Incremental Support Vector Machine Construction

Carlotta Domeniconi ~ Dimitrios Gunopulos
Computer Science Department
University of California
Riverside, CA 92521
{carlotta,dg} @cs.ucr.edu

Abstract

SVMs suffer from the problem of large memory require-
ment and CPU time when trained in batch mode on large
data sets. We overcome these limitations, and at the same
time make SVMs suitable for learning with data streams, by
constructing incremental learning algorithms.

We first introduce and compare different incremental
learning techniques, and show that they are capable of pro-
ducing performance results similar to the batch algorithm,
and in some cases superior condensation properties. We
then consider the problem of training SVMs using stream
data. Our objective is to maintain an updated represen-
tation of recent batches of data. We apply incremental
schemes to the problem and show that their accuracy is
comparable to the batch algorithm.

1. Introduction

Many applications that involve massive data sets are
emerging. Examples are: telephone records, sales logs,
multimedia data. When developing classifiers using learn-
ing methods, while a large number of training data can help
reducing the generalization error, the learning process itself
can get computationally intractable.

One would like to consider all training examples simulta-
neously, in order to accurately estimate the underlying class
distributions. Howerer, these data sets are far too large to
fit in main memory, and are typically stored in secondary
storage devices, making their access particularly expensive.
The fact that not all examples can be loaded into memory
at once has two important consequences: the learning algo-
rithm won’t be able to see all data in one single batch, and is
not allowed to “remember” too much of the data scanned in
the past. As a consequence, scaling up classical learning al-
gorithms to handle extremely large data sets and meet these
requirements is an important research issue [15], [4].

One approach to satisfy these constraints is to consider
incremental learning techniques, in which only a subset of
the data is to be considered at each step of the learning pro-
cess.

Support Vector Machines (SVMs) [17] have been suc-
cessfully used as a classification tool in a variety of areas
[9, 2, 12]. The solid theoretical foundations that have in-
spired SVMs convey desirable computational and learning
theoretic properties to the SVM’s learning algorithm. An-
other appealing feature of SVMs is the sparseness repre-
sentation of the decision boundary they provide. The loca-
tion of the separating hyperplane is specified via real-valued
weights on the training examples. Those training examples
that lie far away from the hyperplane do not participate in
its specification and therefore receive zero weight. Only
training examples that lie close to the decision boundary
between the two classes (support vectors) receive non-zero
weights.

Therefore, SVMs seem well suited to be trained accord-
ing to an incremental learning fashion [16, 11]. In fact,
since their design allows the number of support vectors to
be small compared to the total number of training examples,
they provide a compact representation of the data, to which
new examples can be added as they become available.

New optimization approaches that specifically exploit
the structure of the SVM have also been developed for scal-
ing up the learning process. See [1, 14, 3].

2. Incremental Learning with SVMs

In order to make the SVM learning algorithm incremen-
tal, we can partition the data set in batches that fit into mem-
ory. Then, at each incremental step, the representation of
the data seen so far is given by the set of support vectors de-
scribing the learned decision boundary (along with the cor-
responding weights). Such support vectors are incorporated
with the new incoming batch of data to provide the training
data for the next step. Since the design of SVMs allows the
number of support vectors to be small compared to the total

number of training examples, this scheme should provide a
compact representation of the data set.

It is reasonable to expect that the model incrementally
built won’t be too far from the model built with the com-
plete data set at once (batch mode). This is because, at each
incremental step, the SVM remembers the essential class
boundary information regarding the seen data, and this in-
formation contributes properly to generate the classifier at
the successive iteration.

Once a new batch of data is loaded into memory, there
are different possibilities for the updating of the current
model. Here we explore four different techniques. For all
the techniques, at each step only the learned model from the
previously seen data (preserved in form of support vectors)
is kept in memory.

Error-driven technique (ED). This technique is a variation
of the method introduced in [11], in which both a percentage
of the misclassified and correctly classified data is retained
for incremental training. The Error-driven technique, in-
stead, keeps only the misclassified data. Given the model
SV M, at time t, new data are loaded into memory and
classified using SV M;. If the data is misclassified, it is
kept, otherwise it is discarded. Once a given number n . of
misclassified data is collected, the update of SV M, takes
place: the support vectors of SV M}, together with the n.
misclassified points, are used as training data to obtain the
new model SV M.

