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Abstract

Software interoperability (i.e., middleware) platforms aim at supporting component-
based development with lower costs, higher developer productivity, and increased
off-the-shelf reuse. However, the proprietary nature of existing middleware technolo-
gies has resulted in a highly-fragmented software component marketplace, ultimately
hurting the ability of (1) developers to arrive at the most effective solutions to their
problems and (2) educators to produce a work force well versed in the principles of
component-based development (as opposed to the details of individual technologies
such as CORBA or COM). This paper proposes a three-faceted approach whose goal
is to establish the fundamental principles of software multioperability, the ability of
software components to be multiply-interoperable with other kinds of components
automatically, seamlessly, and regardless of their underlying architecture or middk-
ware basis. The paper presents the results achieved in this area to date and outlines an
agenda for future work.

1. Introduction

The software systems of today are rapidly growing in size, complexity, amount of distribu-
tion, heterogeneity of constituent building blocks (components), and numbers of users. With
rapid increases in the speed and capacity of hardware, its dropping cost, and the emergence of
the Internet as a critical national (and worldwide) resource, the demand for software applic a-
tions is outpacing our ability to produce them, both in terms of their sheer numbers and the
sophistication demanded of them. Most notable about current software development practice
is the continued preponderance of ad-hoc approaches driven by industry needs, commercial
interests, and market pressures, rather than scientific principles.

A recent development that has shown promise to address large-scale software engineering
challenges (component-based development, software reuse, software interoperability [P99])
has been the emergence of generic software interoperability services, also referred to as mid-
dleware. The best-known examples of these include CORBA [Sie96], COM [Box98] and
Enterprise JavaBeans [FFC+99]. The ultimate goal of these technologies is to achieve soft-
ware development and component interoperability with lower development costs, higher -
veloper productivity, and increased off-the-shelf (OTS) reuse. Initial success stories have
been used by middleware vendors to support their growing claims of an imminent “plug-and-
play” software component marketplace. The expectation has been that their technologies will
minimize interoperability problems and that those problems that do arise can be resolved by
standard middleware.

Unfortunately, few of these claims have proven true. It is not surprising that competing
middleware vendors vying for market dominance have ended up constructing incompatible,
proprietary component and middleware standards. The current situation can be characterized
as a “component tower of Babel:” components “speaking” the same language are interoper-
able, while those “speaking” different languages are not. Thus, for example, a COM compo-
nent can readily communicate with another COM component, but not with a CORBA compo-
nent; furthermore, components implemented using different flavors of CORBA are often un-
able to interact. This fragmentation has been coupled with a “one size fits all” mentality,
whereby a particular middleware platform is touted as being the solution to the problem of
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component-based development. In reality, each technology has its limitations. The fragmen-
tation has also focused developer training on the idiosyncrasies and implementation-level de-
tails of a particular technology, rather than the general principles of component-based devel-
opment.

This assessment paints a bleak picture of the future and indicates that some of the existing
software engineering problems are likely to worsen without fundamental technological -
provements in component-based development. To address this state of affairs, we propose an
approach whose goal is to establish scientific principles and create technological solutions to
support software multioperability, the ability of software components to be multiply-
interoperable with other kinds of components automatically, seamlessly, and regardless of
their underlying architecture or middleware basis. A simple hardware analogy to multioper-
able software components is the modem. Every modem is built to adaptively interoperate with
another modem by dynamically selecting a “middleware” or protocol that both nbdems can
understand. Of course, this middleware between modems is much simpler than what is needed
for software components since the choices of protocols are small in number and widely
adopted. Additionally, the services offered by the modem protocols are fairly simple and
show little variation, allowing the placement of all the adaptive capability in the modems
themselves. In contrast, the richness and variety of the services required of middleware for
software components are vast and require more than an ability to adaptively tailor the compo-
nents alone. Indeed, for certain kinds of legacy components, adaptation may not even be a
feasible engineering option.

