from the Proceedings of the ICSE '98 International Workshop on the Principles of Software Evolution (IWPSE '98),
Kyoto, Japan, April 20-21, 1999

An Architecture-Based Approach to Software Evolution

Nenad Medvidovic David S. Rosenblum Richard N. Taylor
Computer Science Dept. Info. and Computer Science Dept. Info. and Computer Science Dept.
University of Southern California University of California, Irvine University of California, Irvine
Los Angeles, CA 90089-078, USA Irvine, CA 92697-3425, USA Irvine, CA 92697-3425, USA
+1-213-740-5579 +1-949-824-6534 +1-949-824-6429
neno@usc.edu dsr@ics.uci.edu taylor@ics.uci.edu
1. INTRODUCTION ¢ no specific techniques have been developed to support
In order for large, complex, multi-lingual, multi-platform, flexible architecture-based design and evolution.

long-running systems to be economically viable, they neetthree distinct building blocks of a software architecture are
to be evolvable. Support for software evolution includescomponents, connectors, and architectural configurations
techniques and tools that aid interchange, reconfiguratiorftopologies) [13]. Each of them may evolve. Our work to
extension, and scaling of software modules and/or systemgate has focused on the evolution of individual components
Evolution in the current economic context also requiresind architectural configurations. In the future, we intend to
support for reuse of third-party components. The costs adfvestigate the proper techniques for evolving connectors.
system maintenance (i.e., evolution) are as high as 60% ebr evolving individual components, our approach expands
the overall development costs [6]. Practitioners havehe traditional techniques for supporting evolution (e.g.,
traditionally faced many problems with curbing these costsmodularity, typing). We introduce explicit, flexible
The problems are often the result of poor understanding oféonnectors to aid the evolution of architectural
system’s overall architecture, unintended and complexonfigurations.

dependencies among its components, decisions that ar% . . .

made too early in the development process, and so tortH he following section discusses our approach to component

Traditional development approaches (e.g., structura?VQIUtion and introd_uces an arch_itectura_\l type theory on
programming or object-oriented analysis and design) have ith'Ch the approach is baseﬁ. Sect|(|)n_3 d|scfusseshyhe rolel of
particular failed to properly decouple computation fromSOftware connectors in the evolution of architectura

communication within a system, thus supporting On|yconf|gurat|ons. Conclusions and a discussion of ongoing

limited reconfigurability and reuse. Evolution techniques'Ork round out the paper.

have also typically been programming language (PL) COMPONENT EVOLUTION

specific (€.g., inheritance) and applicable on the small scalg. o, chers in software architectures, and particularly in

(e.g., separation of concerns or isolation of change). This I3 chitecture description languages (ADLs), can learn from

only pa_rtially adequatg _in the case of development Wit}%xtensive experience in the area of PLs. For example, an
preexisting, large, multi-ingual, multi-platform Componentsexisting software module can evolve in a controlled manner

that originate from multiple sources. via subtyping. Our approach to component evolution is
In this paper, we posit that an explicit architectural focus caindeed based on type theory. We treat each component in an
remedy many of these difficulties and enable flexiblearchitecture as a type and support its evolution via subtyping.
construction and evolution of large systems. Softwardlowever, while PLs (and several existing ADLs [4, 5, 7])
architectures present a high level view of a system, enablirgypport a single subtyping method, architectures may require
developers to abstract away the irrelevant details and focumgultiple subtyping methods, many of which are not
on the “big picture.” Another key is their explicit treatmentcommonly supported in PLs. Therefore, an extension to PL
of software connectors, which separate communicatiotype theory is needed.

issues from computation in a system. However, existing&

e o o b oo Ealsberg and Scviarzbach (15] They descre a consensis
' "in the object-oriented (OO) typing community regarding the
* connectors are often not treated explicitly or, when theyjefinition of a range of OO typing mechanismsbitrary
are, they are too rigid and do not accommodate modificasybclassingallows any class to be declared a subtype of
tion of their attached components easily; and another, regardless of whether they share a common set of
methods.Name compatibilitydemands that there exist a
shared set of method names available in both classes.
Interface conformanceconstrains name compatibility by
requiring that the shared methods have conforming
signaturesMonotone subclassingequires that the subclass
relationship be declared and that the subclass must preserve
the interface of the superclasBehavioral conformance
allows any class to be a subtype of another if it preserves the
interface and behavior of all methods available in the

useful overview of PL subtyping mechanisms is given by

U int intand beh
‘ u
>
) - B
‘ .
(@)
Figure 1. A framework for understanding OO subtyping intand imp imp and not_int

mechanisms as regions in a space of type systems.