Fixed-partition technique (FP). This technique has been
previously introduced in [16]. The training data set is parti-
tioned in batches of fixed size. When a new batch of data is
loaded into memory, it is added to the current set of support
vectors; the resulting set gives the training set used to train
the new model. The support vectors obtained from this pro-
cess are the new representation of the data seen so far, and
they are kept in memory.

Exceeding-margin technique (EM). Given the model SV M,
at time ¢, new data {(x;,y;)} are loaded into memory. The
algorithm checks if (x;, y;) exceeds the margin defined by
SV M, ie. if y;fi((x;)) < 1. If the condition is satisfied
the point is kept, otherwise it is discarded. Once a given
number n. of data exceeding the margin is collected, the
update of SV M, takes place: the support vectors of SV M,
together with the n, points, are used as training data to ob-
tain the new model SV My .

Exceeding-margin+errors technique (EM+E). Given the
model SV M, at time ¢, new data {(x;, y;) } are loaded into
memory. The algorithm checks if (x;, y;) exceeds the mar-
gin defined by SV My, ie. if y; f:((x;)) < 1. If the condi-
tion is satisfied the point is kept, otherwise it is classified us-
ing SV M;: if misclassified it is kept, otherwise discarded.
Once a given number 7, of data, either exceeding the mar-
gin or misclassified, is collected, the update of SV M, takes
place: the support vectors of SV M}, together with the n.

points, are used as training data to obtain the new model
SV M, t+1-

3. Training SVMs using Data Streams

We consider here the scenario in which the example gen-
eration is time dependent, and follow the data stream model
presented in [8], also used in [7], [6], [4]. A data stream is
a sequence of items that can be seen only once, and in the
same order it is generated.

We seek algorithms for classification that maintain an
updated representation of recent batches of data. The al-
gorithm therefore must maintain an accurate representation
of a window of recent data [6]. This model is useful in prac-
tice because the characteristics of the data may change with
time, and so old examples may not be a good predictor for
future points. The algorithm must perform only one pass
over the stream data, and use a workspace that is smaller
than the size of the input.

The incremental learning techniques we discussed are
capable of achieving these objectives. Our approach is sim-
ilar to [5], and works as follows: We consider the incom-
ing data in batches of a given size b, and maintain in mem-
ory w models representative of the last 1, 2, ..., w batches.
Thus, the window size is W = wb examples. The w mod-
els are trained incrementally as data becomes available. Let
us call the models, at time ¢, SVM{, SVMS, ...SVM!
respectively. When a new batch of data comes in, at step
t + 1, SVM! is discarded, the remaining SVM{, ...,
SV M _, are incrementally updated to take into account
the new batch of data, producing SV MAT, ..., SV MEH
respectively. SV M f“ is generated using the new batch of
data only. At each step t, SV M gives the in-memory rep-
resentation of the current distribution of data, and it is used
to predict the class label of new data. Any of the discussed
techniques can be employed for the incremental updates.

Besides the w SVM models, only b data points need to
reside in memory at once. Both b and w can be set according
to domain knowledge regarding locality properties of data
distributions over time.

4. Experimental Evaluation

We compare the four incremental techniques and the
SVM learning algorithm in batch mode, to verify their
performances and sizes of resulting classifiers, i.e. num-
ber of resulting support vectors. We have tested the tech-
niques on both simulated and real data. The real dataset
(Pima) is taken from UCI Machine Learning Repository
at http://www.cs.uci.edu/ ~mlearn/MLRepository.html. We
used, for both the incremental and batch algorithms, radial
basis function kernels. We used SV M9t [10], and set

the value of 7 in K (x;,x) = e~ lIxi—x|? equal to the op-
timal one determined via cross-validation. Also the value
of C for the soft-margin classifier is optimized via cross-
validation. For the incremental techniques we have tested
different batch sizes and n,. values. In Tables 1- 2 we re-
port the best performances obtained (B is for the batch al-
gorithm). We also report, besides the average classification
error rates and standard deviations, the number of support
vectors of the resulting classifier, the corresponding size of
the condensed set (%), and the number of training cycles
the SVM underwent.

