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Abstract Many researchers have realized that, to obtain the bene-
fits of an architectural focus, software architecture must

Software architectures shift the focus of developers frorR€ Provided with its own body of specification lan-
lines-of-code to coarser-grained elements and theiguages and analysis techniques [Gar95, GPT95,
interconnection structure. Architecture description lan-Wolf96]. Such languages are needed to demonstrate
guages (ADLs) have been proposed as domain-specifizoperties of a system upstream, thus minimizing the
languages for the domain of software architecture.costs of errors. They are also needed to provide abstrac-
There is still little consensus in the research communityions adequate for mode"ng a |arge system, while ensur-

on what problems are most important to address in ghg syfficient detail for establishing properties of
study of software architecture, what aspects of an archiz i rest A large number afchitecture description lan-

tecture should be modeled in an ADL, or even what al uages (ADLs) has been proposed, each of which

ADL is. To shed light on these issues, we provide : . s
framework of architectural domains, or areas of Con_embod|es a particular approach to the specification and

cern in the study of software architectures. We evaluatgvolution of an architecture. Examples are Rapide
existing ADLs with respect to the framework and studyLKA+95, LV95], Aesop [GAO94], MetaH [Ves96],
the relationship between architectural and applicationUniCon [SDK+95], Darwin [MDEK95, MK96], Wright
domains. One conclusion is that, while the architecturalAG94a, AG94b], C2 [MTW96, MORT96, Med96], and
domains perspective enables one to approach architecSADL [MQR95]. Recently, initial work has been done
tures and ADLs in a new, more structured manner, furon an architecture interchange language, ACME
ther understanding of architectural domains, their tie tojGMW95, GMW97], which is intended to support map-
application domains, and their specific influence onying of architectural specifications from one ADL to
ADLs is needed. another, and hence provide a bridge for their different
foci and resulting support tools.

Keywords — software architecture, architecture
description language, domain, domain-specific lan-There is still very much a lack of consensus in the
guage, architectural domain research community on what an ADL is, what aspects of

an architecture should be modeled by an ADL, and what
should be interchanged in an interchange language. This
divergence has resulted in a wide variation of

) i . approaches found in this first generation of ADLs. Per-
Software architecture is an aspect of software engineefzns even more significantly, there is a wide difference

ing directed at reducing costs of developing applicationgy gpinions as to what problems are most important to
and increasing the potential for commonality among d_'f'address in a study of software architecture.
ferent members of a closely related product family

[PW92, GS93]. Software development based on comin our previous research, we have provided a foundation
mon architectural idioms has its focus shifted fromfor understanding, defining, classifying, and comparing
lines-of-code to coarser-grained architectural elementdDLs [Med97, MT97]. In this paper, we build upon
and their overall interconnection structure. This enablethose results by identifying and characterizamghitec-
developers to abstract away the unnecessary details angdal domains the problems or areas of concern that
focus on the “big picture:” system structure, high levelneed to be addressed by ADLs. Understanding these
communication protocols, assignment of software comdomains and their properties is a key to better under-
ponents and connectors to hardware components, devatanding the needs of software architectures, architec-
opment process, and so on. ture-based development, and architectural description

1. Introduction
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and interchange. A study of architectural domains is and global control structure; protocols for commu-
also needed to guide the development of next-generationnication, synchronization, and data access; assign-
ADLs. ment of functionality to design elements; physical
distribution; composition of design elements; scal-
This paper presents a framework of architectural ing and performance; and selection among design
domains. We demonstrate that each existing ADL cur- alternatives.
rently supports only a small subset of these .domam%rchitectural styleis “a set of design rules that identify
and we discuss possible reasons for that. Finally, w

. . . . . the kinds of components and connectors that may be
consider the relationship between architectural domains :
o . Used to compose a system or subsystem, together with
and application domains.

local or global constraints on the way the composition is

While we draw from previous ADL work and reference done” [SC96].

a number of ADLs, the most significant contribution of

this paper is the framework of architectural domains. 12.2. Definition of ADLs

provides structure to a field that has been approached ] o
largely in an ad-hoc fashion thus far. The framework-00sely defined, “anADL for software applications
gives the architect a sound foundation for selecting afPcuses on the high-level structure of the overall appli-
ADL and orients discourse away from arguments abougation rather than the implementation details of any spe-

notation and more towards solving important engineercific source module” [Ves93]. ADLs provide both a
ing problems. concrete syntax and a conceptual framework for model-

ing a software system&nceptuahrchitecture.
The remainder of the paper is organized as follows. o ) o
Section 2 provides a short discussion of ADLs. The building blocks of an architectural description are
Section 3 presents and motivates each architectur&l COmponents units of computation or data stores;
domain, while Section 4 discusses the support for arch connectors- architectural building blocks used to
tectural domains in existing ADLs. Section 5 expounds Model interactions among components and rules that
on the relationship between application domains and govern those interactions; and
architectural domains. Discussion and conclusiong architectural configurations- connected graphs of

round out the paper. components and connectors that describe architectural
structure.
2. Overview of ADLs An ADL must provide the means for theixplicit spec-

ification; this criterion enables one to determine whether
To properly enable further discussion, several definiyr not a particular notation is an ADL. In order to infer
tions are needed. In this section, we define softwargny kind of information about an architecture, at a mini-
architectures, architectural styles, and ADLe cate-  mum interfacesof constituent components must also be
gorize ADLs, differentiate them from other, similar pogeled formally. Without this information, an archi-

notations, and discuss examples of use of ADLS ifectural description becomes but a collection of (inter-
actual projects. Finally, we provide a short discussion 0gonnected) identifiers.

