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1. INTRODUCTION ¢ no specific techniques have been developed to support
In order for large, complex, multi-lingual, multi-platform,  flexible architecture-based design and evolution.

long-running systems to be economically viable, they neetthree distinct building blocks of a software architecture are
to be evolvable. Support for software evolution includescomponents, connectors, and architectural configurations
techniques and tools that aid interchange, reconfiguratiorftopologies) [13]. Each of them may evolve. Our work to
extension, and scaling of software modules and/or systemgate has focused on the evolution of individual components
Evolution in the current economic context also requiresind architectural configurations. In the future, we intend to
support for reuse of third-party components. The costs adfvestigate the proper techniques for evolving connectors.
system maintenance (i.e., evolution) are as high as 60% ebr evolving individual components, our approach expands
the overall development costs [6]. Practitioners havehe traditional techniques for supporting evolution (e.g.,
traditionally faced many problems with curbing these costsmodularity, typing). We introduce explicit, flexible
The problems are often the result of poor understanding oféonnectors to aid the evolution of architectural
system’s overall architecture, unintended and complexonfigurations.

dependencies among its components, decisions that ar% . . .

made too early in the development process, and so tortH he following section discusses our approach to component

Traditional development approaches (e.g., structura?VQIUtion and introd_uces an arch_itectura_\l type theory on
programming or object-oriented analysis and design) have ith'Ch the approach is baseﬁ. Sect|(|)n_3 d|scfusseshyhe rolel of
particular failed to properly decouple computation fromSOftware connectors in the evolution of architectura

communication within a system, thus supporting On|yconf|gurat|ons. Conclusions and a discussion of ongoing

limited reconfigurability and reuse. Evolution techniques'Ork round out the paper.

have also typically been programming language (PL) COMPONENT EVOLUTION

specific (€.g., inheritance) and applicable on the small scalg. o, chers in software architectures, and particularly in

(e.g., separation of concerns or isolation of change). This I3 chitecture description languages (ADLs), can learn from

only pa_rtially adequatg _in the case of development Wit}%xtensive experience in the area of PLs. For example, an
preexisting, large, multi-ingual, multi-platform Componentsexisting software module can evolve in a controlled manner

that originate from multiple sources. via subtyping. Our approach to component evolution is
In this paper, we posit that an explicit architectural focus caindeed based on type theory. We treat each component in an
remedy many of these difficulties and enable flexiblearchitecture as a type and support its evolution via subtyping.
construction and evolution of large systems. Softwardlowever, while PLs (and several existing ADLs [4, 5, 7])
architectures present a high level view of a system, enablirgypport a single subtyping method, architectures may require
developers to abstract away the irrelevant details and focumgultiple subtyping methods, many of which are not
on the “big picture.” Another key is their explicit treatmentcommonly supported in PLs. Therefore, an extension to PL
of software connectors, which separate communicatiotype theory is needed.

issues from computation in a system. However, existing&

e o o b oo Ealsberg and Scviarzbach (15] They descre a consensis
' "in the object-oriented (OO) typing community regarding the
* connectors are often not treated explicitly or, when theyjefinition of a range of OO typing mechanismsbitrary
are, they are too rigid and do not accommodate modificasybclassingallows any class to be declared a subtype of
tion of their attached components easily; and another, regardless of whether they share a common set of
methods.Name compatibilitydemands that there exist a
shared set of method names available in both classes.
Interface conformanceconstrains name compatibility by
requiring that the shared methods have conforming
signaturesMonotone subclassingequires that the subclass
relationship be declared and that the subclass must preserve
the interface of the superclasBehavioral conformance
allows any class to be a subtype of another if it preserves the
interface and behavior of all methods available in the

