
���������	�
���
���

������������
�����������

David S. Rosenblum

Technical Report 97-34
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

11 August 1997

Adequate Testing of Component-Based Software

David S. Rosenblum
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425

+1 714.824.6534
dsr@ics.uci.edu

http://www.ics.uci.edu/~dsr/

ABSTRACT
People have long advocated a component-based approach
to software construction as a way of simplifying the design
and maintenance of large software systems, increasing the
opportunities for reuse, and increasing software
development productivity. Although the technology for
constructing component-based software is relatively
advanced, we lack a sufficient theoretical basis for testing
component-based software. This paper initiates the
development of such a theory. The main result is a formal
definition of the concept C-adequate-for-� for adequate
unit testing of a component and the concept C-adequate-
on-M for adequate integration testing of a component-based
system. The paper uses these concepts to discuss practical
considerations in adequate testing of component-based
software.

Keywords
Component-based software engineering, integration testing,
subdomain-based testing, test adequacy criterion, unit
testing

INTRODUCTION
People have long advocated a component-based approach
to software construction as a way of simplifying the design
and maintenance of large software systems, increasing the
opportunities for reuse of software assets, and increasing
the overall productivity of software development. Recent
technical advances have finally enabled component-based
software engineering to become a widespread reality.

Reusable components exist in a multitude of forms. Older
forms of components include logically-encapsulated code
fragments such as programming libraries, class libraries,
reusable modules (e.g., Ada packages), and legacy systems
that have been “wrapped” for use as a component within
some other application. Newer forms of components
include user-level plug-ins and add-ins, downloadable
components such as Java applets, and domain-specific
frameworks such as the Microsoft Foundation Classes for

building user interface software. And a variety of
infrastructure technologies now exist for composing
applications from multiple, heterogeneous component
parts, including CORBA [13], ActiveX [2] and
JavaBeans [8], as well as compound document technologies
such as OLE [1] and OpenDoc [4].

Given the increasing dominance of component-based
software engineering, it is important to begin studying the
problem of testing component-based software. Yet
although the technology for constructing component-based
software is relatively advanced, we lack a sufficient
theoretical basis for the testing of component-based
software. This paper initiates the development of such a
theory.

The problem of testing component-based software is
complicated by a number of characteristics of component-
based software engineering. Distributed component-based
systems of course exhibit all of the well-known problems
that make testing “traditional” distributed and concurrent
software difficult. But testing of component-based
software (distributed or otherwise) is further complicated
by technological heterogeneity and enterprise
heterogeneity of the components used to build systems.
Technological heterogeneity refers to the fact that different
components can be programmed in different programming
languages and for different hardware platforms, meaning
that testing a component-based system may require a
testing method that works for all possible languages and
platforms. Enterprise heterogeneity refers to the fact that
different components can be provided by different, possibly
competing suppliers, meaning that no one supplier has
complete control over or complete access to the
development artifacts associated with each component for
purposes of testing. And in the most extreme situations of
dynamic evolution, components can be deployed, brought
off-line, and then re-deployed in new versions, all in a
manner that is transparent to applications that are using the
components.

As a first step in developing a foundation for testing
component-based software, this paper defines a formal
model of test adequacy for component-based software. A
test adequacy criterion is a systematic criterion that is used
to determine whether a test suite provides an adequate
amount of testing for a component under test. Previous

2

definitions of adequacy criteria have defined adequate
testing of a component independently of any larger system
that uses the component. This perhaps may be due perhaps
to the traditional view of software as a monolithic code
base that can be put through several phases of testing prior
to its deployment, and all by the same organization that
built the software in the first place. However, a test suite
that satisfies a criterion in the traditional sense might not
satisfy the criterion if it were interpreted with respect to the
subset of the component’s functionality that is used by the
larger system.

Consider the simple example of the statement coverage
criterion, which requires a test suite to exercise each
statement in the component under test at least once. There
may be a large number of elements in the component’s
input domain that could be chosen to cover a particular
statement. However, the element that is ultimately chosen
may not be a member of that subset of the input domain
that is utilized by the larger program using the component.
Hence, while according to traditional notions of test
adequacy the test case could serve as a member of an
adequate test set for the component, from the perspective of
the larger program using the component, the test set would
be inadequate.