our use of the terms “architecture” and “design.”
An ADL's conceptual framework typically subsumes a
formal semantic theory. That theory is part of the ADL's
underlying framework for characterizing architectures;
There is no standard definition of architecture, but wét influences the ADL's suitability for modeling particu-
will use as our working definition the one provided bylar kinds of systems (e.qg., highly concurrent systems) or
Garlan and Shaw [GS93]: particular aspects of a given system (e.g., its static prop-
[Software architecturés a level of design that] erties). Examples of formal specification theories are
goes beyond the algorithms and data structures of Petri nets [Pet62], Statecharts [Har87], partially-ordered
the computation: designing and specifying the over- event sets [LVB+93], communicating sequential pro-
all system structure emerges as a new kind of prob- cesses (CSP) [Hoa85], model-based formalisms (e.g.,
lem. Structural issues include gross organization CHemical AbstractMachine [IW95], Z [Spi89]), alge-
braic formalisms (e.g., Obj [GW88]), and axiomatic for-
1. This section is condensed from a detailed exposition Oﬁnallsms (€.9., Anna [Luc87]).

ADLs given in [Med97] and [MT97], where we provided a . o .
definition of ADLs and devised a classification and compari-Finally, even though the suitability of a given language

son framework for them. for modeling architectures is independent of whether

2.1. Definitions of Architecture and Style
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and what kinds ofool supportit provides, an accompa- may be indistinguishable from an architectural descrip-
nying toolset will render an ADL both more usable andtion in such a language. These anplementation con-
useful. Furthermore, capabilities provided by such atraininglanguages.

toolset are often a direct reflection of the ADLs

intended use. 2.4. Applications of ADLs

2.3. Categorizing ADLs ADLs are special purpose notations whose very specific
foci render them suitable for powerful analyses, simula-

Existing languages that are commonly referred to agon, and automated code generation. However, they
ADLs can be grouped into three categories, based Ofave yet to find their place in mainstream software
how they model configurations: development. Although current research is under way to
* implicit configuration languagesnodel configura-  pridge the gap that separates ADLs from more widely
tions implicitly through interconnection information ysed design notations [RMRR97], only a small number
that is distributed across definitions of individual of existing ADLs have been applied to large-scale,
components and connectors; “real-world” examples to date. What these examples do

* in-line configuration languagesodel configurations demonstrate is the potential for effective use of ADLs in
explicitly, but specify connector information only as seftware projects.

part of the configuration, “in line”;
* explicit configuration languagemodel both compo- Wright was used to model and analyze tRentime
nents and connectors separately from configurations.Infrastructure (RTI) of the Department of Defense
(DoD) High-Level Architecture for Simulatior($1LA)
The first category, implicit configuration languages, are[a|i96]. The original specification for RTI was over 100
by definition given in this papenot ADLs, although  pages long. Wright was able to substantially condense

they may serve as useful tools in modeling certaifhe specification and reveal several inconsistencies and
aspects of architectures. An example of an implicit conyeaknesses in it.

figuration language is ArTek [TLPD95]. In ArTek, there
is no configuration specification; instead, each connecSADL was applied to an operational power-control sys-
tor specifies component ports to which it is attached. tem, used by the Tokyo Electric Power Company. The

) o system was implemented in 200,000 lines of Fortran 77
The focus on conceptual architecture and explicit treatz,qe. SADL was used to formalize the system’s refer-

ment of connectors as first-class entities differentiat%nce architecture and ensure its consistency with the
ADLs from module interconnection languages (MlLS)implementation architecture.

[DK76, PN86], programming languages, and object-ori-

ented notations and languages (e.g., Unified Methoginally, Rapide has been used in several large-scale
[BR9O5]). MILs typically describe thesesrelationships projects thus far. A representative example is the X/

among modules in aimplementedsystem and support Open Distributed Transaction Processing (DTP) Indus-

only one type of connection [AG94a, SG94]. Program+ry Standard. The documentation for the standard is over
ming languages describe a system’s implementatiom00 pages long. Its reference architecture and subse-
whose architecture is typically implicit in subprogram quent extensions have been successfully specified and
definitions and calls. Explicit treatment of connectorssimulated in Rapide [LKA+95].

also distinguishes ADLs from OO languages, as demon-

strated in [LVMSS]. 2.5. Architecture vs. Design

It is important to note, however, that there is less than a. N .
firm boundary between ADLs and MILs. Certain ADLs, Given the a_bove definition of soft_war_e archltectu_res ar_1d
e.g., Wright and Rapide, model components and co ADLs, an issue worth addre53|_ng is the rela_tlonsh|p
nectors at a high level of abstraction and do not assu tween _archltec_ture and design. Current I|t_erature
or prescribe a particular relationship between an arch caves t_h|s questl_on largely unanswered, allowing for
tectural description and an implementation. We refer téevera_l mterpretatlons:_

these languages as beiimgplementation independent * architecture and design are the same;

On the other hand, several ADLs, e.g., UniCon and architecture is at a level of abstraction above design,
MetaH, enforce a high degree of fidelity of an imple- SO it is simply another step (artifact) in a software
mentation to its architecture. Components modeled in development process; and

these languages are directly related to their implementa- architecture is something new and is somehow differ-
tions, so that a module interconnection specification ent from design (but just how remains unspecified).
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All three interpretations are partially correct. To a largeFinally, such a framework can be used as a guide in
extent, architectures serve the same purpose as desigieveloping future ADLs.

