
USE
Domains of Concern in Software Architectures
and Architecture Description Languages

Nenad Medvidovic and David S. Rosenblum

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92697-3425, U.S.A.
{neno,dsr}@ics.uci.edu
ne-
st
-
95,
ate
he
rac-
ur-
f

h
nd

de

e
E
-
o
nt

he
 of
hat
his

of
r-
ce
 to

ion
ng

at
ese
er-
ec-
ion
Abstract

Software architectures shift the focus of developers from
lines-of-code to coarser-grained elements and their
interconnection structure. Architecture description lan-
guages (ADLs) have been proposed as domain-specific
languages for the domain of software architecture.
There is still little consensus in the research community
on what problems are most important to address in a
study of software architecture, what aspects of an archi-
tecture should be modeled in an ADL, or even what an
ADL is. To shed light on these issues, we provide a
framework of architectural domains, or areas of con-
cern in the study of software architectures. We evaluate
existing ADLs with respect to the framework and study
the relationship between architectural and application
domains. One conclusion is that, while the architectural
domains perspective enables one to approach architec-
tures and ADLs in a new, more structured manner, fur-
ther understanding of architectural domains, their tie to
application domains, and their specific influence on
ADLs is needed.

Keywords — software architecture, architecture
description language, domain, domain-specific lan-
guage, architectural domain

1. Introduction

Software architecture is an aspect of software engineer-
ing directed at reducing costs of developing applications
and increasing the potential for commonality among dif-
ferent members of a closely related product family
[PW92, GS93]. Software development based on com-
mon architectural idioms has its focus shifted from
lines-of-code to coarser-grained architectural elements
and their overall interconnection structure. This enables
developers to abstract away the unnecessary details and
focus on the “big picture:” system structure, high level
communication protocols, assignment of software com-
ponents and connectors to hardware components, devel-
opment process, and so on.

Many researchers have realized that, to obtain the be
fits of an architectural focus, software architecture mu
be provided with its own body of specification lan
guages and analysis techniques [Gar95, GPT
Wolf96]. Such languages are needed to demonstr
properties of a system upstream, thus minimizing t
costs of errors. They are also needed to provide abst
tions adequate for modeling a large system, while ens
ing sufficient detail for establishing properties o
interest. A large number ofarchitecture description lan-
guages (ADLs) has been proposed, each of whic
embodies a particular approach to the specification a
evolution of an architecture. Examples are Rapi
[LKA+95, LV95], Aesop [GAO94], MetaH [Ves96],
UniCon [SDK+95], Darwin [MDEK95, MK96], Wright
[AG94a, AG94b], C2 [MTW96, MORT96, Med96], and
SADL [MQR95]. Recently, initial work has been don
on an architecture interchange language, ACM
[GMW95, GMW97], which is intended to support map
ping of architectural specifications from one ADL t
another, and hence provide a bridge for their differe
foci and resulting support tools.

There is still very much a lack of consensus in t
research community on what an ADL is, what aspects
an architecture should be modeled by an ADL, and w
should be interchanged in an interchange language. T
divergence has resulted in a wide variation 
approaches found in this first generation of ADLs. Pe
haps even more significantly, there is a wide differen
of opinions as to what problems are most important
address in a study of software architecture.

In our previous research, we have provided a foundat
for understanding, defining, classifying, and compari
ADLs [Med97, MT97]. In this paper, we build upon
those results by identifying and characterizingarchitec-
tural domains, the problems or areas of concern th
need to be addressed by ADLs. Understanding th
domains and their properties is a key to better und
standing the needs of software architectures, archit
ture-based development, and architectural descript
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 199



200

be
with
 is

li-
pe-
a
el-

hat

ural

er
r
i-
e

i-
r-

a
’s
s;
-
 or
op-
re
ed
o-
.g.,

r-

e
er
and interchange. A study of architectural domains is
also needed to guide the development of next-generation
ADLs.

This paper presents a framework of architectural
domains. We demonstrate that each existing ADL cur-
rently supports only a small subset of these domains,
and we discuss possible reasons for that. Finally, we
consider the relationship between architectural domains
and application domains.

While we draw from previous ADL work and reference
a number of ADLs, the most significant contribution of
this paper is the framework of architectural domains. It
provides structure to a field that has been approached
largely in an ad-hoc fashion thus far. The framework
gives the architect a sound foundation for selecting an
ADL and orients discourse away from arguments about
notation and more towards solving important engineer-
ing problems.

The remainder of the paper is organized as follows.
Section 2 provides a short discussion of ADLs.
Section 3 presents and motivates each architectural
domain, while Section 4 discusses the support for archi-
tectural domains in existing ADLs. Section 5 expounds
on the relationship between application domains and
architectural domains. Discussion and conclusions
round out the paper.

2. Overview of ADLs

To properly enable further discussion, several defini-
tions are needed. In this section, we define software
architectures, architectural styles, and ADLs.1 We cate-
gorize ADLs, differentiate them from other, similar
notations, and discuss examples of use of ADLs in
actual projects. Finally, we provide a short discussion on
our use of the terms “architecture” and “design.”

2.1. Definitions of Architecture and Style

There is no standard definition of architecture, but we
will use as our working definition the one provided by
Garlan and Shaw [GS93]:

[Software architecture is a level of design that]
goes beyond the algorithms and data structures of
the computation: designing and specifying the over-
all system structure emerges as a new kind of prob-
lem. Structural issues include gross organization

1. This section is condensed from a detailed exposition on
ADLs given in [Med97] and [MT97], where we provided a
definition of ADLs and devised a classification and compari-
son framework for them.

and global control structure; protocols for commu-
nication, synchronization, and data access; assign-
ment of functionality to design elements; physical
distribution; composition of design elements; scal-
ing and performance; and selection among design
alternatives.

Architectural style is “a set of design rules that identify
the kinds of components and connectors that may 
used to compose a system or subsystem, together 
local or global constraints on the way the composition
done” [SC96].

2.2. Definition of ADLs

Loosely defined, “anADL for software applications
focuses on the high-level structure of the overall app
cation rather than the implementation details of any s
cific source module” [Ves93]. ADLs provide both 
concrete syntax and a conceptual framework for mod
ing a software system’sconceptual architecture.

The building blocks of an architectural description are
• components - units of computation or data stores;
• connectors - architectural building blocks used to

model interactions among components and rules t
govern those interactions; and

• architectural configurations - connected graphs of
components and connectors that describe architect
structure.

An ADL must provide the means for theirexplicit spec-
ification; this criterion enables one to determine wheth
or not a particular notation is an ADL. In order to infe
any kind of information about an architecture, at a min
mum,interfaces of constituent components must also b
modeled formally. Without this information, an arch
tectural description becomes but a collection of (inte
connected) identifiers.

