
International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy • 30 June – 3 July 1998 49

Challenges in Exploiting Architectural Models
for Software Testing

David S. Rosenblum
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

+1 949.824.6534
dsr@ics.uci.edu

http://www.ics.uci.edu/~dsr/

ABSTRACT

Software architectural modeling offers a natural framework
for designing and analyzing modern large-scale software
systems and for composing systems from reusable off-the-
shelf components. However, the nature of component-
based software presents particularly unique challenges for
testing component-based systems. To date there have been
relatively few attempts to establish a sound theoretical basis
for testing component-based software.

This paper discusses challenges in exploiting architectural
models for software testing. The discussion is framed in
terms of the author’s recent work on defining a formal
model of test adequacy for component-based software, and
how this model can be enhanced to exploit formal
architectural models.

Keywords

ADLs, architectural modeling, component-based software,
integration testing, software testing, subdomain-based
testing, test adequacy criterion, unit testing.

1 INTRODUCTION
Software architectural modeling offers a natural framework
for designing and analyzing modern large-scale software
systems and for composing systems from reusable off-the-
shelf components [9,10]. However, the nature of
component-based software presents particularly unique
challenges for testing component-based systems. In
particular, while the technology for constructing
component-based software is relatively advanced, and
while the architecture research community has produced a
number of powerful formal notations and analysis
techniques for architectural modeling, there have been
relatively few attempts to establish a sound theoretical basis
for testing component-based software (e.g., see [3,11,12]).

An architectural model can be used in a variety of ways to
aid the testing of a component-based system:

� The model itself can be tested directly, prior to the
selection of components and the development of the
implementation. This requires that the model be
expressed in an architecture description language (ADL)

having a simulation or execution semantics [6]. Rapide
is an example of such a language [4].

� The model can be used to guide integration testing of the
implemented system. In particular, the structure of the
model can be used to guide the order in which
components are assembled and tested, and the
specifications of the model elements can be used as test
oracles.

� The model can be used to guide selective regression
testing of the system as it evolves in maintenance [13].

The software testing literature offers a variety of techniques
that can be applied or adapted in a reasonably
straightforward way to these kinds of testing (e.g., by
defining architecture-oriented structural coverage criteria,
defining the architectural equivalent of top-down or
bottom-up integration testing, etc.). Yet there is very little
in the testing literature that addresses the unique testing
challenges posed by component-based software.

Distributed component-based systems of course exhibit all
of the well-known problems that make testing “traditional”
distributed and concurrent software difficult. But testing of
component-based software (distributed or otherwise) is
further complicated by technological heterogeneity and
enterprise heterogeneity of the components used to build
systems. Technological heterogeneity refers to the fact that
different components can be programmed in different
programming languages and for different operating system
and hardware platforms, meaning that testing a component-
based system may require a testing method that operates on
a large number of languages and platforms. Enterprise
heterogeneity refers to the fact that off-the-shelf
components can be provided by different, possibly
competing suppliers, meaning that no one supplier has
complete control over or complete access to the
development artifacts associated with each component for
purposes of testing. And in the most extreme situations of
dynamic evolution, components can be replaced within,
added to, and deleted from a running system, potentially
forgoing a traditional period of testing prior to deployment
of the new configuration [5,8].

Thus, in this author’s view, it is these problematic
characteristics of component-based software that raise the

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy • 30 June – 3 July 1998 50

most interesting and important challenges in exploiting
architectural models for software testing.

2 A FORMAL DEFINITION OF COMPONENT-
BASED TEST ADEQUACY

Any attempt to develop a foundation for testing
component-based software must begin by establishing an
appropriate formal model of test adequacy. A test
adequacy criterion is a systematic criterion that is used to
determine whether a test suite provides an adequate amount
of testing for a program under test. Previous definitions of
adequacy criteria have defined adequate testing of a
program independently of any larger system that uses the
program as a component. This perhaps may be due to the
traditional view of software as a monolithic code base that
can be put through several phases of testing prior to its
deployment, and by the same organization that built the
software in the first place. However, a test set that satisfies
a criterion in the traditional sense might not satisfy the
criterion if it were interpreted with respect to the subset of
the component’s functionality that is used by a larger
system.

Consider the simple example of the statement coverage
criterion, which requires a test set to exercise each
statement in the component under test at least once. There
may be a large number of elements in the component’s
input domain that could be chosen to cover a particular
statement. However, the element that is ultimately chosen
may not be a member of that subset of the input domain
that is utilized by the larger program using the component.
Hence, while according to traditional notions of test
adequacy the test case could serve as a member of an
adequate test set for the component, from the perspective of
the larger program using the component, the test set would
be inadequate.