However, their explicit focus on connectors and configu-

rations distinguishes them from traditional software Representation

design. At the same time, as a (high level) architecture i  Design Process Support

; \ . i Analysis
refined, connectors lose prominence by becoming dis Static
tributed across the (lower level) architecture’s elements Evolﬂggﬁm'c
Such a lower level architecture may indeed be consic Specification-Time
i i ; ; in i ; Execution-Time
ered to be a de_S|gnj I_<eep|ng _th|s_ relationship in ml_nd Refinement
for reasons of simplicity we will simply refer to archi- Traceability

tectures as “high level,” “low level” and so forth, in the  Simulation/Executability
remainder of the paper, while “design” will only refer to Figure 1: Architectural domains.
the process that results in an architecture.

3.1. Representation

3. Architectural Domains A key role of an explicit representation of an architec-
ture is to aid understanding and communication about a

ADLs typically share syntactic constructs that enablesoftware system among different stakeholders. For this
them to model Components and Component interfaceéyeason, itis important that architectural deSCfiptionS be
connectors, and configuratiohg much greater source Simple, understandable, and possibly graphical, with
of divergence are the different ADLs’ conceptual frame-Well understood, but not necessarily formally defined,
works, and, consequently, their support for modelingg€mantics.
architectural semantics. ADL developers typically have : . . . .
. o . Architectural models typically comprise multiple views,
decided to focus on a specific aspect of architectures, %r hiah level araphical view. lower level view with
anarchitectural domainwhich guides their selection of -9, Nigh 1evel grap '
. . formal specifications of components and connectors,
an underlying semantic model and a set of related for-

2 ; . . conceptual architecture, one or more implementation
mal specification notations. These formal notations, in

turn, restrict the types of problems for which the ADL iSarchltectures, corresponding development process, data

: or control flow view, and so on. Different stakeholders
suitable. .
(e.g., architects, developers, managers, customers) may
This relationship between an architectural domain ancrieqUire different views of the architecture. The custom-
candidate formgl notations is rarely straightforward orers may be satisfied with a high-level, *boxes and
y g arrows” description, the developers may want detailed

fully understood. In the absence of objective Cmena’component and connector models, while the managers

ADIT'researcher.s are forced t'o base thgw decisions Oﬁmy require a view of the development process.
intuition, experience, and biases arising from pas

research accomplishments. Unfortunately, intuition can _

often be misleading and experience insufficient in a3-2. Design Process Support

young discipline such as software architectures. Software architects decompose large, distributed, heter-

: I . . ogeneous systems into smaller building blocks. In doing
In th_|s paper, we "’?“empt to fill this void. The remamderso’ they have to consider many issues, make many deci-
of th'$ s_ectlon motivates and for_mulates.aframework foEions, and utilize many design techniques, methodolo-

classifying the problems on which architectural modelsgies and tools
focus (architectural domains), shown in Figure 1. Archi- ' '

tectural domains represent broad classes of problemgodeling architectures from multiple perspectives, dis-

and are likely to be reflected in many ADLs and theircussed in the previous subsection, is only one way of
associated formal specification language constructsupporting software architects’ cognitive processes.

Their proper understanding is thus necessary. FurtheBthers include delivering design guidance in a timely

more, heuristics may be developed over time that wiland understandable fashion, capturing design rationale,
enable easier interchange of architectures modeled nd revisiting past design steps.

ADLs that focus on particular architectural domains.

3.3. Analysis

2. One can think of these syntactic features as equivalenttoa | . L
“boxes and arrows” graphical notation with little or no under-Architectures are often intended to model large, distrib-

lying semantics. uted, concurrent systems. The ability to evaluate the
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properties of such systems upstream, at the architectur@lolution of components, connectors, and architectures
level, can substantially lessen the number of errorsan occur at specification time or execution time.
passed downstream. Given that unnecessary details are

abstracted away in architectures, the analysis task may4 1. Specification-Time Evolution

also be easier to perform than at source code level. .
If we consider components and connectors to be types

Analysis of architectures may be performed staticallywhich are instantiated every time they are used in an
before execution, or dynamically, at runtime. Certainarchitecture, their evolution can be viewed simply in
types of analysis can be performed both statically angerms of subtyping. Since components and connectors

dynamically. are modeled at a high level of abstraction, flexible sub-
typing methods may be employed. For example, it may
3.3.1. Static Analysis be useful to evolve a single component in multiple ways,

by using different subtyping mechanisms (e.g., inter-

Examples of static analysis are internal consistencyace, behavior, or a combination of the two) [MORT96].
checks, such as whether appropriate components are

connected and their interfaces match, whether conne@t the level of architectures, evolution is focused on

tors enable desired communication, whether constrainiacremental development and support for system fami-
are satisfied, and whether the combined semantics ¢ies. Incrementality of an architecture can further be

components and connectors result in desired systemiewed from two different perspectives. One is its abil-

behavior. Certain concurrent and distributed aspects adfy to accommodate addition of new components and the
an architecture can also be assessed statically, suchrasulting issues of scale; the other is specification of
the potential for deadlocks and starvation, performancencomplete architectures.