An ADL’s conceptual framework typically subsumes 
formal semantic theory. That theory is part of the ADL
underlying framework for characterizing architecture
it influences the ADL’s suitability for modeling particu
lar kinds of systems (e.g., highly concurrent systems)
particular aspects of a given system (e.g., its static pr
erties). Examples of formal specification theories a
Petri nets [Pet62], Statecharts [Har87], partially-order
event sets [LVB+93], communicating sequential pr
cesses (CSP) [Hoa85], model-based formalisms (e
CHemical AbstractMachine [IW95], Z [Spi89]), alge-
braic formalisms (e.g., Obj [GW88]), and axiomatic fo
malisms (e.g., Anna [Luc87]).

Finally, even though the suitability of a given languag
for modeling architectures is independent of wheth
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

ip-

ific
la-
ey
re
 to
ly
er
le,
do
in

se
and

s-
he
77
r-

the

ale
X/
s-
ver
se-
and

nd
ip
re
or

gn,
re

r-
and what kinds oftool support it provides, an accompa-
nying toolset will render an ADL both more usable and
useful. Furthermore, capabilities provided by such a
toolset are often a direct reflection of the ADL’s
intended use.

2.3. Categorizing ADLs

Existing languages that are commonly referred to as
ADLs can be grouped into three categories, based on
how they model configurations:
• implicit configuration languagesmodel configura-

tions implicitly through interconnection information
that is distributed across definitions of individual
components and connectors;

• in-line configuration languagesmodel configurations
explicitly, but specify connector information only as
part of the configuration, “in line”;

• explicit configuration languagesmodel both compo-
nents and connectors separately from configurations.

The first category, implicit configuration languages, are,
by definition given in this paper,not ADLs, although
they may serve as useful tools in modeling certain
aspects of architectures. An example of an implicit con-
figuration language is ArTek [TLPD95]. In ArTek, there
is no configuration specification; instead, each connec-
tor specifies component ports to which it is attached.

The focus on conceptual architecture and explicit treat-
ment of connectors as first-class entities differentiate
ADLs from module interconnection languages (MILs)
[DK76, PN86], programming languages, and object-ori-
ented notations and languages (e.g., Unified Method
[BR95]). MILs typically describe theuses relationships
among modules in animplemented system and support
only one type of connection [AG94a, SG94]. Program-
ming languages describe a system’s implementation,
whose architecture is typically implicit in subprogram
definitions and calls. Explicit treatment of connectors
also distinguishes ADLs from OO languages, as demon-
strated in [LVM95].

It is important to note, however, that there is less than a
firm boundary between ADLs and MILs. Certain ADLs,
e.g., Wright and Rapide, model components and con-
nectors at a high level of abstraction and do not assume
or prescribe a particular relationship between an archi-
tectural description and an implementation. We refer to
these languages as beingimplementation independent.
On the other hand, several ADLs, e.g., UniCon and
MetaH, enforce a high degree of fidelity of an imple-
mentation to its architecture. Components modeled in
these languages are directly related to their implementa-
tions, so that a module interconnection specification

may be indistinguishable from an architectural descr
tion in such a language. These areimplementation con-
straining languages.

2.4. Applications of ADLs

ADLs are special purpose notations whose very spec
foci render them suitable for powerful analyses, simu
tion, and automated code generation. However, th
have yet to find their place in mainstream softwa
development. Although current research is under way
bridge the gap that separates ADLs from more wide
used design notations [RMRR97], only a small numb
of existing ADLs have been applied to large-sca
“real-world” examples to date. What these examples 
demonstrate is the potential for effective use of ADLs 
software projects.

Wright was used to model and analyze theRuntime
Infrastructure (RTI) of the Department of Defense
(DoD) High-Level Architecture for Simulations(HLA)
[All96]. The original specification for RTI was over 100
pages long. Wright was able to substantially conden
the specification and reveal several inconsistencies 
weaknesses in it.

SADL was applied to an operational power-control sy
tem, used by the Tokyo Electric Power Company. T
system was implemented in 200,000 lines of Fortran 
code. SADL was used to formalize the system’s refe
ence architecture and ensure its consistency with 
implementation architecture.

Finally, Rapide has been used in several large-sc
projects thus far. A representative example is the 
Open Distributed Transaction Processing (DTP) Indu
try Standard. The documentation for the standard is o
400 pages long. Its reference architecture and sub
quent extensions have been successfully specified 
simulated in Rapide [LKA+95].

2.5. Architecture vs. Design

Given the above definition of software architectures a
ADLs, an issue worth addressing is the relationsh
between architecture and design. Current literatu
leaves this question largely unanswered, allowing f
several interpretations:
• architecture and design are the same;
• architecture is at a level of abstraction above desi

so it is simply another step (artifact) in a softwa
development process; and

• architecture is something new and is somehow diffe
ent from design (but just how remains unspecified).
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 201



202

 in

c-
t a
his
be
ith
d,

,

rs,
on
ata

rs
may

-
d

ed
ers

ter-
ng
eci-
lo-

s-
 of
s.
ly
ale,

ib-
he
All three interpretations are partially correct. To a large
extent, architectures serve the same purpose as design.
However, their explicit focus on connectors and configu-
rations distinguishes them from traditional software
design. At the same time, as a (high level) architecture is
refined, connectors lose prominence by becoming dis-
tributed across the (lower level) architecture’s elements.
Such a lower level architecture may indeed be consid-
ered to be a design. Keeping this relationship in mind,
for reasons of simplicity we will simply refer to archi-
tectures as “high level,” “low level,” and so forth, in the
remainder of the paper, while “design” will only refer to
the process that results in an architecture.

3. Architectural Domains

ADLs typically share syntactic constructs that enable
them to model components and component interfaces,
connectors, and configurations.2 A much greater source
of divergence are the different ADLs’ conceptual frame-
works, and, consequently, their support for modeling
architectural semantics. ADL developers typically have
decided to focus on a specific aspect of architectures, or
anarchitectural domain, which guides their selection of
an underlying semantic model and a set of related for-
mal specification notations. These formal notations, in
turn, restrict the types of problems for which the ADL is
suitable.

This relationship between an architectural domain and
candidate formal notations is rarely straightforward or
fully understood. In the absence of objective criteria,
ADL researchers are forced to base their decisions on
intuition, experience, and biases arising from past
research accomplishments. Unfortunately, intuition can
often be misleading and experience insufficient in a
young discipline such as software architectures.

In this paper, we attempt to fill this void. The remainder
of this section motivates and formulates a framework for
classifying the problems on which architectural models
focus (architectural domains), shown in Figure 1. Archi-
tectural domains represent broad classes of problems
and are likely to be reflected in many ADLs and their
associated formal specification language constructs.
Their proper understanding is thus necessary. Further-
more, heuristics may be developed over time that will
enable easier interchange of architectures modeled in
ADLs that focus on particular architectural domains.

2. One can think of these syntactic features as equivalent to a
“boxes and arrows” graphical notation with little or no under-
lying semantics.

Finally, such a framework can be used as a guide
developing future ADLs.

Figure 1: Architectural domains.

3.1. Representation

A key role of an explicit representation of an archite
ture is to aid understanding and communication abou
software system among different stakeholders. For t
reason, it is important that architectural descriptions 
simple, understandable, and possibly graphical, w
well understood, but not necessarily formally define
semantics.