In a recent paper, the author developed a formal model of
component-based software and a formal definition of
component-based test adequacy [12]. This work attempts
to capture in a formal way the need to consider the context
in which a component will be used in order to judge
whether or not the component, and the system using the
component, has been adequately tested.

Fig. 1 represents pictorially the formal model of
component-based software. The figure illustrates a
program 3 containing a constituent component M. In
general, 3 may contain several such components M, and 3
may itself be a component within some larger system. As
shown in the figure, M is viewed as declaring in its
interface a single access method that handles the invocation
of the actual methods of M. For each parameter of an
actual method of M, there is a corresponding parameter of
the same type and mode in the access method. The access
method includes an additional parameter used to identify
the actual method that is to be invoked. The input domain
of M is then the input domain of its access method, which
is the union of the input domains of the actual methods of
M, but with each element extended with the appropriate
method identifier.

Let D3 be the input domain of 3, and let DM be the input
domain of the access method of M. As shown in the figure,
there are four important subsets of these input domains,
which are defined formally as follows:

Definitions:

M-traverse(D3) =
{ d ∈ D3 | execution of 3 on input d traverses M }

M-bypass(D3) = D3 − M-traverse(D3)

P M

DMDP

M-bypass M-traverse
P-irrelevant

P-relevant

access method

actual methods

implementation

Fig. 1 . A Model of Component-Based Software.

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy • 30 June – 3 July 1998 51

3-relevant(DM) =
{ d ∈ DM | ∃ d′ ∈ M-traverse(D3) • execution of

3 on input d′ traverses M with input d }

3-irrelevant(DM) = DM − #3-relevant(DM)

The phrase “execution of 3 traverses M” is taken to mean
that the execution of 3 includes at least one invocation of
M’s access method. The M-traverse subset of D3 is then
the set of all inputs of 3 that cause the execution of 3 to
traverse M. The 3-relevant subset of DM is the set of all
inputs of M’s access method that 3 uses for its traversals of
M. The M-bypass subset of D3 is the set of all inputs of 3
that cause the execution of 3 to “bypass” or avoid
traversing M. Finally, the 3-irrelevant subset of DM is the
set of all inputs of M’s access method that 3 never uses for
its traversals of M.1

The formal definition of test adequacy for component-
based software is developed in terms of applicable
subdomain-based test adequacy criteria, as defined by
Frankl and Weyuker [2]. In particular, a test adequacy
criterion C is subdomain-based if there is a nonempty
multiset 6'C(D) of subdomains of D (the input domain of
the program under test), such that C requires the selection
of one test case from each subdomain in# 6'C(D). 2

Furthermore, C is applicable if the empty subdomain is not
an element of 6'C(D) [2]. Thus, a test set is C-adequate if
and only if it contains at least one test case from each
subdomain in 6'C(D). Since testers rarely satisfy 100% of
the test requirements induced by a test adequacy criterion,
it also makes sense to say that a test set is n% C-adequate if
it contains at least one test case from n percent of the
subdomains in 6'C(D). These definitions capture the
traditional notion of test adequacy, and they make no
distinction between a program and a component.

In order to define test adequacy for component-based
software, it is necessary to first partition the subdomains
induced by an applicable subdomain-based criterion C
according to the partitioning of D3 and DM:

Definitions:

6'C(M-traverse(D3)) =
{ D ⊆ M-traverse(D3) | ∃ D′ ∈ 6'C(D3) • D ⊆ D′

and D′ −D ⊆ M-bypass(D3) and D ≠ ∅}

1 Note that this model fails to account for the possibility of
non-determinism in the execution of 3 or M.
2 An example of such a criterion is statement coverage,
which induces one subdomain for each executable
statement in a program, with each subdomain containing
exactly those inputs that cover its associated statement.

6'C(M-bypass(D3)) =
{ D ⊆ M-bypass(D3) | ∃ D′ ∈ 6'C(D3) • D ⊆ D′

and D′−D ⊆ M-traverse(D3) and D ≠ ∅}

6'C(3-relevant(DM)) =
{ D ⊆ 3-relevant(DM) | ∃ D′ ∈ 6'C(DM) • D ⊆ D′

and D′ −D ⊆ 3-irrelevant(DM) and D ≠ ∅}

6'C(3-irrelevant(DM)) =
{ D ⊆ 3-irrelevant(DM) | ∃ D′ ∈ 6'C(DM) • D ⊆
D′ and D′ −D ⊆ 3-relevant(DM) and D ≠ ∅}

Note that according to these definitions, each subdomain
induced by criterion C on program 3 is partitioned into its
M-traverse subset and its M-bypass subset. Note that the
definitions discard empty subdomains, in order to retain the
applicability of C.