reliability, security, and so on. Finally, architectures can

be statically analyzed for adherence to design heuristics 4 o Execution-Time Evolution

and style rules.
Explicit modeling of architectures is intended to support

development and evolution of large and potentially
long-running systems. Being able to evolve such sys-
Examples of dynamic analysis are testing, debuggingems during execution may thus be desirable and, in
assertion checking, and assessment of the performangme cases, necessary. Architectures exhibit dynamism
reliability, and schedulability of an executing architec-by allowing replication, insertion, removal, and recon-
ture. Saying that an architecture is executing can meatection of architectural elements or subarchitectures

3.3.2. Dynamic Analysis

two different things: during execution.
* the system built based on the architecture is execut- ) ) )
ing, or Dynamic changes of an architecture may be either

« the runtime behavior of the architecture itself is beingP!@nned at architecture specification time or unplanned.
simulated. Both types of dynamic change must be constrained to

ensure that no desired architectural properties are vio-
Clearly, certain analyses, such as performance or rellated.
ability, are more meaningful or even only possible in the
former case. However, an implementation of the system 5 Refinement
may not yet exist. Furthermore, it may be substantially
less expensive to perform dynamic analyses in the lattéfthe most common argument for creating and using for-
case, particularly when the relationship between thenal architectural models is that they are necessary to
architecture and the implemented system is well undeibridge the gap between informal, “boxes and arrows”

stood. diagrams and programming languages, which are
deemed too low-level for designing a system. Architec-
3.4. Evolution tural models may need to be specified at several levels of

abstraction for different purposes. For example, a high
Support for software evolution is a key aspect of archilevel specification of the architecture can be used as an
tecture-based development. Architectures evolve tanderstanding and communication tool; a subsequent
reflect evolution of a single software system; they alsdower level may be analyzed for consistency of intercon-
evolve into families of related systems. As design elenections; an even lower level may be used in a simula-
ments, individual components and connectors within ation. Therefore, correct and consistent refinement of
architecture may also evolve. architectures to subsequently lower levels of abstraction
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is imperative. Note that, in this sense, code generation 8.7. Simulation/Executability

simply a special case of architectural refinement. ) ] o
Static architectural models are useful for establishing

static properties of the modeled system. Certain
3.6. Traceability dynamic properties may also be predicted with static
models, but only if specific assumptions hold. For exam-

As discussed above, a software architecture often come, if the architect can correctly predict execution time
sists of multiple views and may be modeled at multipleand criticality of each component, then schedulability of
levels of abstraction (Figure 2). We call a particularthe encompassing architecture can be evaluated.

view of the archngctqre ata given Ieve! of abstractlor‘bn the other hand, other dynamic properties, such as
(i.e., a single point in the two-dimensional space of

. . . . . reliability, may by definition require a running system.
Figure 2) an “architectural cross-section.” It is critical Iso dgvelopyersymay want toqproduce an egarI?// proto-
for changes in one cross-section to be correctly reflectet pe,to e.g., attempt allocation of architectural elements
in others. A particular architectural cross-section can b e .
considered “dominant,” so thatl changes to the archi- © components of the physical system. Other stakehold-

' g ers (e.g., customers or managers) may want to verify

tecture are made to it and then reflected in others. HOW'arly on that the architecture conforms to their wishes.

ever, ch_anges will more frequently be '”.”ade to the m9§|mulatlng the dynamic behavior of a high level archi-
appropriate or convenient cross-section. Traceabilit . .
support will hence need to exist across all pertinen ecture may thus be preferred to implementing the sys-
pp ) P em: it is a quicker, cheaper, and more flexible way of
cross-sections. L o :
arriving at the desired information.

One final issue is the consistency of an architecture with special case of architectural simulation is the execu-
system requirements. Changes to the requirements musgin of the complete implemented system. The ultimate
be appropriately reflected in the architecture; changes tgoal of any software design and modeling endeavor is to
the architecture must be validated against the requirggroduce such a system. An elegant and effective archi-
ments. Therefore, even though system requirements atectural model is of limited value, unless it can be con-
in the problem domain, while architecture is in the soluverted into a running application. A simulation can only
tion domain, traceability between the two is crucial. Forpartially depict the final system’s dynamic behavior.
purposes of traceability, requirements can be considerddanually transforming an architecture into a running
to be at a very high level of architectural abstraction, asystem may result in many, already discussed problems
shown in Figure 2. of consistency and traceability between the architecture
and its implementation. Techniques, such as refinement
and traceability discussed above, must be employed to