The model defined in this paper is developed in terms of a
program � that contains a single component of interest M.1

The model can be generalized for programs containing
multiple components. The model can be applied in two
different ways to the problem of testing component-based
software. In one way, the problem is viewed as one of
adequate unit testing of a component that is to be used
(perhaps off-the-shelf) within a larger system. In the other
way, the problem is viewed as one of adequate integration
testing of the application containing the component.

The paper begins with a discussion of previous efforts to
formalize the notion of test adequacy. The paper then
defines a formal model of component-based software. This
model is then used to formally define a notion of test
adequacy for component-based systems. The presentation
of the formal model is followed by a discussion of some of
the practical considerations involved in ensuring adequate
testing of component-based systems. The paper concludes
with a discussion of future work.

BACKGROUND
Weyuker defined a set of ten axioms that formalize much
of the intuition underlying the idea of test adequacy, as well
as its less obvious ramifications [14]. Eight of the axioms
apply in a straightforward way to adequate testing of all
software, component-based or otherwise. The remaining

1 As is traditional in formal treatments of test adequacy, the
letter C will be used to refer to test adequacy criteria.
Therefore, the letter M will be used to refer to components
since they are somewhat synonymous with modules.

two axioms apply specifically to component-based
software. They are the axioms of Antidecomposition and
Anticomposition, which Weyuker stated as follows:

Axiom of Antidecomposition: There exists a program P
and component Q such that T is adequate for P, T�

is the set of vectors of values that variables can
assume on entrance to Q for some t of T, and T� is
not adequate for Q.

Axiom of Anticomposition: There exist programs P and
Q such that T is adequate for P and P(T) is
adequate for Q, but T is not adequate for P;Q [i.e.,
to the sequential composition of P with Q] [14].

While undeniably true as stated, these axioms have limited
utility as a basis for developing a notion of test adequacy
for component-based software. First, the model of
components embodied in these axioms is one of sequential
composition of program statements, which does not
correspond well to a modular or object-oriented style of
composition. Second, the statement of the axioms in
existential terms means that they describe the worst case
rather than the general case. Third, the notion of adequacy
underlying the axioms is 100% satisfaction of the test
requirements induced by a test adequacy criterion, yet
testers rarely achieve 100% adequacy. Hence, a
formalization of test adequacy is needed that better
addresses the realities of testing component-based software.

Perry and Kaiser extended Weyuker’s work to demonstrate
how features of the object-oriented paradigm (particularly
class inheritance, method overriding, and multiple
inheritance) complicate the problem of adequately testing
object-oriented programs [9]. While employing a more
useful notion of component, their attention is confined
primarily to the problem of testing individual classes rather
testing compositions of class instances.

This paper develops a general formal model of test
adequacy for component-based software. As described in
detail in the following sections, the model is defined in
terms of subdomain-based test adequacy criteria, as
defined by Frankl and Weyuker [6]. Before defining the
model of test adequacy, it is first necessary to define a
formal model of component-based software.

A FORMAL MODEL OF COMPONENT-BASED
SOFTWARE
The notion of component as used in this paper corresponds
to a general object-oriented notion of a component. In
particular, a component M encapsulates some state and
provides a well-defined interface that strictly governs
access to the state by other parts of a system containing the
component. The interface is usually a set of methods or
operations that can be applied to the component; attributes
or data members of an interface can easily be represented
with pairs of get and set methods. Without loss of
generality, M is viewed in this paper as declaring in its

3

interface a single access method that handles the invocation
of the actual methods of M. For each parameter of an
actual method of M, there is a corresponding parameter of
the same type and mode in the access method. The access
method includes an additional parameter used to identify
the actual method that is to be invoked. The input domain
of M is then the input domain of its access method, which
is the union of the input domains of the actual methods of
M, but with each element extended with the appropriate
method identifier.

Note of course that M can be viewed as a program for the
purpose of testing its own constituent subcomponents
according to the notions of test adequacy defined in this
paper. Indeed, M might be some large legacy system that
has been adapted for use within �.

