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1.  INTRODUCTION
In order for large, complex, multi-lingual, multi-platform,
long-running systems to be economically viable, they need
to be evolvable. Support for software evolution includes
techniques and tools that aid interchange, reconfiguration,
extension, and scaling of software modules and/or systems.
Evolution in the current economic context also requires
support for reuse of third-party components. The costs of
system maintenance (i.e., evolution) are as high as 60% of
the overall development costs [6]. Practitioners have
traditionally faced many problems with curbing these costs.
The problems are often the result of poor understanding of a
system’s overall architecture, unintended and complex
dependencies among its components, decisions that are
made too early in the development process, and so forth.
Traditional development approaches (e.g., structural
programming or object-oriented analysis and design) have in
particular failed to properly decouple computation from
communication within a system, thus supporting only
limited reconfigurability and reuse. Evolution techniques
have also typically been programming language (PL)
specific (e.g., inheritance) and applicable on the small scale
(e.g., separation of concerns or isolation of change). This is
only partially adequate in the case of development with
preexisting, large, multi-lingual, multi-platform components
that originate from multiple sources.

In this paper, we posit that an explicit architectural focus can
remedy many of these difficulties and enable flexible
construction and evolution of large systems. Software
architectures present a high level view of a system, enabling
developers to abstract away the irrelevant details and focus
on the “big picture.” Another key is their explicit treatment
of software connectors, which separate communication
issues from computation in a system. However, existing
architecture research has thus far largely failed to take
advantage of this potential for adaptability, for two reasons: 

• connectors are often not treated explicitly or, when they
are, they are too rigid and do not accommodate modifica-
tion of their attached components easily; and 

• no specific techniques have been developed to supp
flexible architecture-based design and evolution. 

Three distinct building blocks of a software architecture a
components, connectors, and architectural configuratio
(topologies) [13]. Each of them may evolve. Our work 
date has focused on the evolution of individual compone
and architectural configurations. In the future, we intend
investigate the proper techniques for evolving connecto
For evolving individual components, our approach expan
the traditional techniques for supporting evolution (e.g
modularity, typing). We introduce explicit, flexible
connectors to aid the evolution of architectur
configurations. 

The following section discusses our approach to compon
evolution and introduces an architectural type theory 
which the approach is based. Section 3 discusses the ro
software connectors in the evolution of architectur
configurations. Conclusions and a discussion of ongo
work round out the paper.

2.  COMPONENT EVOLUTION
Researchers in software architectures, and particularly
architecture description languages (ADLs), can learn fro
extensive experience in the area of PLs. For example,
existing software module can evolve in a controlled mann
via subtyping. Our approach to component evolution 
indeed based on type theory. We treat each component i
architecture as a type and support its evolution via subtyp
However, while PLs (and several existing ADLs [4, 5, 7
support a single subtyping method, architectures may req
multiple subtyping methods, many of which are n
commonly supported in PLs. Therefore, an extension to 
type theory is needed. 

A useful overview of PL subtyping mechanisms is given 
Palsberg and Schwartzbach [15]. They describe a conse
in the object-oriented (OO) typing community regarding th
definition of a range of OO typing mechanisms. Arbitrary
subclassing allows any class to be declared a subtype 
another, regardless of whether they share a common se
methods. Name compatibility demands that there exist a
shared set of method names available in both clas
Interface conformance constrains name compatibility by
requiring that the shared methods have conformi
signatures. Monotone subclassing requires that the subclas
relationship be declared and that the subclass must pres
the interface of the superclass. Behavioral conformance
allows any class to be a subtype of another if it preserves
interface and behavior of all methods available in t
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supertype. Strictly monotone subclassing also demands that
the subtype preserve the particular implementations used by
the supertype.

We have developed a framework for understanding these
subtyping mechanisms as regions in a space of type
systems, shown in Fig. 1. The entire space of type systems
is labeled U. The regions labeled Int and Beh contain
systems that demand that two conforming types share
interface and behavior, respectively. The Imp region
contains systems that demand that a type share particular
implementations of all supertype methods, which also
implies that types preserve the behavior of their supertypes.
The Nam region demands only shared method names, and
thus includes every system that demands interface
conformance. Each subtyping mechanism described in [15]
and summarized above can be denoted via set operations on
these regions. For example, behavioral conformance, which
requires that both interface and behavior of a type be
preserved, corresponds to the intersection of the Int and Beh
regions and is expressed as int and beh.