. properly accomplish this task.
Architectural

View
A 4. ADL Support for Architectural Domains
implementationl- In the previous section, we motivated and described dif-
processt fer_ent architectural domains in terms of their character-
control flow- istics a_nd neeo!s of software _archlt_ectures. Another way
dominant of viewing architectural domains is in terms of modeling

data flowr cross-section languages and specific language features needed to sup-
graphicalt = = = = = = " Level of port different domains. At the same time, a useful way
textuaky ! Abstraction  of understanding and classifying architecture modeling
i + i i | languages is in terms of architectural domains they are

requirements high level _ detailed Source intended to support. For these reasons, this section stud-
ies the kinds of language facilities that are needed to
support each architectural domain, as well as the spe-

Figure 2: Two-dimensional space of architectural views andcific features existing ADLs employ to that end. Our
levels of abstraction. The vertical axis is a set of discrete val; : g : : :
ues with a nominal ordering. The horizontal axis is a contin/10P€ iS that this discussion will shed light on the rela-
uum with an ordinal ordering of values, where systemtionships among different architectural domains (and
requirements are considered to be the highest level of abstragyeir resulting ADL features) and point out both where

tion and source code the lowest. One possible dominant crosfcﬁ be effectivel bined d wh
section (graphical view of the high level architecture) isN€Y Can be eliectively combined and where we can

shown. expect difficulties.
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4.1. Representation design. Reactive specification tools detemtisting
errors. They may either only inform the architect of the
Ideally, an ADL should make the structure of a systenrror on-intrusive or also force the architect to correct
clear from a configuration specification alone, i.e., with-t pefore moving on itrusive. An example of the
out having to study component and connector specificgdormer is C2's design environmentargo, while

tions. Architecture descriptions in-line configuration  MetaH's graphical editor is an example of the latter.
ADLs, such as Darwin, MetaH, and Rapide tend to be

encumbered with connector details, wtebeplicit con- .
figuration ADLs such as ACME, Aesop, C2, SADL, 4-3. Analysis
UniCon, and Wright have the best potential to facilitat

understandability of architectural structure. eThe types of analyses for which an ADL is well suited

depend on its underlying semantic model, and to a lesser

One common way of facilitating understandability ande>_<tent, its ;pecification features. The semantic model
communication is by providing a graphical notation, inWill largely influence whether the ADL can be analyzed

addition to the textual notation. However, this is only theStatically or dynamically, or both. For example, Wright,

case if there is a precise relationship between a graphjthich is based on communicating sequential processes

cal description and the underlying semantic model. Fof¢SP) [H0a85], allows static deadlock analysis of indi-
example, Aesop, C2, Darwin, MetaH, Rapide, and Uni_vldual connectors and components attached to them. On

Con support such “semantically sound” graphical rlotaLhe other hand, Rapide architectures, which are modeled

tions, while ACME, SADL, and Wright do not. with partially ordered event sets (posets) [LVB+93], can
be analyzed dynamically.

ADLs must also be able to model the architecture from

multiple perspectives. As discussed above, several 3 1. Static Analysis

ADLs support at least two views of an architecture: tex-

tual and graphical. Each of these ADLs also allows botfThe most common type of static analysis tools are lan-

top-level and detailed views of composite elementsguage parsers and compilers. Parsers analyze architec-

Aesop, MetaH, and UniCon further distinguish differenttures for syntactic correctness, while compilers establish

types of components and connectors iconically. semantic correctness. All existing ADLs have parsers.
Darwin, MetaH, Rapide, and UniCon also have compil-

Support for other views is sparse. C2 provides a view ofrs, which enable these languages to generate execut-

the development process that corresponds to the archible systems from architectural descriptions. Wright

tecture [RR96]. Darwin'Software Architect’'s Assistant does not have a compiler, but it uses FDR [For92], a

[NKM96] provides a hierarchical view of the architec- model checker, to establish type conformance.

ture which shows all the component types and the

“include” relationships among them in a tree structureThere are numerous other possible types of static analy-

Rapide allows visualization of an architecture’s execusis of architectures. Several examples are provided by

tion behavior by building its simulation and animating current ADLs. Aesop provides facilities for checking for

its execution. Rapide also provides a tool for viewingtype consistency, cycles, resource conflicts, and schedul-

and filtering events generated by the simulation. ing feasibility in its architectures. C2 uses critics to

establish adherence to style rules and design guidelines.

MetaH and UniCon both currently support schedulabil-

ity analysis by specifying non-functional properties,

As the above examples of C2’s, Darwin’s, and Rapide’$uch as criticality and priority. Finally, given two archi-

support tools indicate, language features can only go d§ctures, SADL can establish their relative correctness

far in supporting software architects. Adequate tools ar#ith respect to a refinement map.

also needed. A category of tools that is critical for ade-

quately supporting the design processamtive specifi-  4.3.2. Dynamic Analysis

cation tools they can significantly reduce the cognitive N _ _
load on architects. The ability to analyze an architecture dynamically

directly depends on the ADL's ability to model its
Only a handful of existing ADLs provide tools that dynamic behavior. To this end, ADLs can employ speci-
actively support specification of architectures. In genfication mechanisms, such as event posets, CHAM, or
eral, such tools can be proactive or reactive. UniCon’semporal logic, which can express dynamic properties of
graphical editor is proactive. It invokes UniCon’s lan-a system. Another aspect of dynamic analysis is
guage processing facilities tprevent errors during enforcement of constraints at runtime.