u u
(> (g
supertype Strictly monotone subclassiagso demands that «()B ﬂ(’ Imp
the subtype preserve the particular implementations used by Q /7
the supertype.
. (©) (d)

We have developed a framework for understanding these _ _
subtyping mechanisms as regions in a space of type Figure 2. Examples of component subtyping mechanisms w
systems, shown in Fig. 1. The entire space of type systemshave encountered in software architecturega) interface con-
is labeledU. The regions labelednt and Beh contain formance; (b)behavioral conf_ormance;(c)strictly_mono_tone
systems that demand that two Conforming types share SUbClassng(d)|mp|ementat|0n conformance with a differ-
interface and behavior, respectively. THmp region ent interface (e.g., software adaptors [18]).
contains systems that demand that a type share particular
implementations of all supertype methods, which also int = <dir, int_nam, param*>
implies that types preserve the behavior of their supertypes. param = <param_nam, param_type>
The Namregion demands only shared method names, anda component's behavior consists of an invariant and a set of
thus includes every system that demands interfacepperations. The invariant is used to specify any protocol

conformance. Each subtyping mechanism described in [15]constraints on the use of the component. Each operation has

and summarized above can be denoted via set operations of set of) preconditions and postconditions and (possibly) a
these regions. For exampleehavioral conformangevhich result.

requires that both interface and behavior of a type be _ .
preserved, corresponds to the intersection of the Int and Beh ~ beh = <inv, oper*>

regions and is expressediasand beh _ oper : <pre, post, result> _ _
Finally, since we separate the interface from the behavior,

We have demonstrated the utility of such a flexible \ye gefine a function, f, that maps every interface element to

subtyping mechanism in our previous work, where we have g gperation of the behavior. This function is “onto”; each
encountered numerous situations in which new componentgyperation exports at least one interface.

were created by preserving one or more aspects of one or
more existing components [10, 12]. Several examples arep subtyping relationshipS , between two components, C
shown in Fig. 2. and G, is defined as a disjunction nam int, beh andimp

2.1 Architectural Type Theory relationships (see Fig. 1):
In [10] we discussed the types of syntactic constructs _

needed in an ADL in order to support this approach. In this (HCicpAT(GSC =

section we present a brief overview of the underlying type Ci<namCi O CiSinCi O

theory. The two possible applications of an architectural Cj <penCi i Ci SimpCi)

type theory are type ch_egklng of architectural descriptions,ye consjderint and beh subtyping relationships in more
and evolution of existing components by software geail pelow. Nam is a trivial relationship; we have
architects. Each is briefly discussed befow. encountered it in practice only as part of the stronger
relationship. Similarly, although useful in practice for
r[avolving componentamp is not a particularly interesting
relationship from a type-theoretic point of view.
Implementation conformance can be established with a
AT = <nam, int*, beh, imp> simple syntactic check: the operations of the subtype must

Each interface element has a direction indicator (provided ohave the same implementation as the corresponding
required), a name, and a set of parameters. Each parameté}perations of the supertype.
in turn, has a name and a type. Component Cis aninterface subtypef C; if and only if it

provides at least (but not necessarily only) the interface
1 We omit some details for simplicity. elements provided by, @vith identical names and direction

Every component is aarchitectural type An architectural
type, AT, has a name, a set of interface elements, a
associated behavior, and (possibly) an implementation:

indicators, andmatching parameters for each interface interconnected. Connectors also introduce a layer of
element. Two parameters belonging to the two componentsindirection between components. The potential penalties
interface elements match if and only if they have identical paid due to this indirection (e.g., performance) should be
names and the parameter type gfi€a subtype of the outweighed by other benefits of connectors, such as their
parameter type of quontravariance of argumern)tsNote role as facilitators of evolution. To facilitate architectural

that, as with interface elements, the subtype must provide afVvolution, connectors must be flexible, i.e., they must easily

least (but not necessarily only) the parameters that matcticcommodate changes to their attached components. At a
,] minimum, these changes include component addition,
the supertype’s parameters:

removal, replacement, and reconnection.