We have demonstrated the utility of such a flexible
subtyping mechanism in our previous work, where we have
encountered numerous situations in which new components
were created by preserving one or more aspects of one or
more existing components [10, 12]. Several examples are
shown in Fig. 2.

2.1  Architectural Type Theory
In [10] we discussed the types of syntactic constructs
needed in an ADL in order to support this approach. In this
section we present a brief overview of the underlying type
theory. The two possible applications of an architectural
type theory are type checking of architectural descriptions
and evolution of existing components by software
architects. Each is briefly discussed below.1

Every component is an architectural type. An architectural
type, AT, has a name, a set of interface elements, an
associated behavior, and (possibly) an implementation:

AT = <nam, int*, beh, imp>

Each interface element has a direction indicator (provided or
required), a name, and a set of parameters. Each parameter,
in turn, has a name and a type.

int = <dir, int_nam, param*>
param = <param_nam, param_type>

A component’s behavior consists of an invariant and a se
operations. The invariant is used to specify any proto
constraints on the use of the component. Each operation
(a set of) preconditions and postconditions and (possibly
result.

beh = <inv, oper*>
oper = <pre, post, result>

Finally, since we separate the interface from the behav
we define a function, f, that maps every interface elemen
an operation of the behavior. This function is “onto”: ea
operation exports at least one interface.

A subtyping relationship, , between two components, i
and Cj, is defined as a disjunction of nam, int, beh, and imp
relationships (see Fig. 1):

( Ci,Cj:AT)(Cj Ci  

Cj namCi  Cj intCi  

Cj behCi  Cj impCi)

We consider int and beh subtyping relationships in more
detail below. Nam is a trivial relationship; we have
encountered it in practice only as part of the stronger int
relationship. Similarly, although useful in practice fo
evolving components, imp is not a particularly interesting
relationship from a type-theoretic point of view
Implementation conformance can be established with
simple syntactic check: the operations of the subtype m
have the same implementation as the correspond
operations of the supertype.

Component Cj is an interface subtype of Ci if and only if it
provides at least (but not necessarily only) the interfa
elements provided by Ci with identical names and direction1 We omit some details for simplicity.

U
Nam Beh

ImpInt

Figure 1.  A framework for understanding OO subtyping 
mechanisms as regions in a space of type systems.

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

U
Nam Beh

ImpInt

int int and  beh

int and imp imp and not int

(a) (b)

(c) (d)

Figure 2.  Examples of component subtyping mechanisms we 
have encountered in software architectures: (a) interface con-
formance; (b) behavioral conformance; (c) strictly monotone 
subclassing; (d) implementation conformance with a differ-

ent interface (e.g., software adaptors [18]).
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indicators, and matching parameters for each interface
element. Two parameters belonging to the two components’
interface elements match if and only if they have identical
names and the parameter type of Ci is a subtype of the
parameter type of Cj (contravariance of arguments). Note
that, as with interface elements, the subtype must provide at
least (but not necessarily only) the parameters that match
the supertype’s parameters:2

( Ci,Cj:AT)(Cj intCi  ( M Ci.int)( N Cj.int)
((M.dir = N.dir) (M.int_nam = N.int_nam) 
(( Pm M.param)( Pn N.param)
((Pm.param_nam = Pn.param_nam) 

(Pm.param_type  Pn.param_type)))) 

A behavioral subtyping relationship between two
components is specified as follows:

( Ci,Cj:AT)(Cj behCi  (Cj.beh.inv Ci.beh.inv) 

( P Ci.beh.oper)( Q Cj.beh.oper)
((P.pre  Q.pre)  (Q.post  P.post) 
(Q.result  P.result))

This definition requires that invariant of the supertype be
ensured by that of the subtype. Furthermore, each operation
of the supertype has a corresponding operation in the
subtype, where the subtype’s operation has the same or
weaker preconditions, same or stronger postconditions, and
the type of its result is a subtype of the supertype’s result
type (covariance of result).