Fig. 1 represents pictorially the model of component-based
software used in this paper. The figure illustrates a
program � containing an constituent component M. Let D�

be the input domain of �, and let DM be the input domain of
the access method of M. As shown in the figure, there are
four important subsets of these input domains, which are
defined formally as follows:

Definitions:

M-traverse(D�) �

{ d � D� | execution of � on input d traverses M }

M-bypass(D�) � D� � M-traverse(D�)

�-relevant(DM) �

{ d � DM | � d� � M-traverse(D�) � execution of
� on input d� traverses M with input d }

�-irrelevant(DM) � DM � �-relevant(DM)

The phrase “execution of � traverses M” is taken to mean
that the execution of � includes at least one invocation of
M’s access method. The M-traverse subset of D� is then
the set of all inputs of � that cause the execution of � to
traverse M. The �-relevant subset of DM is the set of all
inputs of M’s access method that � uses for its traversals of
M. The M-bypass subset of D� is the set of all inputs of �
that cause the execution of � to “bypass” or avoid
traversing M. Finally, the �-irrelevant subset of DM is the
set of all inputs of M’s access method that � never uses for
its traversals of M.

A FORMAL DEFINITION OF COMPONENT-BASED
TEST ADEQUACY
A test set T� is said to be C-adequate if T� satisfies the test
requirements induced by a test adequacy criterion C on

� M

DMD�

M-bypass M-traverse
�-irrelevant

�-relevant

access method

actual methods

implementation

Fig. 1 . A Model of Component-Based Software.

4

program �.2 Similarly, a test set TM is C-adequate if TM

satisfies the test requirements induced by C on component
M.

The model of test adequacy for component-based software
developed below is defined in terms of applicable
subdomain-based test adequacy criteria as defined by
Frankl and Weyuker [6]. In particular, a test adequacy
criterion C is subdomain-based if, for program �
(component M), there is a nonempty multiset ��C(D�)
(��C(DM)) of subdomains of D� (DM), such that C requires
the selection of one test case from each subdomain in
��C(D�) (��C(DM)). Furthermore, C is applicable if the
empty subdomain is not an element of ��C(D�)
(��C(DM)) [6]. Thus, adequacy is defined for subdomain-
based criteria as follows:

Definition (C-adequate�� Given an applicable subdomain-
based criterion C, a program �, and a component M,

2 Test adequacy is usually defined in terms of
program/specification pairs. However, the formal model
developed in this paper does not rely on the availability of a
specification for a program or component. Hence, in the
discussion that follows, and in the description of Frankl and
Weyuker’s model of subdomain-based test adequacy
criteria, the specification is ignored.

1. A test set T� for � is C-adequate if T� contains at
least one test case from each subdomain in ��C(D�).

2. A test set TM for M is C-adequate if TM contains at
least one test case from each subdomain in ��C(DM).

This definition captures the traditional notion of test
adequacy, and it makes no distinction between a program
and a component. In the remainder of the paper, criteria
will be assumed to be applicable and subdomain-based.

To demonstrate how a criterion induces a set of
subdomains, Fig. 2 illustrates a subdomain-based criterion
C that is defined in terms of code entities within M.3 The
numbered circles in M represent these entities. The
numbered circles in DM represent the elements of M’s input
domain, with the numbers indicating which entities an
element exercises. The regions labeled SDi represent the
subdomains induced by C, with SDi being the set of inputs
that exercise entity i. The shaded circles represent an
example of a test set that is adequate according to this
code-based criterion. Note that subdomains typically
overlap, as do the test cases in their coverage of
subdomains.

As was observed previously, testers rarely satisfy 100% of
the test requirements induced by a test adequacy criterion.

3 An example of such a criterion is statement coverage.

M

1

4

3

2

1,4

1,3,4

1,2,3
1,2

1,21,2

1

1

DM

SD2

SD3

SD4

SD1

Fig. 2. Graphical depiction of a subdomain-based test adequacy criterion.

5

In terms of subdomain-based criteria, they typically select
test cases from fewer than 100% of the subdomains
induced by the criterion they are using. It is therefore
useful to extend the definition of adequacy in a way that
accounts for the percentage of subdomains a test set
covers:4

Definition (n% C-adequate�� Given criterion C, program �,
and component M,

1. A test set T� for � is n% C-adequate if T�
contains at least one test case from n percent of the
subdomains in ��C(D�).

2. A test set TM for M is n% C-adequate if TM

contains at least one test case from n percent of the
subdomains in ��C(DM).

