
Enabling Confidentiality in Content-Based
Publish/Subscribe Infrastructures

Costin Raiciu David S. Rosenblum
Department of Computer Science

University College London
{c.raiciu|d.rosenblum}@cs.ucl.ac.uk

Abstract—Content-Based Publish/Subscribe (CBPS) is an interaction
model where the interests of subscribers are stored in a content-based for-
warding infrastructure to guide routing of notifications to interested par-
ties. In this paper, we focus on answering the following question: Can
we implement content-based publish/subscribe while keeping subscriptions
and notifications confidential from the forwarding brokers? Our contri-
butions include a systematic analysis of the problem, providing a formal
security model and showing that the maximum level of attainable security
in this setting is restricted. We focus on enabling provable confidentiality
for commonly used applications and subscription languages in CBPS and
present a series of practical provably secure protocols, some of which are
novel and others adapted from existing work. We have implemented these
protocols in SIENA, a popular CBPS system. Evaluation results show that
confidential content-based publish/subscribe is practical: A single broker
serving 1000 subscribers is able to route more than 100 notifications per
second with our solutions.

Index Terms—confidentiality, content-based publish/subscribe, privacy-
preserving range matches

I. INTRODUCTION

CONTENT-BASED publish/subscribe (CBPS) is a conve-
nient interaction model for distributed systems, allowing

decoupled messaging through the CBPS infrastructure between
two types of actors: (1) subscribers, having interests in informa-
tion they express as subscriptions, and (2) publishers, produc-
ing information of interest as notifications. A network of CBPS
brokers provides a decentralized infrastructure whose role is to
disseminate notifications efficiently from the publishers to all
the subscribers that have matching interests, optimizing aspects
like bandwidth usage or end-to-end latency.

Research in the publish/subscribe area has traditionally fo-
cused on the scalability issues of publish/subscribe networks,
yielding distributed algorithms for wide-area event notification
and matching by using infrastructures comprising a mesh of
publish/subscribe brokers [1, 2]. An implicit assumption under-
lying this research has been that the forwarding brokers must
be trusted with subscription and notification information to per-
form correct content-based matching. This is only acceptable
if we are running applications over dedicated infrastructures of
trusted brokers. However, we expect CBPS to be enabled on
top of existing infrastructures of third party providers (equiva-
lents of content distribution networks, such as Akamai [3]), or
even in a peer-to-peer manner, to minimize the costs of deploy-
ment or to distribute the burden of maintenance. A small-scale
stock quote provider, for instance, might use a third-party CBPS
provider to disseminate data to home users.

In this paper, we focus on a particular aspect of security in
CBPS, confidentiality, that has two facets in this context [4]:
Notification confidentiality: The stock quote provider will be

reluctant to disclose stock information to the infrastructure,

if it believes that some brokers could re-sell or otherwise
exploit this information.

Subscription confidentiality: Subscribers would like to keep
their stock quote subscriptions private from the forwarding
brokers, as these might leak their business strategy.

Creating solutions to deal with these aspects is paramount if
CBPS is to be adopted as a solution for data dissemination.
However, the very nature of CBPS—targeting a sweet spot
in the space of plain IP-multicast (when subscribers can be
clustered into groups based on their topic interests), broadcast
(when most subscribers want most of the data) or simple unicast
(if few subscribers are interested in even fewer data)—makes
solutions quite difficult to obtain, as they must meet strict per-
formance requirements and tight security guarantees.

In this paper, we provide a thorough study of confidential-
ity in the context of content-based forwarding and present our
solution, being the first work to fully address this issue. The
contributions of this paper include

1. a formal definition and a systematic analysis of confiden-
tiality in CBPS;

2. several provably secure techniques, either novel or newly
adapted from existing work, that enable Confidential
Content-Based Publish/Subscribe (C-CBPS) for com-
monly used types of subscriptions and notifications; and

3. an implementation of our solutions in a popular CBPS
system, SIENA [1], making available to the community
the first complete implementation of publish/subscribe that
supports confidentiality. Evaluation results prove that our
solutions are lightweight enough to be suitable for usage in
real applications.

The paper is organized as follows: Section II provides back-
ground information. Section III presents our definition of the
Confidential CBPS problem and also discusses inherent limi-
tations. In Section IV we present our solutions for Confiden-
tial CBPS. Section V discusses how these protocols are bundled
into a complete solution and implemented in SIENA. Section VI
presents experimental results, and Section VII reviews existing
work in the area. We conclude in Section VIII with a summary
of our contributions and future directions of research.

II. BACKGROUND

A. Content-Based Publish/Subscribe

One of the distinctive characteristics of the publish/subscribe
interaction model is loose coupling between the publishers and
subscribers: spatial decoupling, temporal decoupling and flow
decoupling [5]. These make publish/subscribe systems ideal

2

for interactions between a large number of publishers and sub-
scribers, scattered spatially across the entire Internet.

Subscribers have the ability to express their interest in an
event by sending a subscription to an infrastructure compris-
ing a decentralized network of publish/subscribe brokers. The
infrastructure delivers to the subscribers any published notifi-
cation that matches their registered interests. In content-based
publish/subscribe, the subscription is a predicate containing one
or more constraints (or filters) on the attributes of notifications,
with each filter applying to a single attribute. An event notifica-
tion is a set of attributes, where an attribute is a triple: (name,
type, value) [1].

The commonly used example is stock quotes dissemination,
where the event notification contains attributes such as subject
(string, the name of the event), exchange (string, the name of
the stock exchange), symbol (string, for example DIS), price
(float, the current value of the specified stock) and change (float,
the variation of price with respect to the previous value). An
example subscription is (change> 0) and (symbol=“DIS”).

The main task of the CBPS broker is to match a notifica-
tion against the subscriptions it stores, determining which sub-
scribers should receive the notification. Subscription S1 is said
to cover S2 if the set of notifications matched by S2 is a subset
of those matched by S1 [1]. CBPS systems use the covering
relation between subscriptions to ensure a sublinear increase of
broker matching time with the number of stored subscriptions.

B. Security Preliminaries

We say that a function f is negligible in t if, for any polyno-
mial p there exists t0 such that for all t > t0, f(t) < 1/p(t). We
use PPT as a shorthand for probabilistic polynomial time.

We provide the following standard definitions from the litera-
ture on provable security [6], which we will use throughout this
paper.
Pseudorandom Function. A pseudorandom function is com-
putationally indistinguishible from a random function. For-
mally, a function family {FK : {0, 1}n → {0, 1}m|K ∈
{0, 1}t} is pseudorandom if for every PPT oracle algorithm
A the following value is negligible in t: |Pr[AFK(·)(1t) =
1]−Pr[AR(1t) = 1]|, where R is a random function selected
uniformly at random from the set of functions from {0,1}n →
{0,1}m. The probabilities are taken over the choice of K and
R, respectively.
Pseudorandom Permutation. A pseudorandom permutation
is computationally indistinguishible from a truly random per-
mutation. Formally, a permutation family {EK : {0, 1}n →
{0, 1}n|K ∈ {0, 1}t} is pseudorandom if for every PPT or-
acle algorithm A, the following value is negligible in t:
|Pr[AEK(·)(1t) = 1]−Pr[Aπ(1t) = 1]|, where π is a permu-
tation selected uniformly at random from the set of bijections
from {0,1}n → {0,1}n. The probabilities are taken over the
choice of K and π, respectively.