Architectural models typically comprise multiple views
e.g., high level graphical view, lower level view with
formal specifications of components and connecto
conceptual architecture, one or more implementati
architectures, corresponding development process, d
or control flow view, and so on. Different stakeholde
(e.g., architects, developers, managers, customers) 
require different views of the architecture. The custom
ers may be satisfied with a high-level, “boxes an
arrows” description, the developers may want detail
component and connector models, while the manag
may require a view of the development process.

3.2. Design Process Support

Software architects decompose large, distributed, he
ogeneous systems into smaller building blocks. In doi
so, they have to consider many issues, make many d
sions, and utilize many design techniques, methodo
gies, and tools.

Modeling architectures from multiple perspectives, di
cussed in the previous subsection, is only one way
supporting software architects’ cognitive processe
Others include delivering design guidance in a time
and understandable fashion, capturing design ration
and revisiting past design steps.

3.3. Analysis

Architectures are often intended to model large, distr
uted, concurrent systems. The ability to evaluate t

Representation
Design Process Support
Analysis

Static
Dynamic

Evolution
Specification-Time
Execution-Time

Refinement
Traceability
Simulation/Executability
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

res

pes
an
in
ors
b-
ay
s,
r-
].

n
i-
e

il-
the
of

rt
lly
ys-
 in
ism
-
es

er
ed.
 to
io-

or-
 to
s”
re
c-
s of
gh
 an
ent
n-
la-
of

ion
properties of such systems upstream, at the architectural
level, can substantially lessen the number of errors
passed downstream. Given that unnecessary details are
abstracted away in architectures, the analysis task may
also be easier to perform than at source code level.

Analysis of architectures may be performed statically,
before execution, or dynamically, at runtime. Certain
types of analysis can be performed both statically and
dynamically.

3.3.1. Static Analysis

Examples of static analysis are internal consistency
checks, such as whether appropriate components are
connected and their interfaces match, whether connec-
tors enable desired communication, whether constraints
are satisfied, and whether the combined semantics of
components and connectors result in desired system
behavior. Certain concurrent and distributed aspects of
an architecture can also be assessed statically, such as
the potential for deadlocks and starvation, performance,
reliability, security, and so on. Finally, architectures can
be statically analyzed for adherence to design heuristics
and style rules.

3.3.2. Dynamic Analysis

Examples of dynamic analysis are testing, debugging,
assertion checking, and assessment of the performance,
reliability, and schedulability of an executing architec-
ture. Saying that an architecture is executing can mean
two different things:
• the system built based on the architecture is execut-

ing, or
• the runtime behavior of the architecture itself is being

simulated.

Clearly, certain analyses, such as performance or reli-
ability, are more meaningful or even only possible in the
former case. However, an implementation of the system
may not yet exist. Furthermore, it may be substantially
less expensive to perform dynamic analyses in the latter
case, particularly when the relationship between the
architecture and the implemented system is well under-
stood.

3.4. Evolution

Support for software evolution is a key aspect of archi-
tecture-based development. Architectures evolve to
reflect evolution of a single software system; they also
evolve into families of related systems. As design ele-
ments, individual components and connectors within an
architecture may also evolve.

Evolution of components, connectors, and architectu
can occur at specification time or execution time.

3.4.1. Specification-Time Evolution

If we consider components and connectors to be ty
which are instantiated every time they are used in 
architecture, their evolution can be viewed simply 
terms of subtyping. Since components and connect
are modeled at a high level of abstraction, flexible su
typing methods may be employed. For example, it m
be useful to evolve a single component in multiple way
by using different subtyping mechanisms (e.g., inte
face, behavior, or a combination of the two) [MORT96

At the level of architectures, evolution is focused o
incremental development and support for system fam
lies. Incrementality of an architecture can further b
viewed from two different perspectives. One is its ab
ity to accommodate addition of new components and 
resulting issues of scale; the other is specification 
incomplete architectures.

3.4.2. Execution-Time Evolution

Explicit modeling of architectures is intended to suppo
development and evolution of large and potentia
long-running systems. Being able to evolve such s
tems during execution may thus be desirable and,
some cases, necessary. Architectures exhibit dynam
by allowing replication, insertion, removal, and recon
nection of architectural elements or subarchitectur
during execution.

Dynamic changes of an architecture may be eith
planned at architecture specification time or unplann
Both types of dynamic change must be constrained
ensure that no desired architectural properties are v
lated.

3.5. Refinement

The most common argument for creating and using f
mal architectural models is that they are necessary
bridge the gap between informal, “boxes and arrow
diagrams and programming languages, which a
deemed too low-level for designing a system. Archite
tural models may need to be specified at several level
abstraction for different purposes. For example, a hi
level specification of the architecture can be used as
understanding and communication tool; a subsequ
lower level may be analyzed for consistency of interco
nections; an even lower level may be used in a simu
tion. Therefore, correct and consistent refinement 
architectures to subsequently lower levels of abstract
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 203



204

ng
in
tic
m-
e

of

 as
.

to-
nts
ld-

rify
s.
i-
ys-
of

u-
te
 to
hi-
n-
ly
r.
g
ms

ure
ent
 to

if-
er-
ay
g
sup-
ay
ng
are
tud-
 to
pe-
r

la-
nd
re
an
is imperative. Note that, in this sense, code generation is
simply a special case of architectural refinement.

3.6. Traceability

As discussed above, a software architecture often con-
sists of multiple views and may be modeled at multiple
levels of abstraction (Figure 2). We call a particular
view of the architecture at a given level of abstraction
(i.e., a single point in the two-dimensional space of
Figure 2) an “architectural cross-section.” It is critical
for changes in one cross-section to be correctly reflected
in others. A particular architectural cross-section can be
considered “dominant,” so thatall changes to the archi-
tecture are made to it and then reflected in others. How-
ever, changes will more frequently be made to the most
appropriate or convenient cross-section. Traceability
support will hence need to exist across all pertinent
cross-sections.

One final issue is the consistency of an architecture with
system requirements. Changes to the requirements must
be appropriately reflected in the architecture; changes to
the architecture must be validated against the require-
ments. Therefore, even though system requirements are
in the problem domain, while architecture is in the solu-
tion domain, traceability between the two is crucial. For
purposes of traceability, requirements can be considered
to be at a very high level of architectural abstraction, as
shown in Figure 2.

Figure 2: Two-dimensional space of architectural views and
levels of abstraction. The vertical axis is a set of discrete val-
ues with a nominal ordering. The horizontal axis is a contin-
uum with an ordinal ordering of values, where system
requirements are considered to be the highest level of abstrac-
tion and source code the lowest. One possible dominant cross-
section (graphical view of the high level architecture) is
shown.

3.7. Simulation/Executability

Static architectural models are useful for establishi
static properties of the modeled system. Certa
dynamic properties may also be predicted with sta
models, but only if specific assumptions hold. For exa
ple, if the architect can correctly predict execution tim
and criticality of each component, then schedulability 
the encompassing architecture can be evaluated.