To test the incremental techniques with stream data, we
have used the Noisy-crossed-norm dataset (generated as the
Large-noisy-crossed-norm dataset described below), and
generated streams in batches of size b = 1000, and set
w = 3. We have employed the Fixed-partition technique
for the incremental updates. At each incremental step, we
have tested the performance of the current model using 10
independent test sets of size 1000. We report average classi-
fication error rates and classifier sizes over successive steps.
For comparison, we have also trained a SVM in batch mode
over w = 3 consecutive batches of data over time, and re-
port average classification error rates obtained at each step.

The Problems: Large-noisy-crossed-norm data. This data
set consists of n = 20 attributes and J = 2 classes. Each
class is drawn from a multivariate normal distribution with
unit covariance matrix. One class has mean 2/+/20 along
each dimension, and the other has mean —2/ V20 along
each dimension. We have generated 200,000 data points,
and performed 5-fold cross-validation with 100,000 train-
ing data and 100,000 testing data. Table 1 shows the results.
The last column lists the running times (in hours). Experi-
ments were conducted on a 1.3 GHz machine with 1GB of
RAM. Pima Indians Diabete data. This data set consists of
n = 8 attributes, J = 2 classes, and | = 768 instances.
Results are shown in Table 2. We performed 10-fold cross-
validation with 568 training data and 200 testing data.

Results: Tables 1-2 show that, for both the data sets we
have tested, the performance obtained with the incremen-
tal techniques comes close to the performance given by the
batch algorithm. Moreover, for each problem considered,
more than one incremental scheme provides a much smaller
condensed set. In particular, it is quite remarkable the con-
densation power (1.5%) that the Exceed-margin technique
shows for the Large-noisy-crossed-norm, while still per-
forming close to the batch algorithm. The fact that the clas-
sifier is kept smaller allows for a much faster computation
(30 minutes). The results obtained with the Pima data are
also of interest. All four incremental techniques perform
better than the batch algorithm and, at the same time, com-
pute a smaller condensed set.

In Figure 1, we plot the results obtained with the stream
data for 12 time steps. The average estimator size for the

incremental and batch techniques, respectively, are 418 and
430. Since the data distribution is stationary, the perfor-
mance and estimator size remain stable over time. We
observe that the incremental technique employed (Fixed-
partition) and the batch mode algorithm basically provide
the same results, both in terms of performance and size of
the model. These results provide clear evidence that, al-
though the incremental techniques allow loss of informa-
tion, they are capable of achieving accuracy results similar
to the batch algorithm, while significantly improving train-
ing time.

Table 1. Results for Large-noisy-crossed-
norm data.

EM+E
error (%) 32 | 9.1 32 4.5 6.7
std dev 0.18 { 0.05 | 0.001 | 0.02 | 0.02
#SVs 8321 | 4172 | 8452 | 1455 | 5308
Cond. set (%) | 83 | 4.2 8.5 1.5 53

cycles - 19 201 37 48
batch size - 500 | 500 | 500 | 500
time 14 17 20 0.5 22

Table 2. Results for Pima data.

B | ED | FP | EM | EM+E
error (%) 3191293 (262 |27.1 | 264
std dev 047]0.02]0.02 0.02]| 0.02

#SVs 547 | 291 | 405 | 394 | 399
Cond.set (%) | 96 | 512|713 (694 | 702
cycles - 13 | 38 | 34 36
batch size - 10 10 10 10
5. Related Work

The incremental techniques discussed here can be
viewed as approximations of the chunking technique em-
ployed to train SVMs [13]. The chunking technique is an
exact decomposition method that iterates through the train-
ing set to select the support vectors.

The incremental methods introduced here, instead, scan
the training data only once, and, once discarded, data are
not considered anymore. This property makes the methods
suited to be employed within the data stream model also.
Furthermore, the experiments we have performed show that,

3.9
3.8
3.7
3.6
3.5
3.4

Average Error Rates (%)

3.3
3.2

T T T T T T T T

3.1

Time Steps

Figure 1. Noisy-crossed-norm data: Average
Error Rates of Fixed-partition and batch algo-
rithms for consecutive time steps.

although the incremental techniques allow loss of informa-
tion, they are capable of achieving performance results sim-
ilar to the batch algorithm.