Given the above definitions, adequate testing of
component-based software can now be formally defined.
First, the concept C-adequate-for-3 is defined to
characterize adequate unit testing of M:

Definition (C-adequate-for-3,=#A test set TM is C-adequate-
for-3# if it contains at least one test case from each
subdomain in 6'C(3-relevant(DM)).

Second, the concept C-adequate-on-M is defined to
characterize adequate integration testing of 3 with respect
to its usage of M:

Definition (C-adequate-on-M,=#A test set T3 is C-adequate-
on-M# if it traverses M with at least one element from each
subdomain in 6'C(3-relevant(DM)).

These definitions can be extended as before to
accommodate a notion of percentage of adequacy.

Note that although it is 3 that is being tested in integration
testing, these definitions require the criterion C to be
chosen and then evaluated in terms of M in order to ensure
adequate testing of the relationship between 3 and M. For
example, C could be a criterion that requires each of the
actual methods of M to be exercised at least once. This is a
reasonable requirement for adequate integration testing of
3, and the definition of C-adequate-on-M ensures that the
criterion would be interpreted only with respect to the
methods of M that 3 invokes anywhere in its source code.
Of course, C need not be the same criterion as the one used
to design T3 in the first place; it merely imposes a
requirement on the testing achieved by T3.

There are a number of additional interesting consequences
of these definitions. For instance, a test set TM that is C-
adequate might not be C-adequate-for-3, and vice versa.
Furthermore, a test set T3 that is C-adequate might not be
C-adequate-on-M, and vice versa. And similar statements
can be made with respect to percentage of adequacy.

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy • 30 June – 3 July 1998 52

3 ADEQUATE TESTING AND SOFTWARE
ARCHITECTURES

The formal model presented above provides an initial
foundation for studying and evaluating test adequacy for
component-based systems. However, there are two
important issues that merit consideration. One issue is the
practical applicability of the model. It is one thing to argue
that components must be tested with respect to the context
in which they will be used. It is another thing to determine
how this will be accomplished, especially in the presence of
off-the-shelf components, whose important attributes
needed for evaluation of test adequacy criteria (such as
input domain, specification, implementation structure, etc.)
may be difficult or impossible to ascertain.

A second issue is to determine how the model relates to,
and can be adapted to, software architectural modeling.
One approach is to view formal architectural models as
inducing definitions of input domains for architectural
elements, and then applying the model to these induced
input domains. However, this approach must take into
consideration at least three important attributes of
architectural models and the ADLs used to specify them.

First, many ADLs support specification of other kinds of
architectural elements in addition to components, such as
connectors and configurations (see Medvidovic et al. for a
complete discussion of ADL features and
capabilities [6,7]). The formal model presented above must
be enhanced to take these additional kinds of elements into
account. In some ADLs these elements can possibly be
treated as components for the purpose of testing. For
instance, the connectors in Wright encapsulate behavior
and provide a static, finite collection of interface
elements [1]. However, in other ADLs such elements
differ substantially from components. For instance, a
connector in C2 does not have an interface per se, but
instead is contextually reflective of the interfaces of the
components that it connects [15]. Furthermore, this set of
components can vary dynamically [8].

Second, many ADLs distinguish between the conceptual
architecture that is formally modeled in an ADL and the
implementation architecture of the actual system, and
different ADLs impose different requirements on the
relationship between the two. At a minimum, this
distinction means that the input domains of the conceptual
architecture may differ from those of the implementation
architecture. In particular, the input domain of a
component in the conceptual architecture can be a (proper)
subset of the input domain of the implementation-level
component or components that implement the conceptual
component. This is to be expected especially in situations
where an off-the-shelf component provides more
functionality than is needed by a system that uses it. Thus,
the formal model of test adequacy developed above must
be enhanced to account for the additional complexities
introduced by domain relationships between conceptual and
implementation architectures.

Third, ADLs support explicit representation of a rich
variety of behavioral relationships and other dependencies
between architectural elements [14]. These relationships
do not always strictly conform to a caller/callee style of
component relationships as depicted in Fig. 1, and it may
not be possible to characterize them fully and precisely in
terms of the input domains of related elements. Thus, the
formal model of test adequacy developed above must be
enhanced to account for the richness of inter-element
relationships.