4.2. Design Process Support
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Most existing ADLs tend to view architectures stati-tecture can be viewed from two different perspectives.
cally, so that current support for dynamic modeling andOne is its ability to accommodate addition of new com-
analysis is scarce. Darwin enables dynamic analysis gfonents to the architecture. In geneeaplicit configu-
architectures by instantiating parameters and compaation ADLscan support incremental development more
nents to enact “what if’ scenarios. Similarly, Rapideeasily and effectively thaim-line configuration ADLs
Poset Browses event filtering features anfinimation  ADLs that allow variable numbers of components to
Toolsfacilitate analysis of architectures through simula-communicate through a connector are well suited for
tion. Rapide’<onstraint Checkealso analyzes the con- incremental development, particularly when faced with
formance of a Rapide simulation to the formalunplanned architectural changes [Med97].

constraints defined in the architecture. Finally, runtime

systems of those ADLSs that provide architecture compifnother view of incrementality is an ADL's support for

lation support can be viewed as dynamic analysis facililncomplete architectural descriptions. Incomplete archi-
ties. tectures are common during design, as some decisions

are deferred and others have not yet become relevant.
However, most existing ADLs and their supporting
toolsets have been built to prevent precisely these kinds

An architecture can evolve in two different dimensions: Of situations. For example, Darwin, MetaH, Rapide, and

« evolution of individual components and connectors UniCon compilers, constraint checkers, and runtime
where the structure of the architecture is not affectecSyStéms have been constructed to raise exceptions if

4.4. Evolution

although its behavior may be; and such situations arise. In this case, an ADL, such as
« evolution of the entire architecture, which affects both/Vright, which focuses its analyses on information local
the structure and behavior of an architecture. to a single connector is better suited to accommodate

expansion of the architecture than, e.g., SADL, which is
Evolution in these two dimensions can occur both avery rigorous in its refinement eftire architectures.

architecture specification time and while the architec- . o
ture is executing. Still another aspect of static evolution is support for

application families. In [MT96], we showed that the
number of possible architectures in a component-based
style grows exponentially as a result of a linear expan-
ADLs can support specification-time evolution of indi- sion of a collection of components. All such architec-
vidual components and connectors with subtyping. Onlyures may not belong to the same logical family.
a subset of existing ADLs provide such facilities, andTherefore, relying on component and connector inherit-
even their evolution support is limited and often reliesance, subtyping, or other evolution mechanisms is insuf-
on the chosen implementation (programming) languagdicient. An obvious solution, currently adopted only by
The remainder of the ADLs view and model compo-ACME, is to provide a language construct that allows
nents and connectors as inherently static. the architect to specify the family to which the given

] ] ] architecture belongs.
Aesop supports behavior-preserving subtyping of com-
ponents and connectors to create substyles of a given

architectural style. Rapide allows its interface types td4-2- Execution-Time Evolution

inherit from other types by using OO methods, resultingrpere are presently two approaches to supporting evolu-
in structural subtyping. ACME also supports structurakjon of architectures at execution time. The first is what
subtyping via itsextendsfeature. C2 provides a more Oreizy calls “constrained dynamism”: all runtime

sophisticated subtyping and type checking mechanisngnanges to the architecture must be known a priori and

Multiple subtyping relationships among components argye specified as part of the architectural model [Ore96].
allowed: name, interface, behavior, and implementation

subtyping, as well as their combinations [MORT96].  Two existing ADLs support constrained dynamism.

L ) ) ) Rapide supports conditional configuration; dere
Specification-time evolution of complete architectures, |, ;se enables a form of architectural rewiring at runt-

has two facets: support for incremental development angle - ;sing thdink andunlink operators. Darwin allows
support for system families. Incrementality of an archi-, time replication of components using the opera-
tor.

3. Saying that an architecture is “executing” can mean either . . .
that the architecture is being simulated or that the executabithe second approach to execution time evolution places

system built based on that architecture is running. no restrictions at architecture specification time on the

4.4.1. Specification-Time Evolution
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kinds of allowed changes. Instead, the ADL has amlescription and those of the resulting system will be 1-
architecture modification feature, which allows theto-1. Given that architectures are intended to describe
architect to specify changes while the architecture isystems at a higher level of abstraction than source code
running. modules, this can be considered only a limited form of

) refinement.
Darwin and C2 are the only ADLs that support such

“pure dynamism” [Ore96]. Darwin allows deletion and
rebinding of components by interpreting Darwin scripts.

C2 specifies a set of operations for insertion, removalynile the problem of refinement essentially focuses
and rewiring of elements in an architecture at runtimebmy on one axis of Figure 2 (the horizontal axis) and
[Med96]. C2'sArchShelltool enables arbitrary interac- gne direction (left to right), traceability may need to
tive construction, execution, and runtime-modificationggyer a large portion of the two-dimensional space and
of C2-style architectures by dynamically loading andis applicable in both directions. This presents a much
linking new architectural elements [Ore96, MOT97]. An mgre difficult task, indicating why this is the architec-

dynamic evolution to ensure that the desired properties

of architectures are maintained. The relationships among architectural views (vertical
axis) are not always well understood. For example,
ADLs commonly provide support for tracing changes
between textual and graphical views, such that changes

