top-5 researchers are all EECS faculty at Berkeley
and Michael Franklin and Michael Jordan are both directors of AMPLab. Re-
call membership weights are normalized per-researcher and a lower membership
weight indicates the researcher’s work is also captured by other community top-
ics. Most of the terms are self-explanatory, but the term Alon refers to Alon
Halevy of University of Washington whose name appears in several award ab-
stracts and has collaborated with Michael Franklin.

We find another community with 12 members in common with the AMPLab
community. Its topic may be described as computational learning and its appli-
cations to computer vision and natural-language processing. The AMPLab and
computational learning communities have 41 and 34 members respectively, with
roughly about one-third being shared. These common members include: Michael
Jordan, Michael Franklin, Peter Bartlett, and Tomaso Poggio.

Although both communities are generally concerned with human-centric ap-
plications of machine learning, the AMPLab community is focused on computing
architecture to solve such problems, while the computational learning commu-
nity is focused on understanding human vision and motor control. This discovery
of overlapping communities with shared general interests but distinct features
exemplifies an advantage of SENC’s initialization by seed groups.

6 Conclusion

We have introduced SENC — a probabilistic approach to community detection
that outputs node memberships and community topics. Simple network statis-
tics, such as the clustering coefficient, can be used to guide configuration of flexi-
ble bounds on seed groups. The bounded seed groups enable SENC to account for
differences in underlying community structure across many networks. This con-
trasts with existing methods which build strong assumptions into their models.
As a result, SENC is able to consistently outperform state-of-the-art community
detection methods on a variety of networks. No other method performed con-
sistently across all the networks used in our experiments. This indicates SENC
generalizes better than current state-of-the-art methods.



The output produced by SENC is highly interpretable. We can understand
the nature of a discovered community by examining its topic distribution. We
can also review a node’s relative community involvement through its member-
ship weights. The combination of SENC’s flexible model and interpretable results
make it an excellent choice for both exploratory analysis of networks and com-
munity detection tasks.

Our experiments have raised several interesting questions for future work.
We are interested in discovering how network characteristics affect assumptions
made in community detection methods and how other approaches for defining
bounded seed groups may further improve SENC’s performance.
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