useful overview of PL subtyping mechanisms is given by
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We have developed a framework for understanding these _ _
subtyping mechanisms as regions in a space of type Figure 2. Examples of component subtyping mechanisms w
systems, shown in Fig. 1. The entire space of type systemshave encountered in software architecturega) interface con-
is labeledU. The regions labelednt and Beh contain formance; (b)behavioral conf_ormance;(c)strictly_mono_tone
systems that demand that two Conforming types share SUbClassng(d)|mp|ementat|0n conformance with a differ-
interface and behavior, respectively. THmp region ent interface (e.g., software adaptors [18]).
contains systems that demand that a type share particular
implementations of all supertype methods, which also int = <dir, int_nam, param*>
implies that types preserve the behavior of their supertypes.  param = <param_nam, param_type>
The Namregion demands only shared method names, anda component's behavior consists of an invariant and a set of
thus includes every system that demands interfacepperations. The invariant is used to specify any protocol

conformance. Each subtyping mechanism described in [15]constraints on the use of the component. Each operation has

and summarized above can be denoted via set operations of set of) preconditions and postconditions and (possibly) a
these regions. For exampleehavioral conformangevhich result.

requires that both interface and behavior of a type be _ .
preserved, corresponds to the intersection of the Int and Beh ~ beh = <inv, oper*>

regions and is expressediasand beh _ oper : <pre, post, result> _ _
Finally, since we separate the interface from the behavior,

We have demonstrated the utility of such a flexible \ye gefine a function, f, that maps every interface element to

subtyping mechanism in our previous work, where we have g gperation of the behavior. This function is “onto”; each
encountered numerous situations in which new componentgyperation exports at least one interface.

were created by preserving one or more aspects of one or
more existing components [10, 12]. Several examples arep subtyping relationshipS , between two components, C
shown in Fig. 2. and G, is defined as a disjunction nam int, beh andimp

2.1 Architectural Type Theory relationships (see Fig. 1):
In [10] we discussed the types of syntactic constructs _

needed in an ADL in order to support this approach. In this (HCicpAT(GSC =

section we present a brief overview of the underlying type Ci<namCi O CiSinCi O

theory. The two possible applications of an architectural Cj <penCi i Ci SimpCi)

type theory are type ch_egklng of architectural descriptions,ye consjderint and beh subtyping relationships in more
and evolution of existing components by software geail pelow. Nam is a trivial relationship; we have
architects. Each is briefly discussed befow. encountered it in practice only as part of the stronger
relationship. Similarly, although useful in practice for
r[avolving componentamp is not a particularly interesting
relationship from a type-theoretic point of view.
Implementation conformance can be established with a
AT = <nam, int*, beh, imp> simple syntactic check: the operations of the subtype must

Each interface element has a direction indicator (provided ohave the same implementation as the corresponding
required), a name, and a set of parameters. Each parameté}perations of the supertype.
in turn, has a name and a type. Component Cis aninterface subtypef C; if and only if it

provides at least (but not necessarily only) the interface
1 We omit some details for simplicity. elements provided by, @vith identical names and direction

Every component is aarchitectural type An architectural
type, AT, has a name, a set of interface elements, a
associated behavior, and (possibly) an implementation:




indicators, andmatching parameters for each interface interconnected. Connectors also introduce a layer of
element. Two parameters belonging to the two componentsindirection between components. The potential penalties
interface elements match if and only if they have identical paid due to this indirection (e.g., performance) should be
names and the parameter type gfi€a subtype of the outweighed by other benefits of connectors, such as their
parameter type of quontravariance of argumern)tsNote role as facilitators of evolution. To facilitate architectural

that, as with interface elements, the subtype must provide afVvolution, connectors must be flexible, i.e., they must easily

least (but not necessarily only) the parameters that matcticcommodate changes to their attached components. At a
, ] minimum, these changes include component addition,
the supertype’s parameters:

removal, replacement, and reconnection.