(UG, CiAT(C) SinCi_ = (UM Dciin(LN Dcyint) Existing approaches tend to sacrifice the potential flexibility
((M.dir = N.dir) [J (M.int_nam = N.int_nam) h introduced by connectors in order to support more powerful
(P, LM.param)(LIP, LIN.param) architectural analyses. For example, Wright [1] and UniCon
((Py,.param_nam = P,.param_nam) [] [16] require the architect to specify the types of component
(P,.param_type < P,.param_type)))) ports and players respectively, that can be attached to a

)))) given connector role. Furthermore, although some
A behavioral ~subtyping relationship between two yariapility is allowed in specifying the number of
components is specified as follows: components that a given connector will be able to support
(parameterized number of roles in Wright; potentially

(LC.CAN(CSpenCi = (Cpbehinv L Cibeh.inv) [unbounded number of players with which each role may be

(0p Uc;.beh.oper)([Q Lc;.beh.oper) associated in UniCon), once these variables are set at
((Ppre LI Q.pre) [(Q.post 1 Ppost) [architecture specification time, neither approach allows their
(Q.result < Presult)) modification.

This definition requires that invariant of the supertype be Our approach to configuration evolution is based on our

ensured by that of the subtype. Furthermore, each °peraﬁ°'&xperience with the C2 architectural style [17]. In the C2

of the supertype has a corresponding operation in thestyle, connectors are communication message routing

subtype, where the subtype’s operation has the same ?gevices. To provide an added degree of freedom in
weaker preconditions, same or stronger postconditions, angl 05" omnonents, C2 connectors support implicit
the type of its result is a subtype of the supertype’s resultinqcation, which minimizes component interdependencies.
type ovariance of resujt We have demonstrated that C2 connectors provide strong
The subtyping relationship expressed by the combination ofsupport for evolution of architectural configurations both at

these two definitions and the mapping function, f, results in Specification time [11, 12] and at runtime [9, 14].

the region depicted in Fig.2b and is similar to other 5 nique aspect of C2 connectors, and a direct facilitator of
researchers’ notions of behavioral subtyping (€.g., Americay chitectural evolution, are their context-reflective

[2], Liskov and Wing [8], Leavens et al.[3]). However, in jyerfaces A connector does not export a specific interface.
these approaches type correctness is characterized as e'thﬁfstead it acts as a communication conduit which. in
Itegal or |Iflegal. In softwatr)e archltetctglres, va;;:otjs;c degrees ?fprinciple, supports communication among any set of
Ype conformance may be acceptablé, so that, Tor eéxamp ecomponents. The number of connector ports is not

the interfaces of two communicating components may ,oqetermined, but changes as components are attached or
match up only partially. Additionally, by separating yetached. The “interface” exported by a C2 connector is
interface from behavior (and adding the nam and imp, s function of the attached components’ interfaces. This
relationships), we give a software architect more latitude N llows any C2 connector to support arbitrary addition

choosing the. direction in which to evolve a component. removal, replacement, and reconnection of components or
Such a flexible type system allows some potentially other connectors

undesirable side effects (e.g., a supertype and its subtype

may not always be interchangeable in a given architecture)Clearly, it is not always the case that two components can
However, it is left up to the architect to decide whether he communicate (e.g., due to mismatched interfaces, or
wants to preserve architectural type correctness or simplymessage filtering), even though they may be attached to the
enlarge his palette of design elements, which could then besame connector. At the architectural level, this can be

used in the future. detected via type checking and prevented. However, even if
such a configuration is allowed to propagate into
3. CONFIGURATION EVOLUTION implementation, implicit invocation guarantees that, in the

We employ flexible connectors to support the evolution of worst case, communication messages will be losttial-
architectural configurations. Connectors remove from or no-communicatiorf12, 17]), but the rest of the system’s
components the responsibility of knowing how they are architecture will be able to perform at least in a degraded
mode.

