Challenges in Exploiting Architectural Models
for Software Testing

David S. Rosenblum
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
+1 949.824.6534
dsr@ics.uci.edu
http://www.ics.uci.edu/~dsr/

ABSTRACT having a simulation or execution semantics [6]. Rapide

Software architectural modeling offers a natural framework Is an example of such a Iangu.age. [41 . .

for designing and analyzing modern large-scale software® 1he model can be used to guide integration testing of the
systems and for composing systems from reusable off-the- implemented system. In particular, the structure of the
shelf components. However, the nature of component- Model can be used to guide the order in which
based software presents particularly unique challenges for components are assembled and tested, and the
testing component-based systems. To date there have beenSPecifications of the model elements can be used as test
relatively few attempts to establish a sound theoretical basis Oracles.

for testing component-based software. = The model can be used to guide selective regression

This paper discusses challenges in exploiting architectural testing of the S¥Stem as itevolves in ma_mtenance [1_3]'
models for software testing. The discussion is framed in The software testing literature offers a variety of techniques
terms of the author's recent work on defining a formal that can be applied or adapted in a reasonably

model of test adequacy for component-based software, angtraightforward way to these kinds of testing (e.g., by
how this model can be enhanced to exploit formal defining architecture-oriented structural coverage criteria,

architectural models. defining the architectural equivalent of top-down or
bottom-up integration testing, etc.). Yet there is very little
Keywords in the testing literature that addresses the unique testing

ADLs, architectural modeling, component-based software, challenges posed by component-based software.

integration testing, software testing, subdomain-basedDistributed component-based systems of course exhibit all
testing, test adequacy criterion, unit testing. of the well-known problems that make testing “traditional”
distributed and concurrent software difficult. But testing of
! INTRODUC_TION . component-based software (distributed or otherwise) is
Softwar_e a_rchltectural moc_iellruﬁers a natural framework f,rther complicated bytechnological heterogeneitand
for designing and analyglng modern large-scale SOftwareenterprise heterogeneityf the components used to build
systems and for composing systems from reusable off-theystems. Technological heterogeneity refers to the fact that
shelf components [9,10]. ~ However, the nature of giferent components can be programmed in different
component-based software presents particularly uniqueprogramming languages and for different operating system
challenges for testing component-based systems. INgng hardware platforms, meaning that testing a component-
particular, while the technology for constructing pased system may require a testing method that operates on
component-based software is relatively advanced, andy |arge number of languages and platforms. Enterprise
while the architecture research community has produced eterogeneity refers to the fact that off-the-shelf
number of powerful formal notations and analysis components can be provided by different, possibly
techniques for architectural modeling, there have beencompeting suppliers, meaning that no one supplier has
relatively few attempts to establish a sound theoretical baSi%ompIete control over or complete access to the
for testingcomponent-based software (e.g., see [3,11,12]). gevelopment artifacts associated with each component for

An architectural model can be used in a variety of ways toPUrposes of testing. And in the most extreme situations of

aid the testing of a component-based system: dynamic evolution components can be replaced within,
added to, and deleted from a running system, potentially

= The model itself can be tested directly, prior to the forgoing a traditional period of testing prior to deployment
selection of components and the development of theof the new configuration [5,8].

implementation. This requires that the model be

expressed in aarchitecture description languad&DL) Thus, in this author's view, it is these problematic
characteristics of component-based software that raise the

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy ¢ 30 June — 3 July 1998 49

Dy
P-irrelevant

M-bypass M-traverse

~ P-relevant __~
v

P M access method

implementation

Fig. 1. A Model of Component-Based Software.

most interesting and important challenges in exploiting In a recent paper, the author developed a formal model of
architectural models for software testing. component-based software and a formal definition of
component-based test adequacy [12]. This work attempts
2 A FORMAL DEFINITION OF COMPONENT- to capture in a formal way the need to consider the context
BASED TEST ADEQUACY in which a component will be used in order to judge
Any attempt to develop a foundation for testing whether or not the component, and the system using the
component-based software must begin by establishing arcomponent, has been adequately tested.
appropriate formal model of test adequacy. tést , L
adequacy criterioris a systematic criterion that is used to F19- 1 represents pictorially the formal model of
determine whether a test suite provides an adequate amouffomponent-based software. The figure illustrates a
of testing for a program under test. Previous definitions of Program /2 containing a constituent componekt. In
adequacy criteria have defined adequate testing of ageneral,/ may contain several such componevitsand
program independently of any larger system that uses themay itself be a component within some larger system. As
program as a component. This perhaps may be due to thehown in the figure M is viewed as declaring in its
traditional view of software as a monolithic code base thatinterface a singlaccess methothat handles the invocation
can be put through several phases of testing prior to itsof the actual methodsof M. For each parameter of an
deployment, and by the same organization that built theactual method oM, there is a corresponding parameter of
software in the first place. However, a test set that satisfieshe same type and mode in the access method. The access
a criterion in the traditional sense might not satisfy the method includes an additional parameter used to identify
criterion if it were interpreted with respect to the subset of the actual method that is to be invoked. The input domain
the component’s functionality that is used by a larger of M is then the input domain of its access method, which
system. is the union of the input domains of the actual methods of
M, but with each element extended with the appropriate

