Adequate Testing of
Component-Based Software

David S. Rosenblum

Technical Report 97-34
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

11 August 1997

Adequate Testing of Component-Based Software

David S. Rosenblum
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425
+1 714.824.6534
dsr@ics.uci.edu
http://www.ics.uci.edu/~dsr/

ABSTRACT building user interface software. And a variety of
People have long advocated a component-based approadnfrastructure technologies now exist for composing
to software construction as a way of simplifying the design applications from multiple, heterogeneous component
and maintenance of large software systems, increasing th@arts, including CORBA[13], ActiveX[2] and
opportunities for reuse, and increasing software JavaBeans [8], as well asmpound documetgchnologies
development productivity. Although the technology for such as OLE [1] and OpenDoc [4].

constructing component-based software is relatively Given the
advanced, we lack a sufficient theoretical basis for testing
component-based software. This paper initiates the
development of such a theory. The main result is a formal

de_finitior_w of the concepC-adequate-fof? for adequate software is relatively advanced, we lack a sufficient
unit testing of a component and the conoepadequate- heqretical basis for the testingf component-based
on-Mfor adequate integration testing of a component-basedgysware. This paper initiates the development of such a
system. The paper uses these concepts to discuss practiﬁeory.
considerations in adequate testing of component-base
software. The problem of testing component-based software is
complicated by a number of characteristics of component-
Keywords N _ _ based software engineerinBistributed component-based
Component-based software engineering, integration testinggysiems of course exhibit all of the well-known problems
subdomain-based testing, test adequacy criterion, Unithar make testing “traditional” distributed and concurrent
testing software difficult. But testing of component-based
INTRODUCTION software (distributed or otherwise) is further complicated
People have long advocated a component-based approadhy ~ technological — heterogeneity and enterprise
to software construction as a way of simplifying the design heterogeneityof the components used to build systems.
opportunities for reuse of software assets, and increasin?@mponents can be programmed in different programming
the overall productivity of software development. Recent 1anguages and for different hardware platforms, meaning
technical advances have finally enabled component-basedhat testing a component-based system may require a
platforms. Enterprise heterogeneity refers to the fact that
Reusable Components exist in a multitude of forms. Olderdifferent Components can be provided by different’ possib]y
forms of components include |Ogica||y-encapsu|ated COdecompeting Supp"erS, meaning that no one Supp"er has
fragments such agrogramming libraries class libraries complete control over or complete access to the
reusable modulee.g., Ada packages), afefacy systems development artifacts associated with each component for
that have been “wrapped” for use as a component withinpyrposes of testing. And in the most extreme situations of
some other application. ~Newer forms of components gynamic evolutioncomponents can be deployed, brought
include user-levelplug-ins and add-ins downloadable off-line, and then re-deployed in new versions, all in a

components such as Jaepplets and domain-specific manner that is transparent to applications that are using the
frameworkssuch as the Microsoft Foundation Classes for components.

increasing dominance of component-based
software engineering, it is important to begin studying the
problem of testing component-based software. Yet
although the technology for constructingmponent-based

As a first step in developing a foundation for testing
component-based software, this paper defines a formal
model of test adequacy for component-based software. A
test adequacy criteriois a systematic criterion that is used
to determine whether a test suite provides an adequate
amount of testing for a component under test. Previous

definitions of adequacy criteria have defined adequatetwo axioms apply specifically to component-based
testing of a component independently of any larger systemsoftware. They are the axioms of Antidecomposition and
that uses the component. This perhaps may be due perhagsnticomposition, which Weyuker stated as follows:

to the traditional view of software as a monolithic code

base that can be put through several phases of testing prior Axiom of AntidecompositiorThere exists a prograf

to its deployment, and all by the same organization that and componen® such thafT is adequate foP, T’
built the software in the first place. However, a test suite is the set of vectors of values that variables can
that satisfies a criterion in the traditional sense might not assume on entrance @for somet of T, andT is
satisfy the criterion if it were interpreted with respect to the not adequate fa®.

subset of the component’s functionality that is used by the

larger system. Axiom of AnticompositioriThere exist programiB and

Q such thatT is adequate forP and P(T) is
adequate fo®, butT is not adequate fd?;Q [i.e.,
to the sequential composition Bfwith Q] [14].