Corollary 1: A test set is C-adequate if and only if it is
100% C-adequate.

The previous section formally partitions D� with DM

according to �’s traversal of M. These partitions carry
over to the subdomains induced by an applicable
subdomain-based criterion C as follows:

Definitions:

��C(M-traverse(D�)) �

{ D � M-traverse(D�) | � D� � ��C(D�) � D � D�
and D�

�D � M-bypass(D�) and D � 	}

��C(M-bypass(D�)) �

{ D � M-bypass(D�) | � D� � ��C(D�) � D � D�
and D�

�D � M-traverse(D�) and D � 	}

��C(�-relevant(DM)) �

{ D � �-relevant(DM) | � D� � ��C(DM) � D � D�
and D�

�D � �-irrelevant(DM) and D � 	}

��C(�-irrelevant(DM)) �

{ D � �-irrelevant(DM) | � D� � ��C(DM) � D � D�

and D�

�D � �-relevant(DM) and D � 	}

Note that according to these definitions, each subdomain
induced by criterion C on program � is partitioned into its
M-traverse subset and its M-bypass subset. Thus, there is a

4 Of course, low percentages of coverage can hardly be
considered “adequate testing” in any qualitative sense of
the term, especially since experimental studies have shown
that a test set must achieve coverage in the range of 90% or
greater in order to be truly effective at detecting faults [7].
However, the definitions given here simply formalize
standard characterizations of coverage that are used in
testing practice.

pairwise correspondence between each subdomain in
��C(M-traverse(D�)) and a subdomain in ��C(D�), and
between each subdomain in ��C(M-bypass(D�)) and a
subdomain in ��C(D�). In addition, each subdomain
induced by criterion C on component M is partitioned into
its �-relevant subset and its �-irrelevant subsets, with a
similar pairwise correspondence established with
subdomains in ��C(DM). Note also that the definitions
discard empty subdomains, in order to retain the
applicability of C.

Given the above definitions, adequate testing of
component-based software can now be formally defined.
First, the concept C-adequate-for-� is defined to
characterize adequate unit testing of M:

Definition (C-adequate-for-��� A test set TM is C-adequate-
for-� if it contains at least one test case from each
subdomain in ��C(�-relevant(DM)).

Second, the concept C-adequate-on-M is defined to
characterize adequate integration testing of � with respect
to its usage of M:

Definition (C-adequate-on-M�� A test set T� is C-adequate-
on-M if it traverses M with at least one element from each
subdomain in ��C(�-relevant(DM)).

Note that although it is � that is being tested in integration
testing, the criterion C must be chosen and then evaluated
in terms of M in order to ensure adequate testing of the
relationship between � and M. For example, C could be a
criterion that requires each of the actual methods of M to be
exercised at least once. This is a reasonable requirement
for adequate integration testing of �, and the definition of
C-adequate-on-M ensures that the criterion would be
interpreted only with respect to the methods of M that �
invokes anywhere in its source code. Of course, C need
not be the same criterion as the one used to design T� in the
first place; it merely imposes a requirement on the testing
achieved by T�.

These definitions can be extended as before to
accommodate a notion of percentage of adequacy.

Definition (n% C-adequate-for-��� A test set TM is n% C-
adequate-for-� if it contains at least one test case each
from n percent of the subdomains in ��C(�-relevant(DM)).

Corollary 2: A test set TM is C-adequate-for-� if and only
if it is 100% C-adequate-for-�.

Definition (n% C-adequate-on-M�� A test set T� is n% C-
adequate-on-Mif it traverses M with at least one element
each from n percent of the subdomains in ��C(�-
relevant(DM)).

Corollary 3: A test set T� is C-adequate-on-M if and only

6

if it is 100% C-adequate-on-M.

There are a number of interesting consequences of these
definitions that merit discussion. These consequences are
stated as theorems, which are proven by appealing to
hypothesized subdomain relationships that could be
generated easily by programs and test sets specifically
synthesized to exhibit such relationships.

The first two theorems concern the relationship between C-
adequate and C-adequate-for-�. In particular, a test set TM

that is C-adequate might not be C-adequate-for-�, and vice
versa. Theorem 1 is roughly analogous to Weyuker’s
Axiom of Anticomposition.