With these enhancements in place, the formal model of test
adequacy can be used in conjunction with formal
architectural models to guide testing of software in a
manner that is truly adequate. A key challenge in
incorporating such enhancements is to address the broad
range of semantic models and modeling and analysis
concerns of the many ADLs that have been defined.

4 CONCLUSION
This paper has discussed challenges in exploiting
architectural models for software testing, with the
discussion framed in terms of the author’s recent work on
defining a formal model of test adequacy for component-
based software. An explicit architectural viewpoint in
software engineering offers the promise of dramatically
improving—and in the process altering— the way software
is developed [10]. While these changes will not obviate the
need for testing, one can at least attempt to find ways of
exploiting formal architectural models for the purpose of
testing. While architectural models offer a rich source of
information to support testing, any attempt to exploit
architectural models for testing must be cognizant of the
unique characteristics of the new kinds of systems that an
architectural viewpoint engenders.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCR-9701973, and by
the Air Force Office of Scientific Research under grant
number F49620-98-1-0061. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the author and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Office of Scientific Research or the U.S. Government.

REFERENCES

1. R. Allen and D. Garlan, “A Formal Basis for
Architectural Connection”, ACM Transactions on
Software Engineering and Methodology, vol. 6, no. 3,
pp. 213–249, 1997.

2. P.G. Frankl and E.J. Weyuker, “A Formal Analysis of
the Fault-Detecting Ability of Testing Methods”, IEEE
Transactions on Software Engineering, vol. 19, no. 3,
pp. 202–213, 1993.

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy • 30 June – 3 July 1998 53

3. D. Hamlet, “Software Component Dependability—a
Subdomain-based Theory”, RST Corporation,
Technical Report RSTR-96-999-01, September 1996.

4. D.C. Luckham and J. Vera, “An Event-Based
Architecture Definition Language”, IEEE Transactions
on Software Engineering, vol. 21, no. 9, pp. 717–734,
1995.

5. J. Magee and J. Kramer, “Dynamic Structure in
Software Architectures”, Proc. ACM SIGSOFT '96
Fourth Symposium on the Foundations of Software
Engineering, San Francisco, CA, pp. 3–14, 1996.

6. N. Medvidovic and D.S. Rosenblum, “Domains of
Concern in Software Architectures and Architecture
Description Languages”, Proc. USENIX Conference on
Domain Specific Languages, Santa Barbara, CA, pp.
199–212, 1997.

7. N. Medvidovic and R.N. Taylor, “A Framework for
Classifying and Comparing Architecture Description
Languages”, Proc. 6th European Software Engineering
Conference/5th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Zurich,
Switzerland, pp. 60–76, 1997.

8. P. Oreizy, N. Medvidovic, and R.N. Taylor,
“Architecture-Based Runtime Software Evolution”,
Proc. 20th International Conference on Software
Engineering, Kyoto, Japan, 1998.

9. P. Oreizy, N. Medvidovic, R.N. Taylor, and D.S.
Rosenblum, “Software Architecture and Component
Technologies: Bridging the Gap”, Digest of the OMG-

DARPA-MCC Workshop on Compositional Software
Architectures, Monterey, CA January 1998.

10. D.E. Perry and A.L. Wolf, “Foundations for the Study
of Software Architecture”, ACM Software Engineering
Notes, vol. 17, no. 4, pp. 40–52, 1992.

11. D.J. Richardson and A.L. Wolf, “Software Testing at
the Architectural Level”, Proc. Second International
Software Architecture Workshop, San Francisco, CA,
pp. 68–71, 1996.

12. D.S. Rosenblum, “Adequate Testing of Component-
Based Software”, Department of Information and
Computer Science, University of California, Irvine,
Irvine, CA, Technical Report 97-34, August 1997.

13. G. Rothermel and M.J. Harrold, “Analyzing
Regression Test Selection Techniques”, IEEE
Transactions on Software Engineering, vol. 22, no. 8,
pp. 529–551, 1996.

14. J.A. Stafford, D.J. Richardson, and A.L. Wolf,
“Chaining: A Software Architecture Dependence
Analysis Technique”, Department of Computer
Science, University of Colorado, Boulder, CO,
Technical Report CU-CS-845-97, September 1997.

15. R.N. Taylor, N. Medvidovic, K.M. Anderson, J. E.
James Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow, “A Component- and Message-Based
Architectural Style for GUI Software”, IEEE
Transactions on Software Engineering, vol. 22, no. 6,
pp. 390–406, 1996.