2 In our notation, “X.Y” denotes X’s constituent Y. For example,
“C;.int” denotes component€ interface.

4. CONCLUSIONS AND FUTURE WORK [2] P. America. Designing an Object-Oriented Program-
Software architectures show great potential for reducing ~ Ming Language with Behavioral Subtypingcture
development costs while improving the quality of the Notes in Computer Scienoslume 489, pages 60-90,
resulting software. Architectures also provide a promising Springer-Verlag, 1991.

basis for supporting software evolution. However, improved [3] K. K. Dhara and G. T. Leavens. Forcing Behavioral

evolvability cannot be achieved simply by explicitly Subtyping through Specification Inheritance. Technical
focusing on archﬂec’gures, just like a new programming Report, TR# 95-20c, Department of Computer Science,
language cannot by itself solve the problems of software lowa State University, August 1995, revised March

engineering. A programming language is only a tool that 1997.

allows (but does not force) developers to put sound software[4] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
engineering techniques into practice. Similarly, one can Style in Architectural Design Environments.Rro-

think of software architectures, and ADLs in particular, as ceedings of SIGSOFT'94: Foundations of Software
tools which also must be supported with specific techniques Engineering pages 175-188, New Orleans, Louisiana
to achieve desired properties. In this paper, we have outlined jgA December 1994. ’ ' '

two such techniques for supporting evolution, one for .) .
components and the other for architectural configurations. 21 D- Garlan, R. Monroe, and D. Wile. ACME: An Archi-
tecture Description Interchange LanguagePioceed-

We have already put a subset of these ideas into practice in ings of CASCON’9/November 1997.

the context of the C2 style and its accompanying ADL. We [6] C.Ghezzi, M. Jazayeri, D. Mandriokundamentals of

o jourent, develoning 2 Set of (00t 10 sumbort ™ Sofware Engineernpreniice Hal, 1991
ypingd, Yp g bping [7] D. C. Luckham and J. Vera. An Event-Based Architec-

architectural descriptions to the C2 implementation o :
infrastructure [11]. We are also expanding C2 connectors to ture Definition LanguagdEEE Transactions on Soft-
ware Engineeringpages 717-734, September 1995.

support more complex message passing protocols, as well as _ : _ _
existing middleware technologies (e.g., CORBA and Java's[8] B. H. Liskov and J. M. Wing. A Behavioral Notion of

RMI). A number of issues remain items of future work. Subtyping ACM Transactions on Programming Lan-
These include investigation of techniques for evolving guages and Systenisovember 1994,

connectors, application of the type theory to other ADLS [9] N. Medvidovic. ADLs and Dynamic Architecture
and across multiple levels of architectural refinement, Changes. In Alexander L. Wolf, e®roceedings of the

further research of issues in adapting and adopting legacy Second International Software Architecture Workshop

components into architectures using the subtyping (ISAW-2) pages 24-27, San Francisco, CA, October 14-
approach, automating the evolution of existing components 15 1996,

to p_opul_a}te partial archi'@ectures, and assessment of Fh(flo] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Tay-
appll_cablllty of the properties of C2 connectors described in Io.r. Using Objéct.—Oriente’d .Tybing to Su’pport A.rch.itec—
Section 3 to other architectural approaches. tural Design in the C2 Style. Proceedings of the

5. ACKNOWLEDGEMENTS Fourth ACM SIGSOFT Symposium on the Foundations

Effort partially sponsored by the Defense Advanced Of Software Engineering (FSE4jages 24-32, San
Research Projects Agency, and Rome Laboratory, Air Force ~ Francisco, CA, October 16-18, 1996.

Materiel Command, USAF, under agreement numbers[11]N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of
F30602-97-2-0021 and F30602-94-C-0218, and by the Air Off-the-Shelf Components in C2-Style Architectures.
Force Office of Scientific Research under grant number In Proceedings of the 1997 Symposium on Software
F49620-98-1-0061. The U.S. Government is authorized to ~ Reusability (SSR'97pages 190-198, Boston, MA,
reproduce and distribute reprints for Governmental purposes ~ May 17-19, 1997. Also iRroceedings of the 1997
notwithstanding any copyright annotation thereon. International Conference on Software Engineering

The views and conclusions contained herein are those of the gg;E 97) pages 692-700, Boston, MA, May 17-23,

authors and should not be interpreted as necessarily . . .
representing the official policies or endorsements, eitherl12]N- Medvidovic and R.N. Taylor. Exploiting Architec-
expressed or implied, of the Defense Advanced Research (Ural Style to Develop a Family of ApplicationEE

; Proceedings Software Engineerjmpges 237-248,
Projects Agency, Rome Laboratory or the U.S. Government.
) gency y October-December 1997.

