from the Proceedings of the 8th International Software Process Workshop (ISPW8), Schlof Dagstuhl, Germany,
March 2-5, 1993

Process-Centered Environments (Only) Support Environment-Centered Processes

Alexander L. Wolf David S. Rosenblum
Department of Computer Science Software Engineering Research Department
University of Colorado AT&T Bell Laboratories
Boulder, CO 80309 USA Murray Hill, NJ 07974 USA
(alw@cs.colorado.edu) (dsr@research.att.com)

The software process research community has con- intervals, it is first necessary to capture the relevant
centrated a large measure of its effort on the prob- data about the significant events of the process, in-
lem of how to “computerize” the software process. In cluding the times at which those events occur. To help
particular, the notion of a process-centered environ- define and structure this task, we developed a simple
ment has emerged, dominating software environment event-based model and taxonomy of process activities.
research for the past several years. Among the many An event in this model is an instantaneous happen-
benefits touted for process-centered environments are stance within a process activity. Certain events, such
the ability to automate various aspects of a process as the beginning and ending of an activity, are useful
and the ability to monitor the progress of a process for defining characteristic event intervals. The event
in order to guide, enforce, or measure that process. taxonomy comprises six categories of events:

This approach has shown great promise and indeed

h h | Unfortunatel 1. communication; 4. work;
as even shown some early successes. Unfortunately, X X
this emphasis on computerization in general, and on 2. autom.atlon (i.e., tool); 5. wor.k.day; and
. : - ’ 3. analysis; 6. decision.
process-centered environments in particular, tends to
focus attention on exactly those aspects of process that The taxonomy is instantiated for a particular process
can be computerized, while giving short shrift to those by identifying appropriate process-specific event kinds
aspects not amenable to computerization. in each of the six categories. An individual enactment
This issue became clear during the past year as of the process is then characterized by the set of all
we studied a large, mature software process in use at events of the defined event kinds that occurred in the
AT&T. We performed the study as part of an effort to enactment.
develop process data capture and analysis techniques The particular process we studied at AT&T is
that could support the critical task of process improve- a software build process that is regularly repeated
ment [4]. Our approach was to focus on the dynamic with little change in its basic, day-to-day activities.
aspects of the process, such as the order of, and time The group responsible for official builds enacts the
taken by, each step in the process, as opposed to, say, several-day process once every few weeks. The soft-
the static roles and responsibilities assigned to project ware, which consists of several million lines of source
personnel or the static relationships among tools and code, is managed with the aid of a database-oriented
product components. We took this approach in part change management system and is built using three
because the process’s dynamic aspects were the least major tools. The build process involves several roles.
well understood. In addition, we hypothesized that The build owner coordinates the process, tracks down
process problems ultimately lead to wasted intervals build problems, and communicates with developers
of time and that those problems can best be revealed dispersed around the world. The build adminisirator,
by retrospective analysis of characteristic time inter- at the direction of the build owner, sets up the actual
vals. For instance, a period of inactivity between the builds for execution according to a written guidebook.
time a meeting is scheduled and the time the meeting The build owner also typically has several build assis-
takes place may reveal poor planning for activities that tants to whom problem-tracking chores can be dele-
require a long preparation time. Bradac, Perry, and gated.
Votta have also begun to explore this hypothesis [1]. One would think that this sort of process would
In order to analyze a process’s characteristic time be perfectly suited to enactment in a process-centered

148
0-8186-4060-X /93 $3.00 © 1993 IEEE

environment; in fact, (imaginary) build processes are
often used to exemplify such environments. The rea-
son one might have this impression is that ideal-
ized software building is an inherently environment-
centered process; humans interact with tools to au-
tomatically transform environment-managed objects
from one form to another.

It turns out, however, that the very real build pro-
cess that we studied exhibits characteristics that are
as much centered on non-environment factors, such
as project organization, project finances, and human
relations, as they are centered on the computing en-
vironment. In particular, after examining the criti-
cal events of the process, we concluded that activities
occurring completely outside the purview of the com-
puter had at least as much influence on the process
as those occurring on the computer. We found, for
instance, that inter-human communication is a signif-
icant pacing factor in process performance. In other
words, the process is at least as (human) communica-
tion bound as it is compute bound. But the impor-
tant point here is that communication, for the most
part, is not conducted via the computer and, there-
fore, is not immediately “visible” to the environment.
Other examples of critical process events not centered
on the computer are the decision events that mark ma-
jor turning points in the process; while certain factors
contributing to a decision are related to computer-
based activities, other factors, such as the approach-
ing end of a work day in a foreign country seven time
zones away where developers do not work overtime,
are not as obviously accessible. We suspect that the
situation we found in this build process characterizes
many other kinds of software processes as well, such
as processes for requirements and design specification.

Some process researchers have, of course, recog-
nized this problem (see, for example, [3]). The cur-
rent approach typically employed to address it is one
that involves incorporating “pseudo-tools” or other
such surrogates for humans into a process. That ap-
proach is probably adequate for most kinds of deduc-
tive analyses performed on abstract models of software
processes, but can be awkward for something such as
“real-time” process measurement and feedback as en-
visioned for many process-centered environments (e.g.,
in Arcadia [2]). In particular, it seems to suggest that
the human must perform some sort of immediate data
collection and entry in the guise of an “automated”
process agent. More generally, the surrogate approach
takes too narrow a view of the factors contributing to
the dynamics of a software process.

There are some very hard problems to be solved

149

here. In our study of the software build process,
for example, we were compelled to develop a costly,
labor-intensive technique for process capture that re-
lies upon independent, direct observation to record
events not occurring on the computer. This then
led us to the problem of how to relate those manu-
ally recorded data with other, automatically recorded
data. Beyond the problem of capturing data about a
process, there is a critical modeling problem arising
from a need to coordinate computer-based and non-
computer-based process activities. In particular, how
can a model of the “outside world” embedded within
an (executable) environment-centered process be coor-
dinated with what is actually going on in that outside
world, and how does that process become aware of,
and adjusted to, changes in the outside world?

In summary, the issue we see is that for essen-
tially pragmatic reasons, recent work on process-
centered environments has focused attention on the
automation aspects of software processes, with lit-
tle regard for non-computer-based activities. More-
over, the examples used to validate research ideas,
namely environment-centered processes, do not ade-
quately take into account the effect that those activ-
ities have on the software process as a whole. We
witnessed first hand the importance of non-computer-
based activities and hope to see the current scope of
research on software process broadened to encompass
these critical elements.

References

[1] M.G. Bradac, D.E. Perry, and L.G. Votta. Prototyp-
ing a Process Monitoring Experiment. In Proceedings
of the 15th International Conference on Software En-
gineering. IEEE Computer Society, May 1993. To ap-
pear.

R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Berney.
Metric-Driven Analysis and Feedback Systems for En-
abling Empirically Guided Software Development. In
Proceedings of the 13th International Conference on
Software Engineering, pages 288-298. IEEE Computer
Society, May 1991.

S.M. Sutton, Jr. Accommodating Manual Activities in
Automated Process Programs. In Proceedings of the
Seventh International Software Process Workshop, Oc-
tober 1991.

A.L. Wolf and D.S. Rosenblum. A Study in Software
Process Data Capture and Analysis. In Proceedings
of the Second International Conference on the Soft-
ware Process, pages 115-124. IEEE Computer Society,
February 1993.