III. PROBLEM STATEMENT AND IMPLICATIONS

A. Security Assumptions and Scope

We assume that the publishers and subscribers are trustwor-
thy and that they share a common secret used for confidential

CBPS. Although the latter reduces the decoupling provided by
CBPS (as publishers and subscribers must use an auxiliary dis-
tribution channel for the common secret), it is central to pre-
serving confidentiality. The group key distribution problem has
been studied intensely in the literature, with several solutions
available [7]. Here, we treat the key distribution problem as
orthogonal to this work.

Preventing a malicious subscriber from disseminating all the
information it receives to other parties is equivalent to solving
the digital copyright problem. This is also outside the scope of
this work.

We assume that brokers are computationally bounded and do
not deviate from the content-based forwarding protocol—they
correctly forward notifications to interested subscribers. Other-
wise, denial of service attacks could be mounted easily (since
brokers could simply drop messages), affecting the correct op-
eration of the infrastructure. We do not consider the effects of
this type of behavior, leaving it as an issue for future research.

B. Problem Definition

Definition 1: Confidential Content-Based Pub-
lish/Subscribe (C-CBPS). Consider two types of parties
P (publishers) and S (subscribers) having private inputs. Each
Pi has a sequence of notifications, and each Sj has some
information interests (filters or subscriptions), a subset of
which is active at any point in time. C-CBPS is a multi-round
protocol between P ,S and a third party R, the broker. In each
round one of the following can take place: a) Sj (for some
j) sends its active filters to R; or b) Pi (for some i) sends a
notification to R. A correct implementation of C-CBPS with
security parameter t must satisfy the following:
Correctness R must be able to determine in PPT the subset of

active filters that matches each notification.
Security For k ∈ N, define V iewk as all the communica-

tions R has received from P and S before round k. De-
fine Plaintextk = {N1, . . . , Ni, S1, . . . , Sj} as the set
of subscriptions and notifications sent by P and S be-
fore round k. Let Ok be an oracle that has access
to Plaintextk and exports the two following functions:
match(idxS ,idxN) and cover(idxS,1,idxS,2), defined iff
idxS , idxS,1, idxS,2 ∈ {1, . . . , j} and idxN ∈ {1, . . . , i}.
Finally, define V iew∗

k = {i, j,Ok}.
A C-CBPS scheme is secure if, for k ∈ N, for any
PPT algorithm A, any function h, there exists a PPT
algorithm A∗ such that the following value is neg-
ligible in t: |Pr[A(V iewk, 1t) = h(Plaintextk)] −
Pr[A∗(V iew∗

k,1t) = h(Plaintextk)]|
In other words, we require that information leaked to the broker
is the same as in an ideal protocol where the broker performs its
functionality by submitting the indexes of the subscriptions and
notifications it wishes to match (idxS and idxN) to an oracle
(Ok) with access to the plaintext versions. The above definition
implies the following:
Notification Security Notifications possess semantic security

for multiple messages (as defined by Goldreich [6]) in the
absence of subscriptions. When subscriptions are avail-
able, the only thing that is leaked is whether a notification
matches the subscription or not. The notifications that are

ENABLING CONFIDENTIALITY IN CONTENT-BASED PUBLISH/SUBSCRIBE INFRASTRUCTURES 3

not matched by the available subscriptions are computa-
tionally indistinguishable from random bits.

Subscription Security Subscriptions can be distinguished us-
ing the covering relation, and therefore their encryption
scheme is not semantically secure. A stronger secu-
rity model could require that the subscription encryption
scheme is also semantically secure. In this paper we dis-
card this stronger model for practical purposes: efficient
CBPS solutions rely on the coverage relation between sub-
scriptions, which mandates that a broker should know if
two subscriptions are related [8].

Notification Unforgeability It is infeasible for an adversary
to create valid encrypted notifications. This is important,
since an adversary able to craft arbitrary notifications can
use regression techniques to infer an approximation of the
subscription function.

Subscription Unforgeability It is infeasible for an adversary
to create valid encrypted subscriptions. Otherwise, the
adversary can use binary search to discover the value of
the notification in logarithmic time. An important con-
sequence of subscription and notification unforgeability is
that plaintext subscriptions or notifications cannot be used
in the matching process (since these are easy to create by
adversaries).

Match Isolation It is infeasible to compute anything from the
messages seen at the broker that cannot be computed by
applying match and cover (using an oracle) to the indexes
of subscriptions and notifications.

The definition above can be generalized naturally to the multi-
broker case where the number of forwarding brokers is arbitrar-
ily large.

Any solution for confidential CBPS consists of the following
five algorithms (the first 4 are compulsory for correct C-CBPS,
the last one may be provided for efficiency):
Keygen(t): run jointly by the publishers and subscribers, out-

puts the shared private key K when given the security pa-
rameter t as input

IndexSub(K,S): run by the subscriber, outputs the encrypted
subscription Se when given the plaintext subscription S
and the private key K

IndexNot(K,N): run by the publisher, outputs the encrypted
notification Ne when given the notification S and the pri-
vate key K

Match(Ne,Se): run by the broker, receives as parameters an
encrypted notification Ne and an encrypted subscription
Se and outputs 1 if Se matches Ne or 0 otherwise

Cover(Se1 ,Se2): (Optional) run by the broker, accepts as para-
meters two encrypted subscriptions Se1 and Se2 , and out-
puts 1 if Se1 covers Se2 or 0 otherwise

For simplicity of exposition, we use the term “encrypt” to de-
note a secure encoding of subscriptions and notifications that
allows C-CBPS. However, we point out that the schemes pre-
sented here are not traditional symmetric encryption schemes,
since decryption is not usually possible.

C. Limitations of Confidentiality

Regardless of the protocols used, the maximum level of at-
tainable confidentiality in CBPS is quite limited. These limita-

tions arise from the functionality the broker is required to per-
form (i.e., to decide if an encrypted subscription matches an en-
crypted notification) and are inherent to the C-CBPS problem.
Here, we present a brief overview of these limitations.

C.1 The “Attack at Dawn” Problem

The mere fact that a subscription matches a notification can
leak crucial information, if the identities of the publishers and
subscribers are known to the broker. An (admitedly contrived)
example is this: The army has several operational units that reg-
ister subscriptions to receive specific commands, such as “attack
at dawn”. When such a message is matched by such a subscrip-
tion, the broker knows that something important is going on,
even if it does not know the contents of the notification or sub-
scription. Single-broker CBPS infrastructures are most suscep-
tible to this problem; in multi-broker deployments, brokers in
the core of the network are unable to discover the identities of
the publishers and subscribers without colluding with the edge
brokers.

This problem can be mitigated by using sender and receiver
anonymizing techniques [9,10] for communication between the
end-users and the brokers.

C.2 Limited Indistinguishability

Subscriptions stored by a broker can be used to distinguish
certain notifications (e.g., to tell if they are equal) by match-
ing the subscriptions against the notification: this uses the fact
that the broker must be able to match subscriptions against no-
tifications, and is independent of the encryption scheme used
for notifications. The more subscriptions that are available, the
more likely the broker is to accurately distinguish notifications.
In the case where the broker has a complete basis of subscrip-
tions, it can distinguish all notifications with zero probability of
error.

C.3 Confidentiality-Generality Tradeoff

We define the “complexity” of a subscription type as 1
minS

,
where minS is the minimal number of subscriptions needed
to recognize all notifications. There is a direct correlation be-
tween the complexity of a subscription and the information it
leaks about notifications. For instance, the simplest subscrip-
tion function is equality testing: one such subscription will al-
low a broker to distinguish notifications that are equal to the
specified value. To distinguish all possible notifications with-
out error (i.e., to have a basis), the broker needs O(2n) distinct
subscriptions, where n is the size of the notification in bits. The
more complex subscriptions are, the more information is leaked
about notifications. For instance, a subscription that accepts all
notifications with the kth bit set to a specific value, will allow
the broker to distinguish information about the kth bit of all no-
tifications. In this case, only O(n) subscriptions are needed to
distinguish notifications with zero probability of error.