Theorem 1: There exist a program �, a component M of �,
a criterion C, and a test set TM for M such that TM is C-
adequate but not C-adequate-for-�.

Proof: Consider Fig. 3, which depicts the input domain DM

and subdomains ��C(DM) appearing in Fig. 2. Suppose that
TM contains the test cases whose circles are shaded light
gray. Suppose that the elements of DM whose circles are
dashed are the �-relevant elements of DM. Then TM is C-
adequate since it contains one test case drawn from each of
the subdomains induced by C. However, SD4 contains only
one �-relevant element, and that element is not a member
of TM. Hence, TM is not C-adequate-for-�.

Corollary 4: There exist a program �, a component M of
�, a criterion C, and a test set TM for M such that TM is n1%
C-adequate, TM is n2% C-adequate-for-�, and n1
 n2.

Theorem 2: There exist a program �, a component M of �,
a criterion C, and a test set TM for M such that TM is C-
adequate-for-� but not C-adequate.

Proof: Consider Fig. 4, which depicts the input domain DM

and subdomains ��C(DM) appearing in Fig. 2. Suppose that
TM contains the test cases whose circles are shaded light
gray. Suppose that the elements of DM whose circles are
dashed are the �-relevant elements of DM. Then TM is C-
adequate-for-� since it contains one test case drawn from
each of the �–relevant subdomains induced by C.
However, TM contains no element from SD3. Hence, TM is
not C-adequate.

Corollary 5: There exist a program �, a component M of
�, a criterion C, and a test set TM for M such that TM is n1%
C-adequate, TM is n2% C-adequate-for-�, and n1 � n2.

Corollary 6: Given a program �, a component M of �, a
criterion C, and a test set TM for M,

((� t � TM � D � ��C(�-relevant(DM)) � t � D)
and (|��C(�-relevant(DM)) | � |��C((DM)) |))

 � C-adequate(TM)

Corollary 6 captures the situation when there is a
subdomain in ��C((DM)) that has no �-relevant members
and no test cases in TM. In this situation, TM is not C-
adequate.

The next two theorems concern the relationship between C-
adequate and C-adequate-on M. In particular, a test set T�
that is C-adequate might not be C-adequate-on-M, and vice
versa. As mentioned above, the criterion used to judge the
adequacy of testing with M can be different from the
criterion used to design the test set for �. Hence, the
theorems are stated for two different criteria C� (used to
test �) and CM (used to test M). This implies that there
need not be a relationship between the subdomains in
��C�(M-traverse(D�)) and the subdomains in ��CM(�-
relevant(DM)). Theorem 3 is roughly analogous to

1,4

1,3,4

1,2,3
1,2

1,21,2

1

1

DM

SD2

SD3

SD4

SD1

Fig. 3. Subdomain relationships for proof of Theorem 1.

7

Weyuker’s Axiom of Antidecomposition.

Theorem 3: There exist a program �, a component M of �,
criteria C� and CM, and a test set T� for � such that T� is
C�-adequate but not CM-adequate-on-M.

Proof: Suppose there is more than one subdomain in
��C�(D�) and that T� contains at least one element from
each of those subdomains. T� is thus C�-adequate.
Suppose there is more than one subdomain in ��CM(�-
relevant(DM)), and suppose that the test cases of T�
traverse M through only one of those subdomains. Then T�
is not CM-adequate-on-M.

Corollary 7: There exist a program �, a component M of
�, criteria C� and CM, and a test set T� for � such that T�
is n1% C�-adequate, T� is n2% CM-adequate-on-M, and n1

 n2.

Corollary 8: A test set T� is not CM-adequate-on-M if T�
only contains elements from M-bypass(D�).

Theorem 4: There exist a program �, a component M of �,
criteria C� and CM, and a test set T� for � such that T� is
CM-adequate-on-M but not C�-adequate.

Proof: Suppose that the number of subdomains in ��CM(�-
relevant(DM)) is much smaller than the number of
subdomains in ��C�((D�)). Suppose that the number of
test cases in T� is exactly the number of subdomains in
��CM(�-relevant(DM)) and that each test case traverses M
through a different subdomain. Then T� is CM-adequate-
on-M but not C�-adequate.