On the other hand, other dynamic properties, such
reliability, may by definition require a running system
Also, developers may want to produce an early pro
type to, e.g., attempt allocation of architectural eleme
to components of the physical system. Other stakeho
ers (e.g., customers or managers) may want to ve
early on that the architecture conforms to their wishe
Simulating the dynamic behavior of a high level arch
tecture may thus be preferred to implementing the s
tem: it is a quicker, cheaper, and more flexible way 
arriving at the desired information.

A special case of architectural simulation is the exec
tion of the complete implemented system. The ultima
goal of any software design and modeling endeavor is
produce such a system. An elegant and effective arc
tectural model is of limited value, unless it can be co
verted into a running application. A simulation can on
partially depict the final system’s dynamic behavio
Manually transforming an architecture into a runnin
system may result in many, already discussed proble
of consistency and traceability between the architect
and its implementation. Techniques, such as refinem
and traceability discussed above, must be employed
properly accomplish this task.

4. ADL Support for Architectural Domains

In the previous section, we motivated and described d
ferent architectural domains in terms of their charact
istics and needs of software architectures. Another w
of viewing architectural domains is in terms of modelin
languages and specific language features needed to 
port different domains. At the same time, a useful w
of understanding and classifying architecture modeli
languages is in terms of architectural domains they 
intended to support. For these reasons, this section s
ies the kinds of language facilities that are needed
support each architectural domain, as well as the s
cific features existing ADLs employ to that end. Ou
hope is that this discussion will shed light on the re
tionships among different architectural domains (a
their resulting ADL features) and point out both whe
they can be effectively combined and where we c
expect difficulties.

Architectural
View

Level of
Abstractiontextual

graphical

data flow

control flow

process

implementation

source
code

detailed
architecture

high level
architecture

...
requirements

dominant
cross-section
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

e
t

d
ser

del
d
t,
ses
i-

 On
led
n

n-
itec-
ish
rs.
il-
cut-
ht
, a

aly-
 by
r

dul-
to
es.

il-
s,
i-
ss

ly
s
ci-
 or
 of
is
4.1. Representation

Ideally, an ADL should make the structure of a system
clear from a configuration specification alone, i.e., with-
out having to study component and connector specifica-
tions. Architecture descriptions inin-line configuration
ADLs, such as Darwin, MetaH, and Rapide tend to be
encumbered with connector details, whileexplicit con-
figuration ADLs, such as ACME, Aesop, C2, SADL,
UniCon, and Wright have the best potential to facilitate
understandability of architectural structure.

One common way of facilitating understandability and
communication is by providing a graphical notation, in
addition to the textual notation. However, this is only the
case if there is a precise relationship between a graphi-
cal description and the underlying semantic model. For
example, Aesop, C2, Darwin, MetaH, Rapide, and Uni-
Con support such “semantically sound” graphical nota-
tions, while ACME, SADL, and Wright do not.

ADLs must also be able to model the architecture from
multiple perspectives. As discussed above, several
ADLs support at least two views of an architecture: tex-
tual and graphical. Each of these ADLs also allows both
top-level and detailed views of composite elements.
Aesop, MetaH, and UniCon further distinguish different
types of components and connectors iconically.

Support for other views is sparse. C2 provides a view of
the development process that corresponds to the archi-
tecture [RR96]. Darwin’sSoftware Architect’s Assistant
[NKM96] provides a hierarchical view of the architec-
ture which shows all the component types and the
“include” relationships among them in a tree structure.
Rapide allows visualization of an architecture’s execu-
tion behavior by building its simulation and animating
its execution. Rapide also provides a tool for viewing
and filtering events generated by the simulation.

4.2. Design Process Support

As the above examples of C2’s, Darwin’s, and Rapide’s
support tools indicate, language features can only go so
far in supporting software architects. Adequate tools are
also needed. A category of tools that is critical for ade-
quately supporting the design process areactive specifi-
cation tools; they can significantly reduce the cognitive
load on architects.

Only a handful of existing ADLs provide tools that
actively support specification of architectures. In gen-
eral, such tools can be proactive or reactive. UniCon’s
graphical editor is proactive. It invokes UniCon’s lan-
guage processing facilities toprevent errors during

design. Reactive specification tools detectexisting
errors. They may either only inform the architect of th
error (non-intrusive) or also force the architect to correc
it before moving on (intrusive). An example of the
former is C2’s design environment,Argo, while
MetaH’s graphical editor is an example of the latter.

4.3. Analysis

The types of analyses for which an ADL is well suite
depend on its underlying semantic model, and to a les
extent, its specification features. The semantic mo
will largely influence whether the ADL can be analyze
statically or dynamically, or both. For example, Wrigh
which is based on communicating sequential proces
(CSP) [Hoa85], allows static deadlock analysis of ind
vidual connectors and components attached to them.
the other hand, Rapide architectures, which are mode
with partially ordered event sets (posets) [LVB+93], ca
be analyzed dynamically.

4.3.1. Static Analysis

The most common type of static analysis tools are la
guage parsers and compilers. Parsers analyze arch
tures for syntactic correctness, while compilers establ
semantic correctness. All existing ADLs have parse
Darwin, MetaH, Rapide, and UniCon also have comp
ers, which enable these languages to generate exe
able systems from architectural descriptions. Wrig
does not have a compiler, but it uses FDR [For92]
model checker, to establish type conformance.

There are numerous other possible types of static an
sis of architectures. Several examples are provided
current ADLs. Aesop provides facilities for checking fo
type consistency, cycles, resource conflicts, and sche
ing feasibility in its architectures. C2 uses critics 
establish adherence to style rules and design guidelin
MetaH and UniCon both currently support schedulab
ity analysis by specifying non-functional propertie
such as criticality and priority. Finally, given two arch
tectures, SADL can establish their relative correctne
with respect to a refinement map.

4.3.2. Dynamic Analysis

The ability to analyze an architecture dynamical
directly depends on the ADL’s ability to model it
dynamic behavior. To this end, ADLs can employ spe
fication mechanisms, such as event posets, CHAM,
temporal logic, which can express dynamic properties
a system. Another aspect of dynamic analysis 
enforcement of constraints at runtime.
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 205



206

s.
-

re

to
for
th

r
hi-
ions
ant.
g
nds
nd
e

s if
as
al
ate
 is

or
e
sed
n-

c-
y.
rit-
uf-
y
s
n

lu-
at

nd
].

.

nt-

ces
he
Most existing ADLs tend to view architectures stati-
cally, so that current support for dynamic modeling and
analysis is scarce. Darwin enables dynamic analysis of
architectures by instantiating parameters and compo-
nents to enact “what if” scenarios. Similarly, Rapide
Poset Browser’s event filtering features andAnimation
Tools facilitate analysis of architectures through simula-
tion. Rapide’sConstraint Checker also analyzes the con-
formance of a Rapide simulation to the formal
constraints defined in the architecture. Finally, runtime
systems of those ADLs that provide architecture compi-
lation support can be viewed as dynamic analysis facili-
ties.

4.4. Evolution

An architecture can evolve in two different dimensions:
• evolution of individual components and connectors,

where the structure of the architecture is not affected,
although its behavior may be; and

• evolution of the entire architecture, which affects both
the structure and behavior of an architecture.