C.4 Trust

The assumption that any individual in the potentially large
group of publishers and subscribers is trusted is strong: If a
single subscriber leaks the secret key to the brokers, then the
security of the protocol is compromised.

4

In the single key setting, detecting the source of information
leakage is very difficult, and so is excluding malicious sub-
scribers from the network. Broadcast Encryption [11] is used
to trade communication efficiency for accountability and trace-
ability of malicious subscribers in broadcast networks. Un-
fortunately broadcast encryption cannot be used directly in C-
CBPS; devising communication-efficient broadcast encryption
techniques that can be used for content-based matching is a re-
search agenda in itself, not explored in this paper.

IV. SOLUTIONS

There are two high level approaches to solving C-CBPS:
one way is to encrypt notifications as a whole and match them
against the encrypted subscription. This approach requires sup-
port for complex subscriptions appearing in practice, which are
difficult to support efficiently and securely in the same time, as
we show in Section D.

The alternative approach, used in this paper, relies on the
structure of notifications (which are collections of attribute-
value pairs). This allows us to support overall complex sub-
scriptions that are composed from several simpler building
blocks. The security of this compound protocol is weaker than
Definition 1, even though the basic building blocks are secure.
However, through careful selection of the attributes that the bro-
ker is allowed to “match”, the amount of leaked information can
be controlled and should be acceptable in practical cases. Obvi-
ously, in the case where a subscription consists of a single filter
and the notification contains a single attribute, the compound
protocol is secure according to Definition 1.

In this section, we present C-CBPS solutions for types of
subscriptions supported by the wide majority of CBPS solu-
tions nowadays: we adapt a scheme from Song et al. [12] to
support equality tests (string and numeric-valued attributes), we
propose two novel schemes for range matches (numeric-valued
attributes) and use a scheme from Goh et al. [13] for keyword
matching (string-valued attributes). We also discuss techniques
to support more general subscriptions.

In the descriptions of the basic C-CBPS schemes, we assume
each notification is a single value, and each subscription is a
single filter.

A. Equality Filtering

One of the prominent filtering functions used in practice is
equality matching. To support equality matches, we use the
first step of the solution proposed by Song et al. for searches
on encrypted data [12]. The idea is to compute the “hidden”
value of an attribute by passing its plaintext value as argu-
ment to a pseudorandom function, keyed with the secret key.
The encrypted subscription is the hidden value of the plaintext.
Encrypted notifications are composed of two parts: a random
nonce r, generated by the publisher, and the result of feeding r
to a pseudorandom function, keyed with the hidden value of the
notification’s plaintext.

Let F be a pseudorandom function. The algorithms for Equal
C-CBPS are:
Keygen(t): select K from {0,1}t uniformly at random
IndexSub(K,S): return FK(S)

IndexNot(K,N): select rnd uniformly at random. Let h =
FK(N). Return (rnd,Fh(rnd)).

Match(Ne,Se): Let Ne = (rnd,two). Return 1 if FSe
(rnd) =

two, 0 otherwise
Cover(S1,S2): Return 1 if S1 = S2, 0 otherwise

Theorem 1: Equal is a correct implementation of C-CBPS.
The proof is presented in the Appendix.

This scheme is cheap from both the computation and commu-
nication points of view. Computation-wise, the scheme adds a
few cheap operations to creating subscriptions/notifications and
a single function application for matching.

B. Keyword Filtering

Substring matching is the most expressive operation currently
implemented on strings in common CBPS architectures. We
choose to support a simpler operation—keyword matching—
based on the observation that this suffices for many applications.
The protocol we use has been proposed by Goh [13]. The idea is
to break the string into words and construct a Bloom filter [14]
to signal existence of a word in the string. The subscription is a
single keyword.

Let F be a pseudorandom function. Let BF be a Bloom filter.
The algorithms for Keyword C-CBPS (Goh [13]) are:
Keygen(t): select r as the number of hash functions in the

Bloom filter BF with the desired false positive rate. Select
K = (k1, k2, . . .,kr) uniformly at random from {0,1}rt.

IndexSub(K,S): return (Fk1(S), . . .,Fkr
(S))

IndexNot(K,N): extract keywords w1, . . ., wn from N .
Select a random nonce rnd. For i = 1 . . . n, com-
pute (xi,1, . . . , xi,r) = IndexSub(K, wi), compute the
codeword (y1 = Frnd(xi,1), y2 = Frnd(xi,2), . . ., yr =
Frnd(xi,r)) and set BF [yj] = 1 for j = 1 . . . r. Return
(rnd, BF)

Match(Ne,Se): Let Se = (x1, x2, . . ., xr). Let Ne = (rnd,
BF). Compute codewords yi = Frnd(xi) for i=1 . . . r and
check if the bit corresponding to yi is set in BF . If there
exists i such that BF [yi] = 0 return 0, otherwise return 1

Cover(S1,S2): Return 1 if S1 = S2, 0 otherwise.
We make the assumption that all strings have a predefined
length and that they have the same number of words. This
prevents an attacker from distinguishing two notifications by
counting the number of bits set in the BF . When the latter
assumption does not hold, we can add random bits to the BF to
simulate the proper number of words [13].

Theorem 2: Keyword is a correct implementation of C-
CBPS.
A proof sketch is presented in the Appendix.

The overhead of the protocol mainly lies in transmitting the
Bloom filter, which can be as large as the size of the string, if
all the words are included as possible keywords.

Alternative Schemes. Other solutions are available for key-
word filtering [12, 15, 16]. The scheme proposed by Chang et
al. [15] is based on creating a dictionary that has one bit for
every possible word in the string. The dictionary is shuffled us-
ing a pseudorandom permutation and blinded using pseudoran-
dom functions and a random nonce. The notification includes
the blinded dictionary, along with the random nonce.The sub-

ENABLING CONFIDENTIALITY IN CONTENT-BASED PUBLISH/SUBSCRIBE INFRASTRUCTURES 5

scription contains the shuffled index of the word plus a “hidden”
version of the index.

Let F , G be two pseudorandom functions and E be a pseudo-
random permutation. The Dictionary scheme is:
Keygen(t): select K = {K1,K2} uniformly at random from

{0,1}t×{0,1}t.
IndexSub(K,S): find index λ of S in the dictionary D. Re-

turn {index = EK1(λ),FK2(index)}
IndexNot(K,N): let J and I be two bit index strings of size

|D|, initialized to 0. For all words w1, . . ., wn in N , find λi

(the index of wi in the dictionary) and set I[EK1(λi)] = 1.
Select a random nonce rnd. For i = 1 . . . |D|, compute
ri = FK2(i) and set J [i] = I[i]⊕Gri(rnd). Return (rnd,
J)

Match(Ne,Se): Let Se = (index, rindex). Let Ne = (rnd, J).
If J [index]⊕Grindex

(rnd) = 1 return 1, otherwise, return
0

Cover(S1,S2): Return 1 if S1 = S2, 0 otherwise.
Theorem 3: Dictionary is a correct implementation of C-

CBPS.
A proof sketch is presented in the Appendix.