Thus, a major problem in providing support for software multioperability is that of
bridging inter-middleware gaps. In particular, mechanisms are needed for analyzing the in-
teractions between components and automatically constructing the appropriate integration
solutions. This is the focus of our work —rather than proffering yet another standard to which
all components are (unrealistically) expected to adhere in order to achieve interoperability, we
suggest the technological foundations needed to automatically construct the necessary inte-
gration solutions between heterogeneous middleware.

Our approach comprises three distinct, but interwoven facets:

e Identification and formalization of the architectural styles a middleware technology
induces. Though no middle ware platform explicitly recognizes that it imposes a par-
ticular style of application composition upon the developers (a direct by-product of
the vendors’ “one size fits all” mentality), our preliminary studies have indeed shown
this to be the case [DR99]. In order to understand the true extent of applicability of a
particular middle ware platform and the idiosyncrasies of its integration with other
platforms, such an analysis is a necessity.

e (lassification and formalization of the underlying principles, fundamental building
blocks, and compositional properties of middleware. Although existing middleware
technologies present a wide diversity of interoperability mechanisms, we have shown
that they share certain general characteristics [KG98]. A formal treatment of middlk-
ware is needed to better understand their commonalties and potentially automate their
interaction.

e Development of a principled method and viable technology to bridge the inter-
middleware gaps. The first two facets deal with improving the existing understanding
of middleware, as well as formalizing and predicting its nature and impact on appli-
cations. This facet strives to provide the inter-middleware “links” in a manner that is
consistent, repeatable, automatable, and practical.

Our approach is based on applying and extending the principles of software architecture
[PW92, SG96]. We believe that architectures provide the necessary leverage over middlke-
ware-based system composition. In many ways, software development based purely on mid-
dleware can be regarded as the “assembly programming” of software composition [DMT99]:
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a middleware technology provides no support for determining the application’s structure and
behavior, selecting the needed components, or interconnecting them in the appropriate ways.
Software architectures supply the needed higher-level abstractions. The remainder of the pa-
per provides additional details of the three thrusts of our approach, presents our initial results,
and discusses future work.

2. Middleware-Induced Architectural Styles

In previous research we demonstrated the pervasive influence a middleware has on the archi-
tectures of the applications that use it [DR99]. Despite the fact that architectures and middk-
ware are typically viewed as addressing different phases of software development, the usage
of middleware can influence the architecture of a system being developed. Conversely, spe-
cific architectural choices constrain the selection of the underlying middleware used in the
system’s implementation phase.

For a system to be implemented in a straightforward manner on top of a middleware, the
corresponding architecture must be compliant with the architectural constraints imposed by
the middleware. Sullivan et al. corroborate this assertion by demonstrating how a particular
style that in principle seems to be easily implementable using the COM middleware is actu-
ally incompatible with it [SSM97]. We have also stated this view in discussing the importance
of complementing component interoperability models with explicit architectural models
[OMTRO8]. Our initial study of middleware-induced styles [DR99] had the relatively narrow
goal of evaluating the ability of architecture description languages (ADLs) [MTO00] to model
the architectural styles induced by several well-studied middleware infrastructures. The study
revealed several deficiencies in the modeling power of existing ADLs.

Thus, it is necessary to broaden this work to fully ascertain the architectural impacts of a
middleware on the applications that use it and vice versa, and to account for these impacts in
the construction of multioperability solutions. We argue that achieving multioperability
within an application must be more than a localized process of piling adapter upon adapter
until all component and middleware pieces are “plug compatible.” Instead, multioperability
must be achieved in a manner that respects the architectural properties and constraints that the
designer has established for the application. For instance, if the application architecture is to
be centered around a style of event-based interaction, the multioperability solutions that are
incorporated must respect the essential properties of such a style—its asynchrony, the ano-
nymity of event publishers and subscribers, the lightweight form of event data, and so forth.
One challenge is to create a principled way of first capturing the constraints of middeware-
induced architectural styles, and then feeding these constraints into the production of mul-
tioperability solutions.