Corollary 9: There exist a program �, a component M of
�, criteria C� and CM, and a test set T� for � such that TM

is n1% C�-adequate, TM is n2% CM-adequate-on-M, and n1

� n2.

APPLICATIONS OF THE MODEL
The formal model presented in the previous sections
provides a foundation for studying and evaluating test
adequacy for component-based systems. An important
issue is the practical applicability of the model. It is one
thing to argue that components must be tested with respect
to the context of the larger systems in which they will be
used. It is another thing to determine how this will be
accomplished, especially in light of the fact that the
component developer may be different from the system
developer and that the two developments may proceed at
widely separate points in time.

As mentioned in the introduction, the testing of component-
based software can be viewed as both a unit testing
problem for component M, and an integration testing
problem for program � containing M. The unit-testing
viewpoint requires the developer of M to test M with
criterion C and to carry out the testing with a test set that is
C-adequate-for-�. The integration-testing viewpoint
requires the developer of � to test � with a test set that is
C-adequate-on-M. Both of these requirements are
reasonable (and some would say barely sufficient) ways of
systematically testing the quality of M and �. If the test
adequacy criteria being used are code coverage criteria,
then satisfaction of these requirements (or the percentage of
coverage achieved) can be checked easily and
automatically with the aid of test coverage analysis tools.

However, there is a problem with the unit-testing
viewpoint. If M is an off-the-shelf component produced by
a supplier other than the developer of �, a practical
question arises as to how adequacy of the testing of M is to
be assured and/or determined. Even with a way of

1,4

1,3,4

1,2,3
1,2

1,21,2

1

1

DM

SD2

SD3

SD4

SD1

Fig. 4 . Subdomain relationships for proof of Theorem 2.

8

determining the adequacy of the testing of M (e.g., using a
technique such as the one described by Devanbu and
Stubblebine [3]), as M is used within more and more
programs, the unit-testing viewpoint could require more
and more tests to be run on M.

Another approach to studying the applicability of the model
is to consider the different scenarios that will be
encountered in the process of testing component-based
software. These scenarios involve both the testing of
individual components as well as the testing of the systems
that are composed from multiple components. The
scenarios below are described in terms of actions that need
to be performed by “the developer” or “the tester” of a
component; of course, this developer (tester) may actually
be a large team of developers (testers) within a software
development organization.

Component testing prior to deployment: The developer of a
new component must thoroughly test the component prior
to deploying it within a larger system. This scenario is
complicated by the fact that the developer will not be able
to predict all of the ways in which the component will be
used by other components. This complication is captured
in the definition of C-adequate-for-�.

Testing an integrated system: A developer desiring to
create a new system by integrating a collection of
components in a particular way must test the new
configuration prior to deployment. This scenario is
complicated by the fact that it may not be convenient to
subject some of the components to a testing process, since
the components may only be available as black-box
binaries and/or may be in use within other deployed
systems. The test requirements for this scenario are
captured in the definition of C-adequate-on-M.

Testing in the presence of system evolution: A tester may
desire to regression test a component or system for which
he or she is responsible whenever another developer has
installed a new version of some other constituent
component of the system. This scenario is complicated by
the fact that the replacement can happen dynamically,
without the knowledge of the affected tester, meaning that a
previous round of adequate testing may no longer be
adequate, from either the unit-testing viewpoint or the
integration-testing viewpoint.

Testing in the presence of new features: A tester may desire
to regression test a component or system for which he or
she is responsible whenever another developer has changed
or enhanced the functionality of some other constituent
component of the system. This scenario is a variant of the
previous scenario, with the additional complication that the
affected tester may have no knowledge about the changes
in functionality to expect.

Non-functional testing: A tester may desire to perform
various kinds of non-functional testing on a system, such as
performance testing, stress testing and load testing. This

scenario is complicated by the fact that such testing can
interfere with the ongoing use of the system’s constituent
components by other applications.

CONCLUSION
This paper has described a formal model of test adequacy
for component-based software. The model is captured in
the definitions of C-adequate-for-� and C-adequate-on-M.
The model applies to unit testing of individual components
and to integration-testing of compositions of components.

The work described in this paper is part of a broader study
of the problem of validating distributed component-based
software. Many of the characteristics of distributed
component-based software complicate and even limit the
ways in which they can be tested prior to deployment.