Evolution in these two dimensions can occur both at
architecture specification time and while the architec-
ture is executing.3

4.4.1. Specification-Time Evolution

ADLs can support specification-time evolution of indi-
vidual components and connectors with subtyping. Only
a subset of existing ADLs provide such facilities, and
even their evolution support is limited and often relies
on the chosen implementation (programming) language.
The remainder of the ADLs view and model compo-
nents and connectors as inherently static.

Aesop supports behavior-preserving subtyping of com-
ponents and connectors to create substyles of a given
architectural style. Rapide allows its interface types to
inherit from other types by using OO methods, resulting
in structural subtyping. ACME also supports structural
subtyping via itsextends feature. C2 provides a more
sophisticated subtyping and type checking mechanism.
Multiple subtyping relationships among components are
allowed: name, interface, behavior, and implementation
subtyping, as well as their combinations [MORT96].

Specification-time evolution of complete architectures
has two facets: support for incremental development and
support for system families. Incrementality of an archi-

3. Saying that an architecture is “executing” can mean either
that the architecture is being simulated or that the executable
system built based on that architecture is running.

tecture can be viewed from two different perspective
One is its ability to accommodate addition of new com
ponents to the architecture. In general,explicit configu-
ration ADLs can support incremental development mo
easily and effectively thanin-line configuration ADLs;
ADLs that allow variable numbers of components 
communicate through a connector are well suited 
incremental development, particularly when faced wi
unplanned architectural changes [Med97].

Another view of incrementality is an ADL’s support fo
incomplete architectural descriptions. Incomplete arc
tectures are common during design, as some decis
are deferred and others have not yet become relev
However, most existing ADLs and their supportin
toolsets have been built to prevent precisely these ki
of situations. For example, Darwin, MetaH, Rapide, a
UniCon compilers, constraint checkers, and runtim
systems have been constructed to raise exception
such situations arise. In this case, an ADL, such 
Wright, which focuses its analyses on information loc
to a single connector is better suited to accommod
expansion of the architecture than, e.g., SADL, which
very rigorous in its refinement ofentire architectures.

Still another aspect of static evolution is support f
application families. In [MT96], we showed that th
number of possible architectures in a component-ba
style grows exponentially as a result of a linear expa
sion of a collection of components. All such archite
tures may not belong to the same logical famil
Therefore, relying on component and connector inhe
ance, subtyping, or other evolution mechanisms is ins
ficient. An obvious solution, currently adopted only b
ACME, is to provide a language construct that allow
the architect to specify the family to which the give
architecture belongs.

4.4.2. Execution-Time Evolution

There are presently two approaches to supporting evo
tion of architectures at execution time. The first is wh
Oreizy calls “constrained dynamism”: all runtime
changes to the architecture must be known a priori a
are specified as part of the architectural model [Ore96

Two existing ADLs support constrained dynamism
Rapide supports conditional configuration; itswhere
clause enables a form of architectural rewiring at ru
ime, using thelink andunlink operators. Darwin allows
runtime replication of components using thedyn opera-
tor.

The second approach to execution time evolution pla
no restrictions at architecture specification time on t
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

1-
ibe
ode
of

es
d

o
nd
ch
-

al
le,
s
ges
r;
w
ges
her
g

h
 for
g.,
 is
ing

-
ner-
Ls

od-
ral
 if
ed

ure
the

n

he
y
tion

nt
to
kinds of allowed changes. Instead, the ADL has an
architecture modification feature, which allows the
architect to specify changes while the architecture is
running.

Darwin and C2 are the only ADLs that support such
“pure dynamism” [Ore96]. Darwin allows deletion and
rebinding of components by interpreting Darwin scripts.
C2 specifies a set of operations for insertion, removal,
and rewiring of elements in an architecture at runtime
[Med96]. C2’sArchShell tool enables arbitrary interac-
tive construction, execution, and runtime-modification
of C2-style architectures by dynamically loading and
linking new architectural elements [Ore96, MOT97]. An
issue that needs further exploration is constraining pure
dynamic evolution to ensure that the desired properties
of architectures are maintained.

4.5. Refinement

ADLs provide architects with expressive and semanti-
cally elaborate facilities for specification of architec-
tures. However, an ADL must also enable correct and
consistent refinement of architectures to subsequently
lower levels of abstraction, and, eventually, to execut-
able systems.

An obvious way in which ADLs can support refinement
is by providing patterns, or maps, that, when applied to
an architecture, result in a related architecture at a lower
level of abstraction. SADL and Rapide are the only two
ADLs that provide such support. SADL uses maps to
enable correct architecture refinements across styles,
while Rapide generates comparative simulations of
architectures at different abstraction levels. Both
approaches have certain drawbacks, indicating that a
hybrid approach may be useful.

Garlan has recently argued that refinement should not be
consistent with respect to a single (immutable) law, but
rather with respect to particular properties of interest, be
they conservative extension (SADL), computational
behavior (Rapide), or something entirely different, such
as performance [Gar96]. This may be a good starting
point towards a successful marriage of the two
approaches.

Several ADLs take a different approach to refinement:
they enable generation of executable systems directly
from architectural specifications. These are typically the
implementation constraining languages, such as MetaH
and UniCon. These ADLs assume the existence of a
source file that corresponds to a given architectural ele-
ment. This approach makes the assumption that the rela-
tionship between elements of an architectural

description and those of the resulting system will be 
to-1. Given that architectures are intended to descr
systems at a higher level of abstraction than source c
modules, this can be considered only a limited form 
refinement.

4.6. Traceability

While the problem of refinement essentially focus
only on one axis of Figure 2 (the horizontal axis) an
one direction (left to right), traceability may need t
cover a large portion of the two-dimensional space a
is applicable in both directions. This presents a mu
more difficult task, indicating why this is the architec
tural domain in which existing ADLs are most lacking.

The relationships among architectural views (vertic
axis) are not always well understood. For examp
ADLs commonly provide support for tracing change
between textual and graphical views, such that chan
in one view are automatically reflected in the othe
however, it may be less clear how the data flow vie
should affect the process view. In other cases, chan
in one view (e.g., process) should never affect anot
(e.g., control flow). An even bigger hurdle is providin
traceability support acrossboth architectural views and
levels of abstraction simultaneously. Finally, althoug
much research has been directed at methodologies
making the transition from requirements to design (e.
OO), this process is still an art form. Further research
especially needed to understand the effects of chang
requirements on architectures and vice versa.

Traceability is particularly a problem in the way imple
mentation constraining languages approach code ge
ation, discussed in the previous subsection. These AD
provide no means of guaranteeing that the source m
ules which are supposed to implement architectu
components will do so correctly. Furthermore, even
the specified modules currently implement the need
behavior correctly, there is no guarantee that any fut
changes to those modules will be traced back to 
architecture and vice versa.

4.7. Simulation/Executability

As with dynamic analysis (Section 4.3.2), simulating a
architecture will directly depend upon the ADL’s ability
to model its dynamic behavior. Currently, Rapide is t
only ADL that can simulate the architecture itself, b
generating event posets. Other ADLs enable genera
of running systems corresponding to the architecture.