ADLs provide architects with expressive and semantiin one view are automatically reflected in the other;
cally elaborate facilities for specification of architec- however, it may be less clear how the data flow view
tures. However, an ADL must also enable correct anghould affect the process view. In other cases, changes
consistent refinement of architectures to subsequentij} one view (e.g., process) should never affect another
lower levels of abstraction, and, eventually, to execut{€.g., control flow). An even bigger hurdle is providing
able systems. traceability support acrogsoth architectural views and
levels of abstraction simultaneously. Finally, although
An obvious way in which ADLs can support refinementmuch research has been directed at methodologies for
is by providing patterns, or maps, that, when applied tenaking the transition from requirements to design (e.g.,
an architecture, result in a related architecture at a loweDO), this process is still an art form. Further research is
level of abstraction. SADL and Rapide are the only twoespecially needed to understand the effects of changing
ADLs that provide such support. SADL uses maps taequirements on architectures and vice versa.
enable correct architecture refinements across styles,
while Rapide generates comparative simulations ofl raceability is particularly a problem in the way imple-
architectures at different abstraction levels. Bothmentation constraining languages approach code gener-

approaches have certain drawbacksy indicating that %_tion, discussed in the prEViOUS subsection. These ADLs
hybrid approach may be useful. provide no means of guaranteeing that the source mod-

ules which are supposed to implement architectural
Garlan has recently argued that refinement should not mponents will do so correctly. Furthermore, even if
consistent with respect to a single (immutable) law, buthe specified modules currently implement the needed
rather with respect to particular properties of interest, béehavior correctly, there is no guarantee that any future
they conservative extension (SADL), computationalchanges to those modules will be traced back to the
behavior (Rapide), or something entirely different, sucharchitecture and vice versa.
as performance [Gar96]. This may be a good starting
point towards a successful marriage of the twoy 7. Simulation/Executability
approaches.

4.6. Traceability

4.5. Refinement

) ] As with dynamic analysis (Section 4.3.2), simulating an
Several ADLs take a different approach to refinementy chitecture will directly depend upon the ADL's ability
they enable generation of executable systems directhy model its dynamic behavior. Currently, Rapide is the
from archite(_:tural specific_ations. These are typically the(\)my ADL that can simulate the architecture itself, by
implementation constraining languagesich as MetaH generating event posets. Other ADLs enable generation

and UniCon. These ADLs assume the existence of gt rynning systems corresponding to the architecture.
source file that corresponds to a given architectural ele-

ment. This approach makes the assumption that the reldetaH and UniCon require preexisting component
tionship between elements of an architecturaimplementations in Ada and C, respectively, in order to
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generate applications. Darwin can also construct execu&.8. Summary

able systems in the same manner in C++, and Rapide in )
C, C++, Ada, VHDL, or its executable sublanguage. Emspng ADLs span a broad spectrum in terms of the
architectural domains they support. On the one hand,

C2 and Aesop provide class hierarchies for their conlanguages like SADL and Wright have very specific,
cepts and operations, such as components, connectongrrow foci. On the other, C2, Rapide, and Darwin sup-
and interconnection and message passing protocolport a number of architectural domains. Certain
These hierarchies form a basis from which an impledomains, e.g., evolution, refinement, and traceability are
mentation of an architecture may be produced. Aesop'snly sparsely supported, indicating areas around which
hierarchy has been implemented in C++, and C2's iriuture work should be centered. A more complete sum-

C++, Java, and Ada.

mary of this section is given in Table 1 below.

Table 1: ADL Support for Architectural Domains

<A Design . . . . . .
17 9 Static Dynamic | Spec-Time | Exec-Time g Simulation/
© o,% Represent. Process Analysis Analysis | Evolution Evolution Refinement)  Trace. Executability
< Support
explicit con- |[none parser none applicationinone rep-maps textual |none
ACME [fig.; “weblets” families across levels  <->
graphical
explicit con- |syntax parser; style- |none behavior- |[none none textual | build tool con-
fig.; graphical |directed edi- |specific com- preserving <-> structs system
notation; typestor; special- |piler; type, subtyping of graphical|glue code in C
Aesop [distinguished |ized editors |cycle, resource components for pipe-and-
iconically for visualiza- | conflict, and and connec- filter style
tion classes |scheduling fea- tors
sibility checker
explicit con- | non-intrusive,| parser; critics tg event multiple subqpure dyna- |none textual |class frame-
fig.; graphical |reactive establish adhertfiltering typing mech{mism: ele- <-> work enables
c2 notation; pro- |design critics | ence to style anisms; ment graphical|generation of
cess view; simrand to-do listg rules and design allows par- |insertion, C/C++, Ada,
ulation; event |in Argo heuristics tial architec- |removal, and Java code|
filtering tures and rewiring
implicit con- |automated |parser; compiler “what if” |[none constrained|none textual |compiler gen-
fig.; graphical |addition of scenarios by dynamism: <-> erates C++
notation; hier- | ports; propa- instantiat- runtime rep- graphical|code
Darwin archical systemgation of ing parame lication of
view changes ters and components
across bound dynamic and condi-
ports; prop- components tional config
erty dialogs uration
implicit con-  |intrusive, parser; com-  [none none none none textualcompiler
fig.; graphical |reactive piler; schedula- <-> generates Ada|
MetaH [notation; typed graphical edi-| bility, graphical|code (C code
distinguished |tor reliability, and generation
iconically security analysis planned)
implicit con- |none parser; com- |event inheritance |constrained |refinement | textual |simulation by
fig.; graphical piler; constraint|filtering (structural |dynamism: |maps <-> generating
notation; ani- checker to and subtyping) |conditional |enable comt graphical;|event posets;
Rapide |Mated simula- ensure valid  |animation configura- | parative constraint | system con-
p tion; event mappings tion and simulations | checking |struction in C/
filtering dynamic of architec- |across C++, Ada,
event generatures at dif- |refinementVHDL, and
tion ferent levels|levels Rapide
explicit config.| none parser; relative none component |none maps refinementnone
correctness of and connec- enable cor- |across
SADL architectures tor refine- rect refine- |levels
w.r.t. a refine- ment via ments across
ment map pattern maps levels
explicit con- |proactive parser; com-  [none none none none textualcompiler
Unicon [fig.; graphical | GUI editor | piler; schedula- <-> |generates C
notation invokes lan- |bility analysis graphical|code
guage checker
explicit config.| none parser; model |none type con- |none none none none
checker for type formance
Wright conformance; for behavior-
deadlock analy- ally related
sis of connectors protocols
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5. Architectural vs. Application Domains begun to emerge in the form of definitions [PW92,
GS93] and formal classifications of styles [SC96] and