Compared to Keyword, Dictionary does not generate false
positive matches and does not impose any restrictions on the
number of words in the document. However, the size of the
encrypted notification is 32kB for the English language [15],
being very expensive for small documents. The expected size
of string attributes in CBPS is quite small (hundreds of bytes
usually) favoring the first scheme. Dictionary can be used when
the size of the string is larger or comparable to 32kB or in cases
where the dictionary is smaller.

C. Numeric Filtering

Filtering numeric attributes is frequent in practice and is con-
sequently supported by most implementations of content-based
publish/subscribe. Let D ⊂ R be the notification space. Given a
notification N ∈D, the subscription can have two forms: a) in-
equality tests (N > lb, N < ub) or b) range tests (lb < N < ub),
for lb,ub ∈D. We propose two novel C-CBPS schemes for the
two cases.

These two protocols, despite being presented in the context
of C-CBPS, have wider applicability. In particular, they can be
used for privacy preserving range matches: let the CBPS bro-
ker be a public filestore and assume one user (publisher) stores
some files, including metadata such as file size. The same user
can then send a query (i.e. a subscription) to the server request-
ing files that have the size bounded by some constraints; using
this special instance of C-CBPS, the fileserver can figure out
which files he should return without finding ouy anything more
than necessary.

C.1 Supporting Inequality Subscriptions

Choose l points, p1, . . . , pl ∈D as reference points. We con-
sider the following dictionary: {“> p1”, “> p2”, . . ., “> pl”
“< p1”, “< p2”, . . ., “< pl”}. Subscriptions will be approx-
imated with one of these constraints. Each notification N is
considered to be a document containing the words in the dictio-
nary that it matches. These are encrypted using the Dictionary

scheme we have previously described. The Inequality scheme
is:
Keygen(r): K = Dictionary.Keygen(r). Agree on a set of l

reference points p1, . . . ,pl ∈D.
IndexSub(K,S): Let S = (type, value), where type can

be “<” or “>”. Find i such that |value − pi| =
minl

j=1 |value− pj |. Return Dictionary.IndexSub(K,
type|pi)

IndexNot(K,N): Let Nw = {ti|pi, where ti=“>” if N >
pi and ti=“<” if N < pi, for i = 1 . . . l}. Return
Dictionary.IndexNot(K, Nw)

Match(Ne,Se): return Dictionary.Match(Ne,Se)
Cover(S1,S2): we check whether the subscriptions are the

same by using Dictionary.Cover. Full subscription cov-
ering cannot be checked without additional information in
this case. We present an efficient solution in the Imple-
mentation section, that leaks some additional information

Theorem 4: Suppose all subscriptions can be expressed ex-
actly using the mechanisms above. Then, Inequality is a correct
implementation of C-CBPS
A proof sketch is presented in the Appendix.

The overhead of this scheme is due to the size of the dic-
tionary, equal to 2 · l. There is a direct tradeoff between this
overhead and the precision it allows for subscriptions.

If we want perfect subscriptions (0 false positive and neg-
ative matches), we set l = |D|. This can be expensive in re-
ality (e.g., for 4 byte integers we have ∼109 points). We de-
scribe an exponentially spaced partitioning scheme that is use-
ful in many practical scenarios. Approximating the 4 byte pos-
itive integers with [1 . . . 109], we select as reference points:
1,2,3, . . . ,10,20,30, . . . ,100,200,300, . . . ,1000, . . . ,108

, 2 · 108, 3 · 108, . . . , 109. Although the number of reference
points is only 100 (the notification has only 12 bytes), the pre-
cision is acceptable if we consider that subscriber sensitivity
decreases as notification values increase.

C.2 Supporting Range Subscriptions

To support lb < N < ub subscriptions, our initial idea was to
have the publishers and subscribers a-priori agree on a partition-
ing P = {p1, . . . ,pl} of D. The publisher encrypts the index of
the subset N belongs to by using Equal. The subscribers in-
clude as subscriptions encrypted versions of the indexes of the
subsets in the partition they are interested in (i.e., all pi ∈ P
such that pi ∩ (lb,ub) 6= ∅). However, sending multiple subsets
leaks more information than necessary. Therefore, we would
have to approximate the subscription with a single subset in
the partition. This is not very precise since subscription sizes
(ub− lb) and lb vary among subscribers.

The initial idea can be refined as follows. Create several parti-
tions of D, P1, . . . ,Pm, with different subset sizes and different
starting offsets. Create a dictionary containing as words the in-
dex of the partition concatenated with the subset index, for all
m partitions. A notification can be expressed as a document
with this dictionary by listing the subsets it is included in. The
subscription is approximated with one of the subsets in these
partitions. The Range scheme is:
Keygen(r): Generate K using Dictionary.Keygen. Agree

on m partitions of D, P1, P2, . . . , Pm, where Pi = pi,1 ∪

6

pi,2 . . .∪ pi,li . Let pi,j = [ai,j , bi,j]
IndexSub(K,S): Let S = (lb,ub). Find the best approxima-

tion of S in P1, . . . ,Pm: find x and y such that |lb−ax,y|+
|ub− bx,y|= minm

i=1 minli
j=1(|lb−ai,j |+ |ub− bi,j |). Re-

turn Dictionary.IndexSub (“x,y”)
IndexNot(K,N): Let Nw = {“x, y”| where x ∈ {1, . . . ,m}

and y ∈ {1, . . . , lx} such that N ∈ px,y} . Return
Dictionary.IndexNot(K, Nw)

Match(Ne,Se): return Dictionary.Match(Ne,Se)
Cover(S1,S2): we can easily check to see if two subscriptions

are the same by using Dictionary.Cover. However, we
cannot properly check full covering without additional in-
formation. In Section V we describe an efficient coverage
solution that can be used instead, but leaks more informa-
tion than necessary

Theorem 5: Suppose all subscriptions can be expressed ex-
actly (i.e., without generating false positives or negatives) using
the above algorithm. Then, Range is a correct implementation
of C-CBPS.
A proof sketch is presented in the Appendix.

The scheme creates an explicit tradeoff between the size of
the subscriptions and matching time on one hand, and the num-
ber of false positives and the security attained (i.e., information
leaked due to imprecise subscriptions), on the other. A parti-
tioning scheme with zero false matches for any range subscrip-
tion has |D|2 points, being quite expensive. A better scheme
can be obtained if we focus on subscription sizes likely to be
used in practice. Keeping in mind that CBPS targets distributed
applications where subscribers are highly selective (otherwise
multicast or broadcast can be used), it is reasonable to assume
that any single single subscription accepts between 5% and 10%
of the notifications. In this case, given a (non-zero) desired false
match rate, the size of the proper partitioning does not depend
on |D|. For instance, in the Evaluation section, we use a parti-
tioning scheme that yields for a uniform distribution of notifi-
cations 5% false matches (out of the 5%-10%) accepted by the
subscription) and contains only 890 words in the dictionary.

In general, given a desired cost, choosing the proper parti-
tioning is application specific and should take into considera-
tion the distributions of subscriptions and notifications. An al-
gorithm that determines the optimal partitioning strategy for a
specificied cost is presented in [17] and could be used for this
task.

D. Supporting Generic Subscriptions

Supporting arbitrary functions as subscriptions is not a goal
in itself, as the maximum achievable security is not satisfac-
tory: only O(|N |) carefully chosen subscriptions are enough to
distinguish every notification. This, combined with the knowl-
edge of a plaintext-ciphertext pair completely breaks the noti-
fication encryption scheme. However, it is interesting to dis-
cuss approaches for generic subscription functions as a possible
starting point to support other subscription functions of practi-
cal interest.

There is a tradeoff between the amount of information leaked
to the brokers and the communication overhead. Therefore, to
support generic subscriptions we can trade confidentiality for
communication efficiency.