This material is also partially based on work supported by [13]N. Medvidovic and R. N. Taylor. A Framework for

the National Science Foundation under Grant No. CCR- Classifying and Comparing Architecture Description
9701973. Languages. IfProceedings of the Sixth European Soft-
6. REFERENCES ware Engineering Conference together with .the Fifth

[1] R. Allen and D. Garlan. A Formal Basis for Architec- ACM SIGSOFT Symposium on the Foundations of Soft-

tural ConnectionACM Transactions on Software Engi- \évare{: EnginzzriggpiSS? 60-76, Zurich, Switzerland,
neering and Methodologyuly 1997. eptember 22-25, :

[14]P. Oreizy, N. Medvidovic, and R. N. Taylor. Architec- actions on Software Engineeringages 314-335, April

ture-Based Runtime Software Evolution. To appear in 1995.

Proceedings of the 20th International Conference on [17]R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.

Software Engineering (ICSE'98\pril 19-25, 1998, Whitehead, Jr., J. E. Robbins, K. A. Nies, P. Oreizy, and

Kyoto, Japan. Also available as Technical Report, UCI- D. L. Dubrow. A Component- and Message-Based

ICS-97-39. Architectural Style for GUI SoftwaréEEE Transac-
[15]J. Palsberg and M. I. Schwartzbach. Three Discussions tions on Software Engineeringages 390-406, June

on Object-Oriented TypindACM SIGPLAN OOPS 1996.

Messenger3(2):31-38, 1992. [18]D. M. Yellin and R. E. Strom. Interfaces, Protocols, and
[16]M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. the Semi-Automatic Construction of Software Adap-

Young, and G. Zelesnik. Abstractions for Software tors. InProceedings of OOPSLA'9pages 176-190,

Architecture and Tools to Support ThellBEE Trans- Portland, OR, USA, October 1994.

	1. INTRODUCTION
	2. COMPONENT EVOLUTION
	Figure 1. A framework for understanding OO subtyping mechanisms as regions in a space of type sys...
	Figure 2. Examples of component subtyping mechanisms we have encountered in software architecture...
	2.1 Architectural Type Theory

	3. CONFIGURATION EVOLUTION
	4. CONCLUSIONS AND FUTURE WORK
	5. ACKNOWLEDGEMENTS
	6. REFERENCES
	[1] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions on Soft...
	[2] P. America. Designing an Object-Oriented Programming Language with Behavioral Subtyping. Lect...
	[3] K. K. Dhara and G. T. Leavens. Forcing Behavioral Subtyping through Specification Inheritance...
	[4] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design Environments...
	[5] D. Garlan, R. Monroe, and D. Wile. ACME: An Architecture Description Interchange Language. In...
	[6] C. Ghezzi, M. Jazayeri, D. Mandrioli. Fundamentals of Software Engineering. Prentice Hall, 1991.
	[7] D. C. Luckham and J. Vera. An Event-Based Architecture Definition Language. IEEE Transactions...
	[8] B. H. Liskov and J. M. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Programmin...
	[9] N. Medvidovic. ADLs and Dynamic Architecture Changes. In Alexander L. Wolf, ed., Proceedings ...
	[10] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using Object-Oriented Typing to S...
	[11] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf Components in C2-Style Ar...
	[12] N. Medvidovic and R.N. Taylor. Exploiting Architectural Style to Develop a Family of Applica...
	[13] N. Medvidovic and R. N. Taylor. A Framework for Classifying and Comparing Architecture Descr...
	[14] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-Based Runtime Software Evolution. T...
	[15] J. Palsberg and M. I. Schwartzbach. Three Discussions on Object-Oriented Typing. ACM SIGPLAN...
	[16] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions for ...
	[17] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., J. E. Robbins, K. A. Nies...
	[18] D. M. Yellin and R. E. Strom. Interfaces, Protocols, and the Semi-Automatic Construction of ...

	An Architecture-Based Approach to Software Evolution
	Nenad Medvidovic
	Computer Science Dept.
	University of Southern California
	Los Angeles, CA 90089-078, USA
	+1-213-740-5579

	neno@usc.edu
	David S. Rosenblum
	Info. and Computer Science Dept. University of California, Irvine
	Irvine, CA 92697-3425, USA
	+1-949-824-6534

	dsr@ics.uci.edu
	Richard N. Taylor
	Info. and Computer Science Dept. University of California, Irvine
	Irvine, CA 92697-3425, USA
	+1-949-824-6429

	taylor@ics.uci.edu