Consider the simple example of tls¢atement coverage method identifier.

criterion, which requires a test set to exercise each
statement in the component under test at least once. Therget Dy be the input domain of, and letD,, be the input

may be a large number of elements in the component'syomain of the access method\df As shown in the figure,

input domain that could be chosen to cover a particularthere are four important subsets of these input domains,
statement. However, the element that is ultimately chosenyhich are defined formally as follows:

may not be a member of that subset of the input domain_

that is utilized by the larger program using the component. Definitions:

Hence, while according to traditional notions of test

adequacy the test case could serve as a member of an M-traverse(D) =
adequate test set for the component, from the perspective of {dODp | execution ofon inputd traverses }
the larger program using the component, the test set would

be inadequate. M-bypass(D) = Dy — M-traverse(D)

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy « 30 June — 3 July 1998 50

Prelevant(Q,)
{dOD, | Od" OM-traverse(D) ¢ execution of
Pon inputd’ traversesM with inputd }

Pirrelevant(D,) D, — /Frelevant(D,)

The phrase “execution ¢f traversesM” is taken to mean
that the execution of includes at least one invocation of
M’s access method. Thd-traversesubset ofDy is then
the set of all inputs of that cause the execution gfto
traverseM. The Prelevantsubset ofD,, is the set of all
inputs ofM’s access method th#tuses for its traversals of
M. TheM-bypasssubset oDy is the set of all inputs of
that cause the execution of to “bypass” or avoid
traversingM. Finally, theZirrelevant subset oD,, is the
set of all inputs oM’s access method th#tnever uses for
its traversals of."

The formal definition of test adequacy for component-
based software is developed in terms of applicable

subdomain-based test adequacy criteria, as defined by

Frankl and Weyuker [2]. In particular, te@st adequacy
criterion C is subdomain-basedf there is a nonempty
multiset S (D) of subdomains ob (the input domain of
the program under test), such ti@atequires the selection
of one test case from each subdomain S§&(D).

Furthermore(is applicableif the empty subdomain is not
an element ofS2A (D) [2]. Thus, a test set B-adequatsef

S (M-bypass(D)) =
{ D OM-bypass(D) | OD" O S (Dy » DOD’

and D-D O M-traverse(D’) and D # O}

S (Prelevant(Q,))
{ DO Frelevant(Q,) | OD’ O SA(D,) « DOD’
and D’'-D O Airrelevant(D,) and D # O}

S (Pirrelevant(D,)) =
{ D O Kirrelevant(D,) | OD’ O S2,(D,) » DO
D’ and D’'-D O Frelevant() and D # O}

Note that according to these definitions, each subdomain
induced by criteriorC on program/is partitioned into its

M-traversesubset and itd1-bypasssubset. Note that the
definitions discard empty subdomains, in order to retain the
applicability ofC.

Given the above definitions, adequate testing of
component-based software can now be formally defined.
First, the concept C-adequate-for” is defined to
characterize adequatait testingof M:

Definition (C-adequate-fofJ): A test sefT,, is C-adequate-
for-P if it contains at least one test case from each
subdomain inS.(Arelevant(Q,)).

Second, the concepC-adequate-on-Mis defined to
characterize adequatetegration testingof / with respect

and only if it contains at least one test case from eachto its usage oi:

subdomain inS2 (D). Since testers rarely satisfy 100% of

the test requirements induced by a test adequacy criterion

it also makes sense to say that a test se&bi-adequatdf

it contains at least one test case fronpercent of the
subdomains in S2.(D). These definitions capture the
traditional notion of test adequacy, and they make no
distinction between a program and a component.

Definition (C-adequate-on-MA test sefTyis C-adequate-
on-Mif it traversesM with at least one element from each
subdomain inS.(Arelevant(,)).

These definitions can be extended as before to

accommodate a notion of percentage of adequacy.