6 Conclusions

We have introduced and compared new and existing in-
cremental techniques for constructing SVMs. The experi-
mental results presented show that incremental techniques
are capable of achieving performance results similar to the
batch algorithm, while improving the training time. We ex-
tended these approaches to work with stream data, and pre-
sented experimental results to show the efficiency and accu-
racy of the method.

Acknowledgments

This research has been supported by the National
Science Foundation under grants NSF CAREER Award
9984729 and NSF 1IS-9907477, by the US Department of
Defense, and a research award from AT&T.

References

[1] J.C.Bennett, C. Campbel, “Support Vector Machines:
Hype or Hallelujah?”, SIGKDD Explorations, Vol. 2,
No. 2, 1-13,2000.

[2] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sug-
net, T. Furey, M. Ares, and D. Haussler, “Knowledge-
based analysis of microarray gene expressions data us-
ing support vector machines,” Tech. Report, Univer-
sity of California in Santa Cruz, 1999.

[3] G. Cauwenberghs and T. Poggio, “Incremental and
Decremental Support Vector Machine Learning”, Ad-
vances in Neural Information Processing Systems,
2000.

[4] Pedro Domingos, Geoff Hulten, “Mining high-speed
data streams.” SIGKDD 2000: 71-80, Boston, MA.

[5

—_

Venkatesh Ganti, Johannes Gehrke, Raghu Ramakr-
ishnan. “DEMON: Mining and Monitoring Evolving
Data”, in ICDE 2000: 439-448, San Diego, CA.

[6

—_

Sudipto Guha and Nick Koudas. “Data-Streams and
Histograms.”, In Proc. STOC 2001 .

[7] S. Guha, N. Mishra, R. Motwani, L. O’Callaghan,
“Clustering Data Stream”, IEEE Foundations of Com-
puter Science,2000.

[8] M. R. Henzinger, P. Raghavan, and S. Rajagopalan,
“Computing on data streams”, SRC Technical Note
1998-011, Digital Research Center, May 26, 1998.

[9] T.Joachims, “Text categorization with support vector
machines”, Proc. of European Conference on Machine
Learning, 1998.

[10] T.Joachims, “Making large-scale SVM learning prac-
tical” Advances in Kernel Methods - Support Vec-
tor Learning, B. Scholkopf and C. Burger and A.
Smola (ed.), MIT-Press, 1999. http://www-ai.cs.uni-
dortmund.de/thorsten/svm light.html

[11] P.Mitra,C. A. Murthy, and S. K. Pal, “Data Condensa-
tion in Large Databases by Incremental Learning with
Support Vector Machines”, International Conference
on Pattern Recognition,2000.

[12] E. Osuna, R. Freund, and F. Girosi, “Training sup-
port vector machines: An application to face detec-
tion”, Proc. of Computer Vision and Pattern Recogni-
tion, 1997.

[13] E. Osuna, R. Freund, and F. Girosi, “An improved
training algorithm for support vector machines”, Pro-
ceedings of IEEE NNSP’97,1997.

[14] J. C. Platt, “Fast Training of Support Vector Machines
using Sequential Minimal Optimization”, Advances in
Kernel Methods, B. Scholf, C. J. C. Burges, and A. J.
Smola (eds.), MIT Press, 185-208, 1999.

[15] F. J. Provost and V. Kolluri, “A survey of methods
for scaling up inductive learning algorithms”, Techni-
cal Report ISL-97-3, Intelligent Systems Lab., Depart-
ment of Computer Science, University of Pittsburgh,
1997.

[16] N. A. Syed, H. Liu, and K. K. Sung, “Incremen-
tal Learning with Support Vector Machines”, Interna-

tional Joint Conference on Artificial Intelligence (1J-
CAI), 1999.

[17] V. Vapnik, Statistical Learning Theory. Wiley, 1998.