At one end of the solution space, the minimum amount of in-
formation is revealed and communication size is very expensive.
Consider an enumeration of all functions from D →{0,1}. The
dictionary will contain the indexes of all these functions. We
use Dictionary to encode arbitrary subscriptions by encrypting
the proper index. Notifications will include as words all the in-
dexes of functions that accept them. This scheme is secure for
all possible subscriptions as it does not leak more information
than what is needed. The communication size is huge: every
notification has 2|D| bits.

At the other end of the solution space, we have examined and
implemented a protocol based on Yao’s garbled circuit construc-
tion to support generic subscriptions, expressed as boolean cir-
cuits [18]. The size of the communication is small (subscription
size is directly proportional to the number of gates in the cir-
cuit, while notification size is the same as the plaintext version).
However, this scheme allows the broker to distinguish every bit
of the notification, and therefore a single plaintext-ciphertext
pair is needed to completely break notifications (without need-
ing |N| “good” subscriptions as a basis).

V. IMPLEMENTING C-CBPS

The mechanisms described above have been implemented
in SIENA [1], a wide-area event-notification service. SIENA
is a content-based publish/subscribe infrastructure where bro-
kers are vertices in a connected overlay acyclic graph.
SIENA supports as filters relational operators for numeric
values and substring matching for string values. The im-
plementation can be downloaded at http://www.cs.ucl.ac.uk/
staff/c.raiciu/securepubsub/

We chose SIENA due to its popularity and widespread adop-
tion within the research community. Our algorithms can be em-
bedded easily in other CBPS solutions (such as Gryphon [2] or
Elvin [19]).

A. The High-Level Matching Algorithm

SIENA notifications are attribute-value pairs. We treat at-
tribute values as confidential data that will be encrypted using
one of the C-CBPS schemes described previously. The publish-
ers control which attributes can be “matched” and the schemes
that can be used for matching. Subscriptions comprise one or
multiple filters, each of which refers to a single attribute. A sub-
scription matches a notification if all its filters match the corre-
sponding encrypted values of the attributes.

We describe the operation of the composite Confidential
CBPS algorithm by revisiting the stock quote dissemination ex-
ample (presented in Section A). Assume the publisher wishes
to allow clients to filter stock quotes based on the symbol and
change attributes in the notification. Accordingly, it will use
Equal to allow equality filtering for symbol and Inequality to
allow threshold checks for change.

The publisher and the subscribers will jointly run the
Keygen phase of Equal and Inequality to create the keys Ke

and Ki, respectively.
Assume one subscriber wishes to receive all stock quotes

with (change > 0) and (symbol=“DIS”). The subscriber will
generate the following encrypted version: (name=“change”,
scheme=“Inequality”, filter = Inequality.IndexSub (Ki,>

ENABLING CONFIDENTIALITY IN CONTENT-BASED PUBLISH/SUBSCRIBE INFRASTRUCTURES 7

0)) and (name = “symbol”, scheme= “Equal”, filter=
Equal.IndexSub (Ke,“DIS”)).

Consider the notification containing (change=10, sym-
bol=“DIS”, exchange=“NYSE”). Its encrypted version has two
parts:
Matchable Part is (name=“change”, scheme =

“Inequality”,value=Inequality.IndexNot(Ki,10)),
(name=“symbol”,scheme=“Equal”,value=Equal.
IndexNot(Ke,“DIS”))

Payload is an encryption of the whole notification using a sym-
metric encryption scheme.

When the broker receives a notification, it iterates all the sub-
scriptions it stores and performs the following steps:

1. For each attribute in the subscription it looks for an at-
tribute with the same name in the matchable part of the no-
tification, that has been encrypted using the same encryp-
tion scheme. If there exists an attribute in the subscription
not present in the notification, the result of the match is 0

2. For each attribute-filter pair with matching names and
schemes it calls the corresponding Match algorithm, pass-
ing the value and filter as parameters

3. If all filters in the subscription match the corresponding
attributes in the notification, the result is 1. Otherwise, the
result is 0

4. Upon a true match, the broker sends the payload to the
subscriber(s), if the latter is directly connected to the bro-
ker. Otherwise, it forwards the entire notification to the
broker(s) closer to the subscriber(s).

B. Implementation Notes

Generally, we tried to keep modifications to the existing
SIENA code minimal to allow backward compatibility and easy
integration with deployed solutions. We created encrypted fil-
ters, a new type of filter, that contains, besides the attribute
name, a serialization of the encrypted subscription, encoded ei-
ther using one of the schemes described in the previous section.
An encrypted matcher manager keeps track of supported en-
cryption formats and makes sure that notifications are matched
against subscriptions only if they have been encrypted in the
same way.

We used the SHA-256 cryptographic hash function [20]
throughout our implementation as a pseudorandom function.
We used 128-bit AES [21] for the symmetric encryption scheme
and as a pseudorandom permutation.

C. Subscription Covering

Exploiting the covering relation between subscriptions in-
creases matching performance. We now discuss how to enable
full subscription covering for Inequality and Range and what
information this leaks.

Inequality. Add a hint to every subscription, which has two
parts: a) the result of applying Inequality.EncNot to the thresh-
old value and b) a deterministic encryption of the type (i.e., “<”
or “>”).

The covering algorithm is: return 0 if S1.hint.type 6=
S2.hint.type. Otherwise, return Inequality.Match (S1,
S2.hint.threshold). Clearly, this scheme has some overhead
due to larger subscriptions. The scheme allows a broker to

match the hint of one subscription against any other subscrip-
tions even in the case when the subscriptions have different
types (and therefore cannot cover each other). We explore the
performance benefits of covering in the Evaluation section.

Range. The solution is to add encrypted versions of the approx-
imate bounds (i.e., ax,y and bx,y) to the subscription.

The covering algorithm is: return Range.Match (S1,S2.a)
and Range.Match (S1,S2.b). This scheme has higher subscrip-
tion overhead. The scheme allows a broker to independently
check whether the margins (a and b) of one subscription are con-
tained by the other, which is more than knowing the coverage
relation. We evaluate the performance benefit of this scheme in
the Evaluation section.

D. Key Management

Each attribute has one or a few supported subscription types.
The schemes we have presented assume that a secret key will
be generated for each of these. Clearly, this does not scale well
with the number of searchable attributes.

To circumvent this, we use a master key and a pseudoran-
dom function to generate a key for a given attribute name, type
(int, string), and encryption scheme (Range). This is achieved
by keying the pseudorandom function with the master key and
applying it to the string obtained by concatenating the attribute
name, type and the name of C-CBPS scheme. Each combina-
tion of attribute name, type and C-CBPS scheme will thus have
its own key which will be used for C-CBPS. The security of
any single C-CBPS scheme holds under computational assump-
tions. Furthermore, if any of these derived keys is leaked, the
information available to an attacker is minimal: it is infeasible
for an adversary to retrieve the “master” key, even if the name
of the attribute, the type and C-CBPS scheme are known.

VI. EVALUATION

This section compares the performance of our solutions
against plaintext filtering. The results show that the over-
head imposed on the brokers and the network for confidential
content-based forwarding is acceptable, making the solutions
practical.

A. Evaluation Methodology

All the data used for testing is synthetic, being generated uni-
formly at random or using the power law distribution. In all
the tests, a single instance of the enhanced SIENA matching en-
gine was evaluated. All experiments were run on a 1.7Ghz Intel
Centrino Processor with 1Gb of RAM running Windows XP
and Sun’s JDK 1.5. Time is measured by using the function
System.nanoTime() available in Java 1.5. All the measurements
were repeated to obtain a standard error of at most 1% of the
measured value.