Note that although it i#that is being tested in integration

In order to define test adequacy for component-basedtesting, these definitions require the criteri@hto be
software, it is necessary to first partition the subdomainschosen and then evaluatiedterms of Min order to ensure

induced by an applicable subdomain-based crite®n
according to the partitioning &y andD,,:

Definitions:

S (M-traverse(D))
{ D U M-traverse(D) | OD’ O SH(Dy » DOD’
and D’'-D [0 M-bypass(?) and D # [0}

' Note that this model fails to account for the possibility of
non-determinism in the execution Bbr M.

? An example of such a criterion &atement coverage

adequate testing of the relationship betwgeamdM. For
example,C could be a criterion that requires each of the
actual methods d¥l to be exercised at least once. This is a
reasonable requirement for adequate integration testing of
P, and the definition ofc-adequate-on-Mensures that the
criterion would be interpreted only with respect to the
methods ofM that £ invokes anywhere in its source code.
Of courseC need not be the same criterion as the one used
to design Ty in the first place; it merely imposes a
requirement on the testing achievediby

There are a number of additional interesting consequences
of these definitions. For instance, a testBgthat isC-
adequatemight not beC-adequate-for¥, and vice versa.

which induces one subdomain for each exeCUtableFurthermore,atest s@ that isC-adequatemight not be

statement in a program, with each subdomain containing

exactly those inputs that cover its associated statement.

C-adequate-on-Mand vice versa. And similar statements
can be made with respect to percentage of adequacy.

International Workshop on The Role of Software Architecture in Testing and Analysis

Marsala, Sicily, Italy ¢ 30 June — 3 July 1998

51

3 ADEQUATE TESTING AND SOFTWARE Third, ADLs support explicit representation of a rich

ARCHITECTURES variety of behavioral relationships and other dependencies
The formal model presented above provides an initial between archﬂectgral elements [14]. These relationships
foundation for studying and evaluating test adequacy ford0 not always strictly conform to a caller/callee style of
component-based systems. However, there are twocomponent relat|0nsh|ps as .deplcted in Fig. 1, andi it may
important issues that merit consideration. One issue is the'0t P& possible to characterize them fully and precisely in
practical applicability of the model. It is one thing to argue terms of the input domains of related elements. Thus, the
that components must be tested with respect to the contextormal model of test adequacy developed above must be
in which they will be used. It is another thing to determine €nhanced to account for the richness of inter-element
how this will be accomplished, especially in the presence of"€lationships.

off-the-shelf components, whose important attributes with these enhancements in place, the formal model of test
needed for evaluation of test adequacy criteria (SUCh a%dequacy can be used in Conjunction with formal
input domain, Specification, implementation structure, etC.) architectural models to guide testing of software in a
may be difficult or impossible to ascertain. manner that is truly adequate. A key challenge in
A second issue is to determine how the model relates toincorporating such enhancements is to address the broad
and can be adapted to, software architectural modeling/@Nge of semantic models and modeling and analysis
One approach is to view formal architectural models asConcerns of the many ADLs that have been defined.
inducing definitions of input domains for architectural 4 coONCLUSION

elements, and then applying the model to these inducedr
input domains. However, this approach must take into
consideration at least three important attributes of
architectural models and the ADLs used to specify them.

his paper has discussed challenges in exploiting
architectural models for software testing, with the
discussion framed in terms of the author’s recent work on
defining a formal model of test adequacy for component-
First, many ADLs support specification of other kinds of based software. An explicit architectural viewpoint in
architectural elements in addition to components, such assoftware engineering offers the promise of dramatically
connectors and configurations (see Medvidovic et al. for aimproving—and in the process altering— the way software
complete discussion of ADL features and is developed [10]. While these changes will not obviate the
capabilities [6,7]). The formal model presented above mustneed for testing, one can at least attempt to find ways of
be enhanced to take these additional kinds of elements inte@xploiting formal architectural models for the purpose of
account. In some ADLs these elements can possibly beesting. While architectural models offer a rich source of
treated as components for the purpose of testing. Foiinformation to support testing, any attempt to exploit
instance, the connectors in Wright encapsulate behaviorarchitectural models for testing must be cognizant of the
and provide a static, finite collection of interface unique characteristics of the new kinds of systems that an
elements [1]. However, in other ADLs such elements architectural viewpoint engenders.

differ substantially from components. For instance, a
connector in C2)(ljoes not har\)/e an interface per se, bquCKNOWLEDGMENTS

instead iscontextually reflectiveof the interfaces of the This material is based upon work supported by the National
components that it connects [15]. Furthermore, this set ofScience Foundation under Grant No. CCR-9701973, and by
components can vary dynamically [8]. the Air Force Office of Scientific Research under grant
number F49620-98-1-0061. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the author and should not be interpreted
as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Office of Scientific Research or the U.S. Government.