Over the past decade there has been interest in relatipgpLs [Med97, MT97].

architectures, which are in the solution domain, to the

problem (or application) domain, leading to the notionthis hody of work reflects a wide spectrum of views on

of ~ domain-specific  software  architectures \ a4 architecture is, what aspects of it should be mod-
(DSSASITra95_]. A DSSA provides a single (ger)erlc) eled and how, and what its relationship is to other soft-
reference architecturewhich reflects the characteristics ware development concepts and artifacts. This

of a particular problem domain, and which is InStantI'divergence of views has also resulted in a divergence of

fggtdu:glr :ta(I::ssaFi):ngjfécs:(gI?::ngcc)gclz ;hatrg?/%]:lwz?\;therADLs’ conceptual frameworks (as defined in Section 2).
y » P guch fragmentation has made it difficult to establish

way of relating the problem and solution spaces. Style hether th ists in ADL " nilar t
are largely orthogonal to DSSAs: a single style may pg/netherthere exists in S a notion simifar to compu-

applicable to multiple application domains; on the othe|1"’1t|0na| equlva_lence In programming Iangugges. Fur-
hand, a single DSSA may use multiple styles. thermore, sharing support tools has been difficult.

Any attempt to further explore and perhaps generaliz&2CME has attempted to provide a basis for interchang-
the relationship between architectural and applicatioing architectural descriptions across ADLs. However,
domains would be greatly aided by a classification ofACME has thus far been much more successful at
application domains. We are unaware of any such classgchieving architectural interchange at the syntactic (i.e.,
fication, although Jackson identified a number ofstryctural) level, than at the semantic level. Although
domain characteristicghat could serve as a starting sgme of the ACME team’s recent work looks encourag-
point for one [Jac95]: ing, this still remains an open problem. One of the rea-
* static vs. dynamic domains, with the latter being sons ACME has encountered difficulties is precisely the
application domains having an element of timeact that there is only limited agreement in the architec-
events, and/or state; ture community on some fundamental issues, the most

* one-dimensiona¥s. multi-dimensionatiomains; critical of which is what problems architectures should
* tangible vs. intangible domains, with the latter typi- attempt to solve.

cally involving machine representations of abstrac-

tions (such as user interfaces); _ This paper presents an important first step towards a
* inertvs.reactivevs.activedynamic domains; and solution to this problem. We have recognized that the
* autonomousvs. programmablevs. biddable active  fie|q of software architecture is concerned with several
dynamic domains. domains and that every ADL reflects the properties of

Given these application domain characteristics, one cag\ne or mr? re dom_zms f“’”_" .thls _set. ArCh:ECtErZI
easily identify a number of useful relationships with omains thus provide a unifying view to what ha

architectural domains. For instance, support for evoluSeemed like a disparate collection of approaches, nota-

tion, executability and dynamic analysis are moref‘ions* techniques, and tools_. The task o_f architgctural
important for dynamic domains than for static domainsintérchange can be greatly aided by studying the interre-
As another example, reactive domains are naturally sugationships among architectural -domains. Existing
ported by a style of representation (e.g., Statechar@DLS can be better understood in this new light and
[Har87]) that is different from that in active domains New ADLs more easily developed to solve a specific set
(e.g., CHAM [IW95]). As we deepen our understandingof problems.

of architectural domains, we will be able to solidify our

understanding of their relationship with application Much further work is still needed, however. Our current

domains. understanding of the relationship between architectural
domains and formal semantic theories (Section 2) is
6. Conclusions limited. Also, we need to examine whether there exist

technigues that can more effectively support the needs
Software architecture research has been moving forwar@f particular architectural domains than those provided
rapidly. A number of ADLs and their supporting toolsetsby existing ADLs. Finally, a more thorough understand-
have been developed; many existing styles have beeng of the relationship between architectural and appli-
adopted and new ones invented. Theoretical underpirgation domains is crucial if architecture-based
nings for the study of software architectures have alsdevelopment is to fulfill its potential.
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