Matching time is measured as the time the broker spends to
identify the set of matching subscribers, when presented with a
notification. We define the reference matching time as the aver-
age matching time required to match a notification against 1000
subscriptions. Subscription and notification sizes are measured
in terms of total network bytes sent, including SIENA’s protocol
overhead.

8

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

T
im

e(
m

s)

#subscriptions

a. Equal filtering time

Equal
Plaintext

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

T
im

e(
m

s)

#subscriptions

d. Keyword filtering time

Keyword
Plaintext

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

T
im

e(
m

s)

#subscriptions

c. Range filtering time

Range+C
Range

Plaintext

 0

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000

T
im

e(
m

s)

#subscriptions

b. Inequality filtering time

Inequality+C
Inequality
Plaintext

Fig. 1. Matching Time Comparison

We consider two major types of subscriptions that are rep-
resentative for most applications using content-based pub-
lish/subscribe: filtering numeric attributes using relational op-
erators (i.e., <,>,≥,≤, 6=,=) and filtering strings using key-
words. We use the schemes with subscription covering enabled,
except for the cases of Inequality and Range which are tested
both with and without full covering.

B. Matching Time Measurements

Filtering Numeric Attributes. Notifications are integers
drawn uniformly at random from [0,1000]. The results are pre-
sented in Figure 1.

To test Equal, we select subscriptions uniformly at random
from [0,1000]. Equal is, on average, 6 times as expensive as
its plaintext counterpart, and has a reference matching time of
4.5ms. When the number of subscriptions exceeds 1000, the
coverage relation kicks in, dampening the increase in matching
time (Figure 1.a).

Inequality filtering (Figure 1.b) uses 200 uniformly selected
reference values (0,5, . . . ,1000), and has a false positive match
rate of 2% (i.e. the subscriber receives 2% notifications it shold
not receive). We tested the scheme using subscription cover-
ing (Inequality+C) and without it (Inequality). Subscriptions
are randomly selected to be of type N > lb or N < ub where
lb and ub are uniformly distributed in [500,1000] and [0,500]
respectively. Inequality’s reference matching time is 1.5ms, be-
ing 3 times as expensive as plaintext. Implementing covering

brings important benefits: Inequality+C has a reference match-
ing time of 0.8ms and is only 1.7 times as expensive as plain-
text. The careful reader may have noticed that Inequality has
better performance than Equal: this is due to the higher clus-
tering of subscriptions for Inequality, which is due to approxi-
mation of subscriptions. However, when comparing the time to
match notifications against a single subscription (i.e., the base
performance), Equal is faster by 20%.

Range filtering (Figure 1.c) partitions [0,1000] for subscrip-
tions accepting 5% to 10% of the notifications and has a false
matching rate of 5%. The resulting partitions have a total of
890 subsets. The size of the subscriptions matched is selected
uniformly from {50, 60, . . . , 100}, with the beginning of the
matched interval selected uniformly at random. Range’s refer-
ence matching time is 5ms, being 6 times as expensive as plain-
text. Implementing full subscription covering reduces matching
time by a factor of two: Range+C is 3 times as slow as plaintext
and has a reference matching time of 2ms.

Filtering Strings with Keywords. For these experiments, no-
tifications are strings comprising 50 words extracted randomly
from a predefined collection containing 10000 words. We se-
lect subscriptions to be power-law distributed on the same col-
lection. We tested Keyword and its plaintext counterpart for fil-
tering on these strings. Although the comparison is a bit forced
(arbitrary plaintext substring matching is more expressive than
simple keyword matching), it is instructive to look at the per-
formance of Keyword, presented in Figure 1.d. Remarkably,

ENABLING CONFIDENTIALITY IN CONTENT-BASED PUBLISH/SUBSCRIBE INFRASTRUCTURES 9

TABLE I
COMMUNICATION OVERHEAD

Subscription (bytes) Notification (bytes)
Equal Plaintext 19 16

Equal 63 231
Range Plaintext 30 16

Range+C 847 378
Range 63 378

Inequality Plaintext 23 16
Inequality+C 264 213

Inequality 67 213
Keyword Plaintext 23 443

Keyword 364 704

Keyword is slightly faster than plaintext substring matching.
We notice that matching time of Keyword is quite good when

compared to the simpler Equal. Although Keyword has worse
base performance (5 times as as slow as Equal), higher subscrip-
tion clustering significantly improves performance for large
numbers of subscriptions.

Filtering with Composite Subscriptions. We also tested filter-
ing using subscriptions that contain multiple constraints. Each
subscription contains all the types of constraints we have dis-
cussed. The reference matching time is 9ms in this case, being
4 times as expensive as plaintext; this allows a broker to test
110 notifications against 1000 subscriptions in 1s. We conclude
that the time overhead due to confidential CBPS is acceptable
in practice.

C. Communication Overhead

Average subscription and notification sizes are presented in
Table 1. Clearly, C-CBPS is not cheap: notifications are on av-
erage 15 times as large, and subscriptions are 10 times as large,
when compared to their plaintext counterparts. If we consider
the most expensive scheme, Range, we see that although the
output of Range.IndexNot is only 100 bytes in size, the en-
crypted notification is 378 bytes; this is due to a particularity of
the SIENA protocol which escapes a large number of characters
in the byte arrays it serializes.

When a large number of attributes are “matchable”, this over-
head can become significant. In practice, only a subset of at-
tributes in a notification must be matchable, and therefore the
rest of the attributes can be encrypted symmetrically without
adding (much) overhead.

Parameters. We explored the tradeoffs Inequality and Range
allow. There is an inverse proportionality relation between
the false match rate and the communication overhead due to
“matchable” attributes. The slopes fall a bruptly from large false
positive rates to acceptable ones if we increase communication
overhead to as little as 200 bytes. There is a similar tradeoff be-
tween the false match rate and the matching time. These trade-
offs provide an intuition on how to select partitioning schemes
for specific applications, based on the desired false match rate.

VII. RELATED WORK

To the best of our knowledge, this is the first complete and
secure solution for C-CBPS that has been presented in the lit-
erature. We split the related work section in three parts: work

in the broad area of secure function evaluation, work on privacy
preserving keyword searches, and work on security in CBPS.

Secure Function Evaluation. Research in cryptography has
produced many important results in the broad area of secure
function evaluation [22–24]. Several protocols in this space
have resemblance and appear applicable to the CBPS problem.
However, none of these is of practical importance for C-CBPS.
First, the protocols have been designed for single invocations
and are vulnerable when the same key is used to send mul-
tiple notifications (which is a necessity in publish/subscribe).
For instance, the information-theoretically secure protocol de-
scribed by Ishai [23] can be easily broken when used for multi-
ple messages, while the semantically secure protocol described
by Feige [22] becomes as secure as the one time pad in the same
context. In theory, we can use such single message protocols
in the context of publish/subscribe, but with tremendous over-
head: for every published notification, the publisher and all sub-
scribers would generate a new key, the subscribers would then
register their subscriptions, and finally the publisher would send
the notification. Secondly, even the cheapest instances of these
protocols have high costs even for single invocations.

Privacy Preserving Keyword Searches. Motivated by pub-
lic file servers and email servers, a more practical approach was
taken by the security community to solve the problem of search-
ing encrypted files using keywords.