MetaH and UniCon require preexisting compone
implementations in Ada and C, respectively, in order 
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 207



208

he
nd,
c,
p-
in
re

ich
m-
generate applications. Darwin can also construct execut-
able systems in the same manner in C++, and Rapide in
C, C++, Ada, VHDL, or its executable sublanguage.

C2 and Aesop provide class hierarchies for their con-
cepts and operations, such as components, connectors,
and interconnection and message passing protocols.
These hierarchies form a basis from which an imple-
mentation of an architecture may be produced. Aesop’s
hierarchy has been implemented in C++, and C2’s in
C++, Java, and Ada.

4.8. Summary

Existing ADLs span a broad spectrum in terms of t
architectural domains they support. On the one ha
languages like SADL and Wright have very specifi
narrow foci. On the other, C2, Rapide, and Darwin su
port a number of architectural domains. Certa
domains, e.g., evolution, refinement, and traceability a
only sparsely supported, indicating areas around wh
future work should be centered. A more complete su
mary of this section is given in Table 1 below.

Table 1: ADL Support for Architectural Domains

Represent.
Design
Process
Support

Static
Analysis

Dynamic
Analysis

Spec-Time
Evolution

Exec-Time
Evolution Refinement Trace. Simulation/

Executability

ACME
explicit con-
fig.; “weblets”

none parser none application
families

none rep-maps
across levels

textual
<->

graphical

none

Aesop

explicit con-
fig.; graphical
notation; types
distinguished
iconically

syntax
directed edi-
tor; special-
ized editors
for visualiza-
tion classes

parser; style-
specific com-
piler; type,
cycle, resource
conflict, and
scheduling fea-
sibility checker

none behavior-
preserving
subtyping of
components
and connec-
tors

none none textual
<->

graphical

build tool con-
structs system
glue code in C
for pipe-and-
filter style

C2

explicit con-
fig.; graphical
notation; pro-
cess view; sim-
ulation; event
filtering

non-intrusive,
reactive
design critics
and to-do lists
in Argo

parser; critics to
establish adher-
ence to style
rules and design
heuristics

event
filtering

multiple sub-
typing mech-
anisms;
allows par-
tial architec-
tures

pure dyna-
mism: ele-
ment
insertion,
removal,
and rewiring

none textual
<->

graphical

class frame-
work enables
generation of
C/C++, Ada,
and Java code

Darwin

implicit con-
fig.; graphical
notation; hier-
archical system
view

automated
addition of
ports; propa-
gation of
changes
across bound
ports; prop-
erty dialogs

parser; compiler “what if”
scenarios by
instantiat-
ing parame-
ters and
dynamic
components

none constrained
dynamism:
runtime rep-
lication of
components
and condi-
tional config-
uration

none textual
<->

graphical

compiler gen-
erates C++
code

MetaH

implicit con-
fig.; graphical
notation; types
distinguished
iconically

intrusive,
reactive
graphical edi-
tor

parser; com-
piler; schedula-
bility,
reliability, and
security analysis

none none none none textual
<->

graphical

compiler
generates Ada
code (C code
generation
planned)

Rapide

implicit con-
fig.; graphical
notation; ani-
mated simula-
tion; event
filtering

none parser; com-
piler; constraint
checker to
ensure valid
mappings

event
filtering
and
animation

inheritance
(structural
subtyping)

constrained
dynamism:
conditional
configura-
tion and
dynamic
event genera-
tion

refinement
maps
enable com-
parative
simulations
of architec-
tures at dif-
ferent levels

textual
<->

graphical;
constraint
checking
across
refinement
levels

simulation by
generating
event posets;
system con-
struction in C/
C++, Ada,
VHDL, and
Rapide

SADL

explicit config. none parser; relative
correctness of
architectures
w.r.t. a refine-
ment map

none component
and connec-
tor refine-
ment via
pattern maps

none maps
enable cor-
rect refine-
ments across
levels

refinement
across
levels

none

UniCon

explicit con-
fig.; graphical
notation

proactive
GUI editor
invokes lan-
guage checker

parser; com-
piler; schedula-
bility analysis

none none none none textual
<->

graphical

compiler
generates C
code

Wright

explicit config. none parser; model
checker for type
conformance;
deadlock analy-
sis of connectors

none type con-
formance
for behavior-
ally related
protocols

none none none none

Arch.
Domain

ADL
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

2,
d

n
d-
ft-
is
 of
).

sh
u-
ur-

g-
r,
at
e.,
h
g-
a-
he
c-
ost
ld

s a
he
ral
of
al
d
ta-

ral
re-
g
d

set

nt
ral
is

ist
ds

ed
d-
li-
d

5. Architectural vs. Application Domains

Over the past decade there has been interest in relating
architectures, which are in the solution domain, to the
problem (or application) domain, leading to the notion
of domain-specific software architectures
(DSSAs)[Tra95]. A DSSA provides a single (generic)
reference architecture, which reflects the characteristics
of a particular problem domain, and which is instanti-
ated for each specific application in that domain.Archi-
tectural styles, discussed in Section 2, provide another
way of relating the problem and solution spaces. Styles
are largely orthogonal to DSSAs: a single style may be
applicable to multiple application domains; on the other
hand, a single DSSA may use multiple styles.

Any attempt to further explore and perhaps generalize
the relationship between architectural and application
domains would be greatly aided by a classification of
application domains. We are unaware of any such classi-
fication, although Jackson identified a number of
domain characteristics that could serve as a starting
point for one [Jac95]:
• static vs. dynamic domains, with the latter being

application domains having an element of time,
events, and/or state;

• one-dimensional vs.multi-dimensional domains;
• tangible vs. intangible domains, with the latter typi-

cally involving machine representations of abstrac-
tions (such as user interfaces);

• inert vs.reactive vs.active dynamic domains; and
• autonomous vs. programmable vs. biddable active

dynamic domains.

Given these application domain characteristics, one can
easily identify a number of useful relationships with
architectural domains. For instance, support for evolu-
tion, executability and dynamic analysis are more
important for dynamic domains than for static domains.
As another example, reactive domains are naturally sup-
ported by a style of representation (e.g., Statecharts
[Har87]) that is different from that in active domains
(e.g., CHAM [IW95]). As we deepen our understanding
of architectural domains, we will be able to solidify our
understanding of their relationship with application
domains.

6. Conclusions

Software architecture research has been moving forward
rapidly. A number of ADLs and their supporting toolsets
have been developed; many existing styles have been
adopted and new ones invented. Theoretical underpin-
nings for the study of software architectures have also

begun to emerge in the form of definitions [PW9
GS93] and formal classifications of styles [SC96] an
ADLs [Med97, MT97].

This body of work reflects a wide spectrum of views o
what architecture is, what aspects of it should be mo
eled and how, and what its relationship is to other so
ware development concepts and artifacts. Th
divergence of views has also resulted in a divergence
ADLs’ conceptual frameworks (as defined in Section 2
Such fragmentation has made it difficult to establi
whether there exists in ADLs a notion similar to comp
tational equivalence in programming languages. F
thermore, sharing support tools has been difficult.