The subtyping relationship expressed by the combination of
these two definitions and the mapping function, f, results in
the region depicted in Fig. 2b and is similar to other
researchers’ notions of behavioral subtyping (e.g., America
[2], Liskov and Wing [8], Leavens et al.[3]). However, in
these approaches type correctness is characterized as either
legal or illegal. In software architectures, various degrees of
type conformance may be acceptable, so that, for example,
the interfaces of two communicating components may
match up only partially. Additionally, by separating
interface from behavior (and adding the nam and imp
relationships), we give a software architect more latitude in
choosing the direction in which to evolve a component.
Such a flexible type system allows some potentially
undesirable side effects (e.g., a supertype and its subtype
may not always be interchangeable in a given architecture).
However, it is left up to the architect to decide whether he
wants to preserve architectural type correctness or simply
enlarge his palette of design elements, which could then be
used in the future.

3.  CONFIGURATION EVOLUTION
We employ flexible connectors to support the evolution of
architectural configurations. Connectors remove from
components the responsibility of knowing how they are

interconnected. Connectors also introduce a layer 
indirection between components. The potential penalt
paid due to this indirection (e.g., performance) should 
outweighed by other benefits of connectors, such as th
role as facilitators of evolution. To facilitate architectur
evolution, connectors must be flexible, i.e., they must eas
accommodate changes to their attached components. 
minimum, these changes include component additio
removal, replacement, and reconnection.

Existing approaches tend to sacrifice the potential flexibil
introduced by connectors in order to support more power
architectural analyses. For example, Wright [1] and UniC
[16] require the architect to specify the types of compone
ports and players, respectively, that can be attached to
given connector role. Furthermore, although some
variability is allowed in specifying the number o
components that a given connector will be able to supp
(parameterized number of roles in Wright; potential
unbounded number of players with which each role may
associated in UniCon), once these variables are se
architecture specification time, neither approach allows th
modification. 

Our approach to configuration evolution is based on o
experience with the C2 architectural style [17]. In the C
style, connectors are communication message rout
devices. To provide an added degree of freedom 
composing components, C2 connectors support impl
invocation, which minimizes component interdependenci
We have demonstrated that C2 connectors provide str
support for evolution of architectural configurations both 
specification time [11, 12] and at runtime [9, 14].

A unique aspect of C2 connectors, and a direct facilitator
architectural evolution, are their context-reflective
interfaces. A connector does not export a specific interfac
Instead, it acts as a communication conduit which, 
principle, supports communication among any set 
components. The number of connector ports is n
predetermined, but changes as components are attache
detached. The “interface” exported by a C2 connector
thus a function of the attached components’ interfaces. T
allows any C2 connector to support arbitrary additio
removal, replacement, and reconnection of components
other connectors.

Clearly, it is not always the case that two components c
communicate (e.g., due to mismatched interfaces, 
message filtering), even though they may be attached to
same connector. At the architectural level, this can 
detected via type checking and prevented. However, eve
such a configuration is allowed to propagate in
implementation, implicit invocation guarantees that, in th
worst case, communication messages will be lost (partial-
or no-communication [12, 17]), but the rest of the system’
architecture will be able to perform at least in a degrad
mode.

2 In our notation, “X.Y” denotes X’s constituent Y. For example,
“Ci.int” denotes component Ci’s interface.
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4.  CONCLUSIONS AND FUTURE WORK
Software architectures show great potential for reducing
development costs while improving the quality of the
resulting software. Architectures also provide a promising
basis for supporting software evolution. However, improved
evolvability cannot be achieved simply by explicitly
focusing on architectures, just like a new programming
language cannot by itself solve the problems of software
engineering. A programming language is only a tool that
allows (but does not force) developers to put sound software
engineering techniques into practice. Similarly, one can
think of software architectures, and ADLs in particular, as
tools which also must be supported with specific techniques
to achieve desired properties. In this paper, we have outlined
two such techniques for supporting evolution, one for
components and the other for architectural configurations.

We have already put a subset of these ideas into practice in
the context of the C2 style and its accompanying ADL. We
are currently developing a set of tools to support
architectural subtyping, type checking, and mapping of
architectural descriptions to the C2 implementation
infrastructure [11]. We are also expanding C2 connectors to
support more complex message passing protocols, as well as
existing middleware technologies (e.g., CORBA and Java’s
RMI). A number of issues remain items of future work.
These include investigation of techniques for evolving
connectors, application of the type theory to other ADLs
and across multiple levels of architectural refinement,
further research of issues in adapting and adopting legacy
components into architectures using the subtyping
approach, automating the evolution of existing components
to populate partial architectures, and assessment of the
applicability of the properties of C2 connectors described in
Section 3 to other architectural approaches.
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