The pioneering work in this direction is due to Song et
al. [12], who propose a scheme that encrypts each word in the
document in a way that allows a user to search using an en-
crypted keyword. To test whether a given keyword is in an en-
crypted file, a sequential scan of the file is needed; this approach
does not scale well for large documents. Two schemes were
proposed by Goh [13] and Chang et al. [15] that use indexes
to address this issue and propose stronger security models. For
practical reasons, we used the first scheme for keyword search
and the second as a basis for supporting range matches. Our
work presents a security model that is similar to the one from
Chang et al. [15], extended to deal with arbitrary subscriptions
and to allow subscription covering (that was implicit in the ini-
tial model). Our mechanisms can be used to provide privacy
preserving range matches for numeric values.

Security in CBPS. Security in publish/subscribe was first ana-
lyzed by Wang et al., acknowledging the new difficulties posed
by this interaction model [4]. Security requirements are iden-
tified as integrity, confidentiality and availability at application
level, and integrity and availability at infrastructure level. Our
work presents solutions for application level confidentiality, ad-
dressing both notification and subscription confidentiality.

Li et al. [25] address the same issue of achieving subscription
and notification confidentiality in CBPS systems. They support
range matching as selection criteria and encode ranges by trans-
forming them into several prefix matching problems. The no-
tifications are encrypted by using prefix-preserving encryption.
Matching is reduced to checking whether an encrypted notifi-
cation contains one of the desired prefixes. This scheme has
distinguishable notifications and is not secure according to our
model. Although it can be modified to have computationally
indistinguishable notifications, the modified scheme still leaks

10

more information than necessary (due to prefix matching) and
is still not secure.

A solution that supports equality matches using Bloom fil-
ters is implemented in the Siena Fast Forwarding Module [26].
This solution has distinguishable notifications, being insecure
according to our model.

A comprehensive solution to security in publish/subscribe is
proposed by Srivatsa et al. [27]. Confidential CBPS is only sup-
ported for equality matches through the direct use of pseudoran-
dom functions and is not secure according to our model.

VIII. SUMMARY AND FUTURE WORK

This paper presents a study of confidentiality in content-
based publish/subscribe, addressing some of the security con-
cerns particular to this interaction model. We have presented a
formal security model and analyzed the general C-CBPS prob-
lem, pointing out its inherent limitations.

We have described provably secure techniques that allow
content-based routing for the large majority of applications oc-
curring in practice. We have described two novel protocols that
support range matches in C-CBPS but can also be applied in
other areas, such as privacy preserving range matching.

We have implemented these mechanisms in a popular CBPS
infrastructure, making available the first implementation of C-
CBPS. To assess the performance impact of C-CBPS, we have
evaluated our solutions against their plaintext counterparts. Re-
sults show that achieving confidentiality is practical, a broker
being able to match 100 notifications per second when it has
1000 subscribers.

In future work, we intend to develop additional security
mechanisms that offer support for other as yet unforeseen types
of subscriptions that might be encountered in practice.

ACKNOWLEDGEMENTS

We thank Yvo Desmedt for scrutinizing the security proto-
cols and proofs, and for discussions and thoughtful reviews on
previous versions of this paper; Antonio Carzaniga and Alex
Wolf for fruitful discussions of these ideas; and the anonymous
referees for their detailed feedback. Costin Raiciu is supported
by a UCL Departmental Studentship. David Rosenblum holds
a Wolfson Research Merit Award from the Royal Society. This
work was partially supported by the European IST FET pro-
gramme in project SENSORIA (IST-2005-016004).

REFERENCES

[1] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf, “Design
and evaluation of a wide-area event notification service”, ACM Transac-
tions on Computer Systems, vol. 19, no. 3, pp. 332–383, 2001.

[2] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao,
Robert E. Strom, and Daniel C. Sturman, “An efficient multicast proto-
col for content-based publish-subscribe systems”, in Proceedings of the
19th IEEE International Conference on Distributed Computing Systems,
ICDCS, Washington, DC, USA, 1999, p. 262, IEEE Computer Society.

[3] Akamai, “http://www.akamai.com”.
[4] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander Wolf,

“Security issues and requirements in internet-scale publish-subscribe sys-
tems”, in Proceedings of Hawaii International Conference on System Sci-
ences, 2002.

[5] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec, “The many faces of publish/subscribe”, ACM Comput. Surv.,
vol. 35, no. 2, pp. 114–131, 2003.

[6] Oded Goldreich, Foundations of Cryptography, vol. Basic Tools, Cam-
bridge University Press, 2001.

[7] Sandro Rafaeli and David Hutchison, “A survey of key management for
secure group communication”, ACM Comput. Surv., vol. 35, no. 3, pp.
309–329, 2003.

[8] Antonio Carzaniga and Alexander L. Wolf, “Forwarding in a content-
based network”, in Proceedings of ACM SIGCOMM, Karlsruhe, Germany,
Aug. 2003, pp. 163–174.

[9] D. Chaum, “The dining cryptographers problem: unconditional sender
and recipient untraceability”, Journal of Cryptology, vol. 1, no. 1, 1988.

[10] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router”, in Proceedings of the 13th USENIX Security
Symposium, 2004.

[11] Amos Fiat and Moni Naor, “Broadcast encryption”, in CRYPTO ’93: Pro-
ceedings of the 13th annual international cryptology conference on Ad-
vances in cryptology, New York, NY, USA, 1994, pp. 480–491, Springer-
Verlag New York, Inc.

[12] Dawn Song, David Wagner, and Adrian Perrig, “Practical techniques for
searches on encrypted data”, in Proceedings of the IEEE Symposium on
Security and Privacy, 2000.

[13] Eu-Jin Goh, “Secure indexes”, Cryptology ePrint Archive, Report
2003/216, 2003.

[14] Burton H. Bloom, “Space/time trade-offs in hash coding with allowable
errors”, Communications of the ACM, vol. 13, no. 7, 1970.

[15] Yan-Cheng Chang and Michael Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data.”, in ACNS, 2005.

[16] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Per-
siano, “Public key encryption with keyword search”, in EUROCRYPT,
2004.

[17] Bijit Hore, Sharad Mehrotra, and Gene Tsudik, “A privacy-preserving
index for range queries”, in Proceedings of VLDB - Conference on Very
Large Databases, 2004.

[18] Andrew C. Yao, “How to generate and exchange secrets”, in Proceed-
ings of the IEEE Symposium of Foundations of Computer Science, FOCS,
1986.

[19] Bill Segall, David Arnold, Michael Henderson Julian Boot, and Ted
Phelps, “Content based routing with elvin4”, in Proceedings of AUUG2K,
2000.

[20] National Institute of Standards and Technology, “Secure hash standard”,
2002.

[21] Joan Daemen and Vincent Rijmen, The design of Rijndael: AES — the
Advanced Encryption Standard, 2002.

[22] Uri Feige, Joe Killian, and Moni Naor, “A minimal model for secure com-
putation (extended abstract)”, in Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, STOC, New York, NY, USA,
1994, pp. 554–563, ACM Press.

[23] Yuval Ishai and Eyal Kushilevitz, “Private simultaneous messages proto-
cols with applications”, in Proceedings of Israel Symposium on Theory of
Computing Systems, 1997, pp. 174–184.

[24] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan, “Pri-
vate information retrieval”, in Proceedings of IEEE Symposium on Foun-
dations of Computer Science, FOCS, 1995, pp. 41–50.

[25] Jun Li, Chengluai Lu, and Weidong Shi, “An efficient scheme for pre-
serving confidentiality in content-based publish/subscribe systems”, Tech.
Rep. GIT-CC-04-01, Georgia Institute of Technology, 2004.