ACME has attempted to provide a basis for interchan
ing architectural descriptions across ADLs. Howeve
ACME has thus far been much more successful 
achieving architectural interchange at the syntactic (i.
structural) level, than at the semantic level. Althoug
some of the ACME team’s recent work looks encoura
ing, this still remains an open problem. One of the re
sons ACME has encountered difficulties is precisely t
fact that there is only limited agreement in the archite
ture community on some fundamental issues, the m
critical of which is what problems architectures shou
attempt to solve.

This paper presents an important first step toward
solution to this problem. We have recognized that t
field of software architecture is concerned with seve
domains and that every ADL reflects the properties 
one or more domains from this set. Architectur
domains thus provide a unifying view to what ha
seemed like a disparate collection of approaches, no
tions, techniques, and tools. The task of architectu
interchange can be greatly aided by studying the inter
lationships among architectural domains. Existin
ADLs can be better understood in this new light an
new ADLs more easily developed to solve a specific 
of problems.

Much further work is still needed, however. Our curre
understanding of the relationship between architectu
domains and formal semantic theories (Section 2) 
limited. Also, we need to examine whether there ex
techniques that can more effectively support the nee
of particular architectural domains than those provid
by existing ADLs. Finally, a more thorough understan
ing of the relationship between architectural and app
cation domains is crucial if architecture-base
development is to fulfill its potential.
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 209



210

.

er

r

r

re

.
e

d

y,
n

3,

e

I

r

e

s

,
d
.

7. Acknowledgements

We would like to thank Richard Taylor, Peyman Oreizy,
Jason Robbins, David Redmiles, and David Hilbert for
their participation in numerous discussions of issues
concerning ADLs. We also thank the DSL reviewers for
their helpful reviews.

Effort partially sponsored by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air
Force Materiel Command, USAF, under agreement
numbers F30602-94-C-0218 and F30602-97-2-0021.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.

Approved for Public Release — Distribution Unlimited.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory or the U.S.
Government.

This material is also partially based on work supported
by the National Science Foundation under Grant No.
CCR-9701973.

8. References

[AG94a] R. Allen and D. Garlan. Formal Connectors.
Technical Report, CMU-CS-94-115, Carnegie
Mellon University, March 1994.

[AG94b] R. Allen and D. Garlan. Formalizing
Architectural Connection. InProceedings of the
Sixteenth International Conference on Software
Engineering, pages 71-80, Sorrento, Italy, May
1994.

[All96] R. Allen. HLA: A Standards Effort as
Architectural Style. In A. L. Wolf, ed.,Proceedings
of the Second International Software Architecture
Workshop (ISAW-2), pages 130-133, San Francisco,
CA, October 1996.

[BR95] G. Booch and J. Rumbaugh.Unified Method for
Object-Oriented Development. Rational Software
Corporation, 1995.

[DK76] F. DeRemer and H. H. Kron. Programming-in-
the-large versus Programming-in-the-small.IEEE
Transactions on Software Engineering, pages 80-86,
June 1976.

[For92] Failures Divergence Refinement: User Manual
and Tutorial. Formal Systems (Europe) Ltd.,
Oxford, England, October 1992.

[GAO94] D. Garlan, R. Allen, and J. Ockerbloom
Exploiting Style in Architectural Design
Environments. InProceedings of SIGSOFT’94:
Foundations of Software Engineering, pages 175–
188, New Orleans, Louisiana, USA, Decemb
1994.

[Gar95] D. Garlan, editor.Proceedings of the First
International Workshop on Architectures fo
Software Systems, Seattle, WA, April 1995.

[Gar96] D. Garlan. Style-Based Refinement fo
Software Architecture. In A. L. Wolf, ed.,
Proceedings of the Second International Softwa
Architecture Workshop (ISAW-2), pages 72-75, San
Francisco, CA, October 1996.

[GMW95] D. Garlan, R. Monroe, and D. Wile. ACME:
An Architectural Interconnection Language
Technical Report, CMU-CS-95-219, Carnegi
Mellon University, November 1995.

[GMW97] D. Garlan, R. Monroe, and D. Wile. ACME:
An Architecture Interchange Language. Submitte
for publication, January 1997.

[GPT95] D. Garlan, F. N. Paulisch, and W. F. Tich
editors. Summary of the Dagstuhl Workshop o
Software Architecture, February 1995. Reprinted in
ACM Software Engineering Notes, pages 63-8
July 1995.

[GS93] D. Garlan and M. Shaw.An Introduction to
Software Architecture: Advances in Softwar
Engineering and Knowledge Engineering, volume I.
World Scientific Publishing, 1993.

[GW88] J. A. Goguen and T. Winkler. Introducing
OBJ3. Technical Report SRI-CSL-88-99. SR
International, 1988

[Har87] D. Harel. Statecharts: A Visual Formalism fo
Complex Systems. Science of Computer
Programming, 1987.

[Hoa85] C. A. R. Hoare.Communicating Sequential
Processes. Prentice Hall, 1985.

[IW95] P. Inverardi and A. L. Wolf. Formal
Specification and Analysis of Software
Architectures Using the Chemical Abstract Machin
Model. IEEE Transactions on Software
Engineering, pages 373-386, April 1995.

[Jac95] M. Jackson.Software Requirements and
Specifications: A Lexicon of Practice, Principle
and Prejudices. Addison-Wesley, 1995.

[LKA+95] D. C. Luckham, J. J. Kenney, L. M. Augustin
J. Vera, D. Bryan, and W. Mann. Specification an
Analysis of System Architecture Using Rapide
IEEE Transactions on Software Engineering, pages
336-355, April 1995.

[Luc87] D. Luckham.ANNA, a language for annotating
Ada programs: reference manual, volume 260 of
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association



USE

f

n
e

g
T
re
-

e

m

l

ial

e
l

.
h
,
n,

e

e

.
g

a
I-

re
an

y:
.

Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1987.

[LV95] D. C. Luckham and J. Vera. An Event-Based
Architecture Definition Language. IEEE
Transactions on Software Engineering, pages 717-
734, September 1995.

[LVB+93] D. C. Luckham, J. Vera, D. Bryan, L.
Augustin, and F. Belz. Partial Orderings of Event
Sets and Their Application to Prototyping
Concurrent, Timed Systems.Journal of Systems and
Software, pages 253-265, June 1993.

[LVM95] D. C. Luckham, J. Vera, and S. Meldal. Three
Concepts of System Architecture. Unpublished
Manuscript, July 1995.

[Med96] N. Medvidovic. ADLs and Dynamic
Architecture Changes. In A. L. Wolf, ed.,
Proceedings of the Second International Software
Architecture Workshop (ISAW-2), pages 24-27, San
Francisco, CA, October 1996.

[Med97] N. Medvidovic. A Classification and
Comparison Framework for Software Architecture
Description Languages. Technical Report, UCI-
ICS-97-02, University of California, Irvine, January
1997.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J.
Kramer. Specifying Distributed Software
Architectures. InProceedings of the Fifth European
Software Engineering Conference (ESEC’95),
Barcelona, September 1995.