3. A Theory of Middleware Interoperability

In addition to studying and formalizing the impact of middleware on application architectures,
we must also study and formalize the fundamental architectural abstractions that middleware
itself comprises. This second thrust thus forms the theoretical foundation of multioperability.
It is based on our preliminary studies of architectural characteristics that contribute to soft-
ware interoperability problems [SC97, GAO95, YBB99] and the fundamental integration
building blocks that underlie middleware. To date, we have classified specific architectural
characteristics that inhibit component interoperability during system integration and play a
part in middleware selection and usage decisions [KG99]. Our research suggests that middlke-
ware frameworks can be viewed as compositions of integration elements that provide generic
ways in which interoperability conflicts caused by component characteristics are resolved
[KG99, GPK99]. Subsequently, formalizing the architectures of these integration elements
and developing a theory for their composition will permit guarantees of system-wide mul-
tioperability properties, such as required topological profile, absence of deadlock, and infor-
mation management.
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Building on these results will enable the understanding of those properties that inhibit
system interaction across middleware platforms. One challenge is to model these properties in
a manner that is consistent with the architectural properties imposed by application require-
ments and induced by the middleware (recall Section 2). Our approach will seeks to identify,
capture, and separate the “core” software integration functionality from vendor-specific ex-
tensions. The extensions inhibit interoperability by reinforcing customer reliance on a single
product. We hypothesize that there are patterns of extensions that can be elucidated through
empirical study. The patterns include the manner in which these extensions are employed and
whether they are linked to a particular interoperability problem or application domain. Conse-
quently, determining where and why conflicts arise among middleware is an essential part of
this research. Commonalties and distinctions in the various middleware frameworks’ under-
lying integration elements can already be observed [KFGP99]. Further comparisons are
needed of the underlying (implicit) usage assumptions made about a middleware framework
to assess whether those assumptions are the same across all products that employ that frame-
work (e.g., different impkementations of CORBA).

Concluding this research thrust is the formation of a taxonomy of middleware that depicts
its similarities, differences, extensions, and refinements. In its nature, this task is quite similar
to (though a level of abstraction above) identifying the basic components and services pro-
vided by operating systems. By using a taxonomy, fundamental features of middleware func-
tionality, proprietary extensions, and application assumptions can be modeled uniformly -
ing combinations of semi-formal languages (e.g., the UML [RC99]) and formal languages
(e.g. Object-Z [DRS94]) for architectural descriptions [AAG95, RMRR98, GSP99, GPK99,
MR99], inheritance, refinement, temporal reasoning, and proofs. Based on these models, a
theory will emerge to define the middle ware conflicts and the essential parts needed to con-
nect component-based systems, providing a formal underpinning for our third and final thrust.

4. Facilitating Software Multioperability with Software Connectors

The predominant focus of component-based development has been on designing, selecting,
adapting, imple menting, and integrating software components. Component development is
controlled by industry demands for rich interoperability platforms and services and is unlikely
to be driven by a single, universal standard. We thus believe that it is best to achieve mul-
tioperability among the (innumerable) heterogeneous components by integrating the (compa-
rably very few) interaction mechanisms they employ. Existing middleware technologies have
addressed component interaction via a predefined set of capabilities (e.g., RPC) that is typi-
cally not intended to be extensible. These capabilities are usually packaged into a facility,
such as an object request broker (ORB), a message broker (MOM), or a software bus [Rei90,
ISG97, IMA9S]. Our approach to achieving software multioperability employs software con-
nectors [SG96, MTO00] and directly leverages the properties of existing middleware.