[26] “Siena documentation”, http://www.cs.colorado.edu/ serl/cbn/forwarding/.
[27] Mudhakar Srivatsa and Ling Liu, “Securing publish-subscribe overlay

services with eventguard”, in Proceedings of the 12th ACM conference on
Computer and communications security, 2005.

APPENDIX

It is easy to see from the descriptions that all the schemes we
propose correctly match subscriptions against notifications and
conservatively solve subscription coverage (i.e., they can give
false negatives, but not false positives). We have also experi-
mentally tested the correctness of our schemes. Henceforth, the
proofs only analyze the security of the proposed schemes.

Theorem 1: Equal is a correct implementation of C-CBPS
Proof. We want to show that for any k, any function h and
any algorithm A (i.e., running at the broker), there is an al-
gorithm A∗ (i.e., running with access to the oracle) such that
the following value is negligible in t: δ = |Pr[A(V iewk,1t) =
h(Plaintextk)]−Pr[A∗(V iew∗

k,1t) = h(Plaintextk)]|.

ENABLING CONFIDENTIALITY IN CONTENT-BASED PUBLISH/SUBSCRIBE INFRASTRUCTURES 11

The idea, borrowed from Chang et al. [15], is to prove that A∗

can use V iew∗
k to construct a view V iew′

k that is computation-
ally indistinguishable from V iewk. If this is the case, A∗ can
simulate the desired functionality by calling A with parameter
V iew′

k, and therefore δ is negligible.
Without loss of generality, assume that the C-CBPS pro-

tocol consists of two consecutive phases: registration (con-
secutive rounds in which subscribers send their interests to
the broker) and operational (consecutive rounds where pub-
lishers send notifications to the broker). It is simple to
see that if the protocol is secure in this case, it is also se-
cure when subscription registrations and notifications are in-
terleaved. Assume Plaintextk = {N1, . . . , Nk, S1, . . . , Sn},
that is, the kth round in the operational phase. Then, V iewk

is {(rnd1,ffK(N1)(rnd1), . . . ,(rndk,ffK(Nk)(rndk),
fK(S1), . . . ,fK(Sn)}.

Let us consider the special cases first. Assume n = 0, that
is, there are no subscriptions. A∗ selects all entries in V iew′

k

(corresponding to encrypted notifications) uniformly at random.
In this case, A∗ simulates A properly, otherwise we can use
(A,A∗) to distinguish pseudo-random bits from random bits.

Next, assume k = 0, meaning that no notifications have
been received yet. In this case, A∗ proceeds as follows. For
each i = 1 . . . n, check to see if there exists j < i such that
O0.cover(j,i)=1. If such j does not exist, select subscription
Si in V iew′

0 uniformly at random. Otherwise, set Si = Sj .
A∗ feeds this view to A. The only difference between V iewk

and V iew′
k is the way the distinct subscriptions are chosen. We

claim that whatever A can compute from V iew′
k can also be

computed using V iewk; otherwise the pair (A,A∗) can be used
to distinguish pseudo-random bits from truly random bits.

Now consider the general case. A∗ generates n subscrip-
tions as described above and adds them to V iew′

k. Let Sd =
S1, . . . , Sm be the set of independent subscriptions. Next, A∗

generates k notifications as follows.
For all i = 1, . . . , k A∗ checks if there exists j ∈ {1, . . . , k}

such that Ok.match(i,j)=1. If so, A∗ generates a random nonce
rnd and adds (rnd, fSj (rnd)) to V iew′

k; otherwise it adds a
value selected uniformly at random.

There are two differences between V iewk and V iew′
k: a) dis-

tinct subscriptions are pseudo-random as opposed to truly ran-
dom, and b) notifications that are not matched by the distinct
subscriptions are generated truly randomly instead of pseudo-
randomly (i.e., using f). Therefore, if A can compute some-
thing more from V iewk we can use it to distinguish pseudo-
random bits from random-bits. This concludes the proof.

Theorem 2: Keyword is a correct implementation of C-CBPS
Proof Sketch. The paper by Goh [13] presents a proof of secu-
rity under the IND-CKA2 model, which focuses on notification
indistinguishability. Here we show that breaking C-CBPS secu-
rity for Keyword can be used to break IND-CKA2 security for
Keyword, and therefore IND-CKA2 security implies C-CBPS
security for keyword matching.

The attacker in the IND-CKA2 game selects uniformly at
random n distinct keywords {S1, . . . , Sn} and finds out their
encrypted versions by using the IND-CKA2 challenger. The at-
tacker further selects two plaintext documents uniformly at ran-
dom, N0 and N1, ensuring that the known keywords are con-

tained by both N0 and N1 or by neither. N0 and N1 are passed
to the challenger in the IND-CKA2 game, which replies with an
encryption of Nb where b is uniformly random from {0,1}.

Let us assume that the attacker can compute a functionality
h given V iew1 = {S1, . . . , Sn,Nb}, that cannot be computed
only using V iew∗

1 . If h does not depend on the value Nb, then
h can compute something relating to the subscriptions, besides
the coverage relation; by using an argument similar to Theo-
rem 1, we can see that this will allow one to distinguish ran-
dom bits from pseudo-random bits, and is therefore impossible.
Therefore, it must be that h depends on Nb, meaning that h will
present non-negligible distinct outputs for b = 0 and b = 1. The
attacker uses this output to guess the value of b, therefore win-
ning the IND-CKA2 game. This completes our proof sketch.

Theorem 3: Dictionary is a correct implementation of C-
CBPS
Proof Sketch. Definition 1 provides a security model for C-
CBPS regardless of the subscription function, by mandating that
the information the broker can learn by using the messages re-
ceived from the publishers and subscribers can also be learnt by
accessing an oracle. The security model provided by Chang et
al. [15] is an instance of our model, where the subscription func-
tion is keyword matching and the oracle is replaced by access
to the actual information (i.e., which document contains which
keyword). The difference between their model and ours is the
treatment for subscriptions (keywords). They assume that all
keywords are different (and therefore no information is gained
by seeing they are different), while we allow the broker to dis-
tinguish whether one subscription covers another subscription.
In the case of keyword matching, two subscriptions cover one
another only if they are equal. If we only consider the subset
of distinct subscriptions, we can directly use the security proof
in Chang et al. [15] to prove security in C-CBPS. The redun-
dant subscriptions do not leak any additional information about
notifications, and do not leak more information about subscrip-
tions that cannot be discovered by using the oracle. Therefore,
Dictionary is C-CBPS secure.

Theorem 4: If all subscriptions are expressed exactly, In-
equality is a correct C-CBPS implementation
Proof Sketch. Inequality is an instance of Dictionary that con-
tains as words “> p1”, “> p2”, . . ., “> pl” “< p1”, “< p2”,
. . ., “< pl”. Since the approximation is assumed to be perfect
and Dictionary is secure (Theorem 3), verifying inequality us-
ing the dictionary gives as much information as verifying with
the oracle. It follows that Inequality is also secure.

Note that the assumption that subscriptions are expressed ex-
actly is important. Without this, the broker can infer additional
information. Here is a simple example: assume the notification
space is 0, . . . ,10 and the reference points are 0,5,10. Subscrip-
tion S = x > 7 will be approximated with Sa = x > 5. Given
encrypted notifications 4 and 6, the broker cannot distinguish
them in the ideal case (when testing against S, none of them is
matched), however it can tell they are different in reality (as Sa

will match 6 and not match 4).
Theorem 5: If all subscriptions are expressed exactly (i.e.,

without generating false positives or negatives) , Range is a cor-
rect C-CBPS implementation
Proof Sketch. The same reasoning applies as before.