[MK96] J. Magee and J. Kramer. Dynamic Structure in
Software Architectures. InProceedings of ACM
SIGSOFT’96: Fourth Symposium on the
Foundations of Software Engineering (FSE4), pages
3-14, San Francisco, CA, October 1996.

[MOT97] N. Medvidovic, P. Oreizy, and R. N. Taylor.
Reuse of Off-the-Shelf Components in C2-Style
Architectures. In Proceedings of the 1997
Symposium on Software Reusability (SSR’97), pages
190-198, Boston, MA, May 17-19, 1997. Also in
Proceedings of the 1997 International Conference
on Software Engineering (ICSE’97), pages 692-700,
Boston, MA, May 17-23, 1997.

[MORT96] N. Medvidovic, P. Oreizy, J. E. Robbins, and
R. N. Taylor. Using object-oriented typing to
support architectural design in the C2 style. In
Proceedings of ACM SIGSOFT’96: Fourth
Symposium on the Foundations of Software
Engineering (FSE4), pages 24-32, San Francisco,
CA, October 1996.

[MQR95] M. Moriconi, X. Qian, and R. A.
Riemenschneider. Correct Architecture Refinement.
IEEE Transactions on Software Engineering, pages
356-372, April 1995.

[MT96] N. Medvidovic and R. N. Taylor. Reusing Off-
the-Shelf Components to Develop a Family o
Applications in the C2 Architectural Style. In
Proceedings of the International Workshop o
Development and Evolution of Softwar
Architectures for Product Families, Las Navas del
Marqués, Ávila, Spain, November 1996.

[MT97] N. Medvidovic and R. N. Taylor. A Framework
for Classifying and Comparing Architecture
Description Languages. To appear inProceedings of
the Sixth European Software Engineerin
Conference together with Fifth ACM SIGSOF
Symposium on the Foundations of Softwa
Engineering, Zurich, Switzerland, September 22
25, 1997.

[MTW96] N. Medvidovic, R. N. Taylor, and E. J.
Whitehead, Jr. Formal Modeling of Softwar
Architectures at Multiple Levels of Abstraction. In
Proceedings of the California Software Symposiu
1996, pages 28-40, Los Angeles, CA, April 1996.

[NKM96] K. Ng, J. Kramer, and J. Magee. A CASE Too
for Software Architecture Design.Journal of
Automated Software Engineering (JASE), Spec
Issue on CASE-95, 1996.

[Ore96] Peyman Oreizy. Issues in the Runtim
Modification of Software Architectures. Technica
Report, UCI-ICS-96-35, University of California,
Irvine, August 1996.

[Pet62] C. A. Petri. Kommunikationen Mit Automaten
PhD Thesis, University of Bonn, 1962. Englis
translation: Technical Report RADC-TR-65-377
Vol.1, Suppl 1, Applied Data Research, Princeto
N.J.

[PN86] R. Prieto-Diaz and J. M. Neighbors. Modul
Interconnection Languages.Journal of Systems and
Software, pages 307-334, October 1989.

[PW92] D. E. Perry and A. L. Wolf. Foundations for th
Study of Software Architectures.ACM SIGSOFT
Software Engineering Notes, pages 40-52, October
1992.

[RMRR97] J. E. Robbins, N. Medvidovic, D. F
Redmiles, and D. S. Rosenblum. Integratin
Architecture Description Languages with 
Standard Design Method. Technical Report, UC
ICS-97-35, University of California, Irvine, August
1997.

[RR96] J. E. Robbins and D. Redmiles. Softwa
architecture design from the perspective of hum
cognitive needs. InProceedings of the California
Software Symposium (CSS’96), Los Angeles, CA,
USA, April 1996.

[SC96] M. Shaw and P. Clements. Toward Boxolog
Preliminary Classification of Architectural Styles
In A. L. Wolf, ed., Proceedings of the Second
NIX Association Conference on Domain-Specific Languages - October 15-17, 1997 211



212
International Software Architecture Workshop
(ISAW-2), pages 50-54, San Francisco, CA, October
1996.

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross,
D. M. Young, and G. Zelesnik. Abstractions for
Software Architecture and Tools to Support Them.
IEEE Transactions on Software Engineering, pages
314-335, April 1995.

[SG94] M. Shaw and D. Garlan. Characteristics of
Higher-Level Languages for Software Architecture.
Technical Report, CMU-CS-94-210, Carnegie
Mellon University, December 1994.

[Spi89] J. M. Spivey.The Z notation: a reference
manual. Prentice Hall, New York, 1989.

[TLPD95] A. Terry, R. London, G. Papanagopoulos, and
M. Devito. The ARDEC/Teknowledge Architecture
Description Language (ArTek), Version 4.0.
Technical Report, Teknowledge Federal Systems,
Inc. and U.S. Army Armament Research,
Development, and Engineering Center, July 1995.

[Tra95] W. Tracz. DSSA (Domain-Specific Software
Architecture) Pedagogical Example. ACM
SIGSOFT Software Engineering Notes, July 1995.

[Ves93] S. Vestal. A Cursory Overview and Comparison
of Four Architecture Description Languages.
Technical Report, Honeywell Technology Center,
February 1993.

[Ves96] S. Vestal. MetaH Programmer’s Manual,
Version 1.09. Technical Report, Honeywell
Technology Center, April 1996.

[Wolf96] A. L. Wolf, editor.Proceedings of the Second
International Software Architecture Workshop
(ISAW-2), San Francisco, CA, October 1996.
Conference on Domain-Specific Languages - October 15-17, 1997 USENIX Association


	Domains of Concern in Software Architectures and A...
	Nenad Medvidovic and David S. Rosenblum
	Department of Information and Computer Science Uni...
	Abstract
	1. Introduction
	2. Overview of ADLs
	2.1. Definitions of Architecture and Style
	2.2. Definition of ADLs
	2.3. Categorizing ADLs
	2.4. Applications of ADLs
	2.5. Architecture vs. Design

	3. Architectural Domains
	Figure 1: Architectural domains.
	3.1. Representation
	3.2. Design Process Support
	3.3. Analysis
	3.3.1. Static Analysis
	3.3.2. Dynamic Analysis

	3.4. Evolution
	3.4.1. Specification-Time Evolution
	3.4.2. Execution-Time Evolution

	3.5. Refinement
	3.6. Traceability
	Figure 2: Two-dimensional space of architectural v...

	3.7. Simulation/Executability

	4. ADL Support for Architectural Domains
	4.1. Representation
	4.2. Design Process Support
	4.3. Analysis
	4.3.1. Static Analysis
	4.3.2. Dynamic Analysis

	4.4. Evolution
	4.4.1. Specification-Time Evolution
	4.4.2. Execution-Time Evolution

	4.5. Refinement
	4.6. Traceability
	4.7. Simulation/Executability
	4.8. Summary
	Table 1:� ADL Support for Architectural Domains


	5. Architectural vs. Application Domains
	6. Conclusions
	7. Acknowledgements
	8. References