Connectors are architecture-level abstractions and facilities that isolate all interaction de-
tails in a system and separate them from the functionality. In large, and especially distributed
systems, connectors become key determinants of system properties, such as performance, -
source utilization, global rates of flow, and security [MMP99]. Encapsulating interaction de-
tails within connectors has shown a lot of promise in helping address traditional software de-
velopment challenges: scalability, distribution, concurrency, runtime adaptability, code no-
bility, and so forth [SDK+95, SG96, AG97, OMT98, KM98]. We have extensively employed
connectors to support software modeling, analysis, generation, evolution, reuse, and hetero-
geneity [TMA+96, MOT97, OMT98, MRT99]. Our use of connectors in the context of mul-
tioperability is based on the recognition that, though different, middleware and connectors
share several key characteristics. Indeed, a middleware can be viewed as an implementation
of a sophisticated connector supporting a large set of interaction protocols and services
[DMT99]. This perspective allows a software architect to design an application in the most
appropriate way, map the architecture to a particular set of middleware-induced styles (recall
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Figure 1. Realizing a software architecture (left) using a middleware technology (middle) and explicit, mid-
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dleware-enabled software connectors (right).

Section 2), and use the appropriate underlying integration elements of middleware (recall
Section 3) to implement its connectors.

An example that illustrates the role of connectors in achieving multioperability is shown
in Figure 1. On the left, a conceptual architecture of a system modeled in a particular style, C2
[TMA+96], is shown. Assume we want to implement the architecture with components bound
to a given middle ware and to distribute the implementation over three locations. The middle
diagram in Figure 1 depicts the resulting solution: the single ORB ensures the cross-machine
interaction of its attached components, but not the topological and interaction constraints im-
posed by the style. Also note that, if the four components are not all built on top of the same
middleware infrastructure, the engineers will depend on existing point solutions or will have
to develop the needed inter-middleware bridge themselves.

Our approach, depicted on the right side of Figure 1, enables a more principled way of
bridging middleware. We keep connectors an explicit part of a system’s implementation n-
frastructure [MOT97]." Each component thus only exchanges information with a connector to
which it is attached; in turn, the connector (re)packages that information and delivers it to its
recipients. This approach minimizes the effects on a given component of varying application
deployment profiles and using components that adhere to heterogeneous middleware stan-
dards. Note that, unlike the “middleware-only” solution, the right-hand diagram of Figure 1
also preserves the topological and stylistic constraints of the application.

To date, we have successfully completed a set of feasibility studies, using five different
middle ware technologies to implement connectors that enable the interaction of C2 compo-
nents built in multiple languages and for multiple platforms [DMT99]. We have also shown
that multiple interacting middleware technologies can be used to implement a single C2 con-
nector. Recently, we have successfully performed a preliminary experiment in which a con-
nector enabled the interaction of C2 and CORBA components [Med00]. The construction of
each such middleware-enabled connector has required careful study of the characteristics of
the interoperating middleware technologies. However, each connector is constructed only
once, after which it is usable indefinitely.

A number of critical issues remain open. To generalize our approach, we must expand our
focus to include other (arbitrary) types of software connectors and architectural styles. Thus,
we must fully understand the underpinnings of middleware platforms, the assumptions they
make, the types of interaction facilities they provide, and the stylistic constraints they impose
upon an application. The work outlined in the preceding two sections is a necessary comple-
ment to this part of our task. Another key challenge is avoiding pairwise middleware integra-
tions, such that N> connectors are required for N middleware technologies. Our proposed the-
ory of middleware interoperability (Section 3) and our on-going work to understand the foun-
dations of software connectors [MMP99] will guide us in choosing the appropriate mecha-
nisms for achieving effective, principled, and repeatable software multioperability solutions.

It has been argued in literature that our architecture implementation infrastructure is similar to existing middle-
ware platforms [DR99, YBB99].
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5. Summary

The work discussed in this paper has the potential to produce an important scientific advance-
a general approach to component-based software development that accommodates wide flexi-
bility in the selection and use of underlying interoperability mechanisms. The benefits will
accrue from the ability to integrate large software systems of the future in a manner that is
less complex and more flexible, makes better use of resources (time, money, personnel), and
is based on sound engineering principles. Another benefit is the ability to train students in
many aspects of software interoperability, component-based software development, and mid-
dleware concepts (rather than products). Along the way, students will be exposed to the fun-
damental principles of software architecture and integration, resulting in a workforce that
better understands this daunting problem and has the skills necessary to overcome it.
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