The notion of test adequacy can be viewed ultimately as a
tool that attempts to produce a high degree of fault
detection in a component. Furthermore, high levels of
adequacy or coverage may go a long way towards
identifying faults in the component, independently of the
extent to which testing is carried out in the context of larger
programs using the component. This possibility has been
born out in experimental studies of coverage criteria, such
as the study of Hutchins et al. [7]. However, more
extensive empirical studies are needed that are targeted to
evaluating the ways in which relationship between a
component and the programs that use it affect the fault
detecting ability of a test adequacy criterion.

There are a number of directions for future work on
component-based software testing. For instance, it would
be fruitful to study how a component-based viewpoint
affects the different relationships between test adequacy
criteria that have been studied in the testing literature,
including the traditional subsumption relation as well as the
different relations studied by Frankl and Weyuker [6].

Additionally, the model defined in this paper is relevant to
architectural-level testing of a software system, in which a
formal architecture description of the system is used to
guide integration testing of the system [10]. The model is
relevant as well to selective regression testing, whereby test
cases are selected from a regression test suite for the system
according to the changes that are made to create each new
version of the system [11,12]. In both cases, a component-
based orientation would be helpful for ensuring the
adequacy of the testing that is carried out.

Finally, the model can be used to study the relationship
between component-based test adequacy and the reliability
of component-based software. A good starting point for
such a study would be the reliability framework described
by Frankl et al. [5].

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCR-9701973. This
effort was also sponsored by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air

9

Force Materiel Command, USAF, under agreement number
F30602-97-2-0021. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
author and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S.
Government.

REFERENCES
[1] K. Brockschmidt, Inside OLE. Redmond, WA:

Microsoft Press, 1995.

[2] D. Chappell, Understanding ActiveX and OLE.
Redmond, WA: Microsoft Press, 1996.

[3] P. Devanbu and S.G. Stubblebine, “Cryptographic
Verification of Test Coverage Claims”, Proc.
Sixth European Software Engineering
Conference/Fifth ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Zurich,
Switzerland, 1997.

[4] J. Feiler and A. Meadow, Essential OpenDoc.
Reading, MA: Addison-Wesley, 1996.

[5] P. Frankl, D. Hamlet, B. Littlewood, and L.
Strigini, “Choosing a Testing Method to Deliver
Reliability”, Proc. 19th International Conference
on Software Engineering, Boston, MA, pp. 68–78,
1997.

[6] P.G. Frankl and E.J. Weyuker, “A Formal
Analysis of the Fault-Detecting Ability of Testing
Methods”, IEEE Transactions on Software
Engineering, vol. 19, no. 3, pp. 202–213, 1993.

[7] M. Hutchins, H. Foster, T. Goradia, and T.
Ostrand, “Experiments on the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy
Criteria”, Proc. 16th International Conference on
Software Engineering, Sorrento, Italy, pp. 191–
200, 1994.

[8] JavaSoft, “JavaBeans 1.0 API Specification”, Sun
Microsystems, Inc., Mountain View, CA version
1.00-A, December 4 1996.

[9] D.E. Perry and G.E. Kaiser, “Adequate Testing
and Object-Oriented Programming”, Journal of
Object-Oriented Programming, vol. 2, no. 5, pp.
13–19, 1990.

[10] D.J. Richardson and A.L. Wolf, “Software Testing
at the Architectural Level”, Proc. Second
International Software Architecture Workshop,
San Francisco, CA, pp. 68–71, 1996.

[11] D.S. Rosenblum and E.J. Weyuker, “Using
Coverage Information to Predict the Cost-
Effectiveness of Regression Testing Strategies”,
IEEE Transactions on Software Engineering, vol.
23, no. 3, pp. 146–156, 1997.

[12] G. Rothermel and M.J. Harrold, “Analyzing
Regression Test Selection Techniques”, IEEE
Transactions on Software Engineering, vol. 22,
no. 8, pp. 529–551, 1996.

[13] J. Siegel, CORBA Fundamentals and
Programming. New York, NY: Wiley, 1996.

[14] E.J. Weyuker, “Axiomatizing Software Test Data
Adequacy”, IEEE Transactions on Software
Engineering, vol. SE-12, no. 12, pp. 1128–1138,
1986.