(UG, CiAT(C) SinCi_ = (UM Dciin( LN Dcyint) Existing approaches tend to sacrifice the potential flexibility
((M.dir = N.dir) [J (M.int_nam = N.int_nam) h introduced by connectors in order to support more powerful
(P, LM.param)( LIP, LIN.param) architectural analyses. For example, Wright [1] and UniCon
((Py,.param_nam = P,.param_nam) [] [16] require the architect to specify the types of component
(P,.param_type < P,.param_type)))) ports and players respectively, that can be attached to a

) ) ) ) given connector role. Furthermore, although some
A behavioral ~subtyping relationship between two yariapility is allowed in specifying the number of
components is specified as follows: components that a given connector will be able to support
(parameterized number of roles in Wright; potentially

(LC.CAN(CSpenCi = (Cpbehinv L Cibeh.inv) [ unbounded number of players with which each role may be

(0p Uc;.beh.oper)( [Q Lc;.beh.oper) associated in UniCon), once these variables are set at
((Ppre LI Q.pre) [ (Q.post 1 Ppost) [ architecture specification time, neither approach allows their
(Q.result < Presult)) modification.

This definition requires that invariant of the supertype be Our approach to configuration evolution is based on our

ensured by that of the subtype. Furthermore, each °peraﬁ°'&xperience with the C2 architectural style [17]. In the C2

of the supertype has a corresponding operation in thestyle, connectors are communication message routing

subtype, where the subtype’s operation has the same ?gevices. To provide an added degree of freedom in
weaker preconditions, same or stronger postconditions, angl 05" omnonents, C2 connectors support implicit
the type of its result is a subtype of the supertype’s resultinqcation, which minimizes component interdependencies.
type ovariance of resujt We have demonstrated that C2 connectors provide strong
The subtyping relationship expressed by the combination ofsupport for evolution of architectural configurations both at

these two definitions and the mapping function, f, results in Specification time [11, 12] and at runtime [9, 14].

the region depicted in Fig.2b and is similar to other 5 nique aspect of C2 connectors, and a direct facilitator of
researchers’ notions of behavioral subtyping (€.g., Americay chitectural  evolution, are their context-reflective

[2], Liskov and Wing [8], Leavens et al.[3]). However, in jyerfaces A connector does not export a specific interface.
these approaches type correctness is characterized as e'thﬁfstead it acts as a communication conduit which. in
Itegal or |Iflegal. In softwatr)e archltetctglres, va;;:otjs;c degrees ?fprinciple, supports communication among any set of
Ype conformance may be acceptablé, so that, Tor eéxamp ecomponents. The number of connector ports is not

the interfaces of two communicating components may ,oqetermined, but changes as components are attached or
match up only partially. Additionally, by separating yetached. The “interface” exported by a C2 connector is
interface from behavior (and adding the nam and imp, s function of the attached components’ interfaces. This
relationships), we give a software architect more latitude N llows any C2 connector to support arbitrary addition

choosing the. direction in which to evolve a component. removal, replacement, and reconnection of components or
Such a flexible type system allows some potentially other connectors

undesirable side effects (e.g., a supertype and its subtype

may not always be interchangeable in a given architecture)Clearly, it is not always the case that two components can
However, it is left up to the architect to decide whether he communicate (e.g., due to mismatched interfaces, or
wants to preserve architectural type correctness or simplymessage filtering), even though they may be attached to the
enlarge his palette of design elements, which could then besame connector. At the architectural level, this can be

used in the future. detected via type checking and prevented. However, even if
such a configuration is allowed to propagate into
3. CONFIGURATION EVOLUTION implementation, implicit invocation guarantees that, in the

We employ flexible connectors to support the evolution of worst case, communication messages will be losttial-
architectural configurations. Connectors remove from or no-communicatiorf12, 17]), but the rest of the system’s
components the responsibility of knowing how they are architecture will be able to perform at least in a degraded
mode.

2 In our notation, “X.Y” denotes X’s constituent Y. For example,
“C;.int” denotes component€ interface.
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