Second, many ADLs distinguish between ttanceptual
architecturethat is formally modeled in an ADL and the
implementation architectureof the actual system, and
different ADLs impose different requirements on the
relationship between the two. At a minimum, this
distinction means that the input domains of the conceptual
architecture may differ from those of the implementation
architecture. In particular, the input domain of a
component in the conceptual architecture can be a (properREFERENCES
subset of the input domain of the implementation-level
component or components that implement the conceptuall'
component. This is to be expected especially in situations
where an off-the-shelf component provides more
functionality than is needed by a system that uses it. Thus,

the formal model of test adequacy developed above must, b g FErankl and E.J. Weyuker, “A Formal Analysis of

be enhanced to at_:count.for the additional complexities the Fault-Detecting Ability of Testing MethoddEEE
introduced by domain relationships between conceptual and ansactions on Software Engineeringl. 19, no. 3

implementation architectures. pp. 202-213, 1993.

R. Allen and D. Garlan, “A Formal Basis for
Architectural Connection”,ACM Transactions on
Software Engineering and Methodolegwl. 6, no. 3,

pp. 213-249, 1997.

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy ¢« 30 June — 3 July 1998 52

D. Hamlet, “Software Component Dependability—a
Subdomain-based Theory”, RST Corporation,
Technical Report RSTR-96-999-01, September 1996.

D.C. Luckham and J. Vera, “An Event-Based
Architecture Definition LanguagelEEE Transactions
on Software Engineeringol. 21, no. 9, pp. 717-734,
1995.

J. Magee and J. Kramer, “Dynamic Structure in
Software Architectures”Proc. ACM SIGSOFT '96
Fourth Symposium on the Foundations of Software
Engineering San Francisco, CA, pp. 3-14, 1996.

N. Medvidovic and D.S. Rosenblum, “Domains of
Concern in Software Architectures and Architecture
Description LanguagesRroc. USENIX Conference on
Domain Specific LanguageSanta Barbara, CA, pp.
199-212, 1997.

N. Medvidovic and R.N. Taylor, “A Framework for
Classifying and Comparing Architecture Description
Languages”Proc. 6th European Software Engineering
Conference/5th ACM SIGSOFT Symposium on the
Foundations of Software EngineerjngZurich,
Switzerland, pp. 60-76, 1997.

P. Oreizy, N. Medvidovic, and R.N. Taylor,
“Architecture-Based Runtime Software Evolution”,
Proc. 20th International Conference on Software
Engineering Kyoto, Japan, 1998.

P. Oreizy, N. Medvidovic, R.N. Taylor, and D.S.
Rosenblum, “Software Architecture and Component
Technologies: Bridging the Gap”, Digest of the OMG-

13. G. Rothermel

14. J.A. Stafford, D.J. Richardson,

DARPA-MCC Workshop on Compositional Software
Architectures, Monterey, CA January 1998.

10. D.E. Perry and A.L. Wolf, “Foundations for the Study

of Software Architecture’ACM Software Engineering
Notes vol. 17, no. 4, pp. 40-52, 1992.

11. D.J. Richardson and A.L. Wolf, “Software Testing at

the Architectural Level”,Proc. Second International
Software Architecture Worksho@an Francisco, CA,
pp. 68-71, 1996.

12. D.S. Rosenblum, “Adequate Testing of Component-

Based Software”, Department of Information and
Computer Science, University of California, Irvine,
Irvine, CA, Technical Report 97-34, August 1997.

and M.J. Harrold, “Analyzing
Regression Test Selection TechniqueslEEE
Transactions on Software Engineeringl. 22, no. 8,
pp. 529-551, 1996.

and A.L. Wolf,
“Chaining: A Software Architecture Dependence
Analysis Technique”, Department of Computer
Science, University of Colorado, Boulder, CO,
Technical Report CU-CS-845-97, September 1997.

15. R.N. Taylor, N. Medvidovic, K.M. Anderson, J. E.

James Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy,
and D.L. Dubrow, “A Component- and Message-Based
Architectural Style for GUI Software”, IEEE
Transactions on Software Engineeringl. 22, no. 6,
pp. 390-406, 1996.

30 June — 3 July 1998

International Workshop on The Role of Software Architecture in Testing and Analysis
Marsala, Sicily, Italy

53