Consider the simple example of tlstatement coverage
criterion, which requires a test suite to exercise each
statement in the component under test at least once. There

may be a large number of elements in the component SWhile undeniably true as stated, these axioms have limited

input domain that could be chosen to cover a particular ... : ; ;
statement. However, the element that is ultimately chosen;JtIIIty as a basis for developing a notion of test adequacy
or component-based software. First, the model of

may not be a member of that subset of the input domain o . .)
that is utilized by the larger program using the component.Compon.e.ntS embodied in these axioms is one of sequential
Hence, while according to traditional notions of test composition of - program statements, Wh.'Ch does not
adequacy the test case could serve as a member of aﬁo”esp‘?’.‘d well to a modular or object-oriented ;tyle Qf
adequate test set for the component, from the perspective O?O_mpos_ltlon. Second, the statement .Of the axioms in
the larger program using the component, the test set WOUIGEXIStentIaI terms means that they descrlbe_the worst case
be inadequate. rather than the ger_1era| case. Third, t_he notion of adequacy
underlying the axioms is 100% satisfaction of the test
The model defined in this paper is developed in terms of arequirements induced by a test adequacy criterion, yet
program<® that contains a single component of inteMst testers rarely achieve 100% adequacy. Hence, a
The model can be generalized for programs containingformalization of test adequacy is needed that better
multiple components. The model can be applied in two addresses the realities of testing component-based software.
different ways to the problem of testing component-based
software. In one way, the problem is viewed as one of
adequateunit testingof a component that is to be used
(perhaps off-the-shelf) within a larger system. In the other
way, the problem is viewed as one of adeqirategration
testingof the application containing the component.

Perry and Kaiser extended Weyuker’s work to demonstrate
how features of the object-oriented paradigm (particularly
class inheritance, method overriding, and multiple

inheritance) complicate the problem of adequately testing
object-oriented programs [9]. While employing a more

useful notion of component, their attention is confined

The paper begins with a discussion of previous efforts toPrimarily to the problem of testing individual classes rather

formalize the notion of test adequacy. The paper thentesting compositions of class instances.

defines a formal model of component-based software. Thisyig paper develops a general formal model of test

model is then used to formally define a notion of test ,qequacy for component-based software. As described in
adequacy for compqnent-based systems. The presentatioferai in “the following sections, the model is defined in
of the formal model is followed by a discussion of some of omq of subdomain-based test adequacy criterias

the practical considerations involved in ensuring adequateyqfined by Frankl and Weyuker [6]. Before defining the
testing of component-based systems. The paper concludegqe| of test adequacy, it is first necessary to define a

with a discussion of future work. formal model of component-based software.

BACKGROUND . . A FORMAL MODEL OF COMPONENT-BASED
Weyuker defined a set of ten axioms that formalize much g5-r\waARE

of the intuition underlying the idea of test adequacy, as well
as its less obvious ramifications [14]. Eight of the axioms
apply in a straightforward way to adequate testing of all
software, component-based or otherwise. The remaining

The notion ofcomponents used in this paper corresponds
to a general object-oriented notion of a component. In
particular, a componentl encapsulates some state and
provides a well-defined interface that strictly governs
access to the state by other parts of a system containing the
component. The interface is usually a setnadthodsor

' As is traditional in formal treatments of test adequacy, the operations that can be applied to the comporatibutes

letter C will be used to refer to test adequacy criteria. or data members of an interface can easily be represented
Therefore, the letteM will be used to refer to components with pairs of get and set methods. Without loss of

since they are somewhat synonymous with modules. generality,M is viewed in this paper as declaring in its

Dwm
P-irrelevant

M-bypass M-traverse

~ P-relevant
\/

p M access method

implementation

Fig. 1. A Model of Component-Based Software.

interface a singlaccess methothat handles the invocation

of the actual methodof M. For each parameter of an M-bypass(D)
actual method oM, there is a corresponding parameter of

the same type and mode in the access method. The access -relevant(Q)

Do — M-traverse(Dy)

method includes an additional parameter used to identify {deD, | 3d e M-traverse(D) » execution of
the actual method that is to be invoked. The input domain P on inputd” traversesvl with inputd }

of M is then the input domain of its access method, which

is the union of the input domains of the actual methods of P-irrelevant(D,) = D, - P-relevant(D)

M, but with each element extended with the appropriate

method identifier. The phrase “execution 6P traversedV” is taken to mean

Note of course tha¥l can be viewed as a program for the that the execution dP includes at least one invocation of

purpose of testing its own constituent subcomponentsm’s access method. THé-traversesubset ofDs is then

according to the notions of test adequacy defined in thisihe set of all inputs oP that cause the execution @fto
aper. IndeedV might be some large legacy system that ;

pap M mig ge legacy sy traverseM. The“-relevantsubset ofD,, is the set of all

has been adapted for use witfin inputs ofM’s access method th&@t uses for its traversals of
Fig. 1 represents pictorially the model of component-basedM. TheM-bypasssubset oDq is the set of all inputs 6P
software used in this paper. The figure illustrates athat cause the execution &P to “pypass” or avoid
program containing an constituent componéht LetDo traversingM. Finally, theP-irrelevant subset oD, is the
be the input domain 67, and letD,, be the input domain of et of all inputs oM’s access method th& never uses for
the access method bf. As shown in the figure, there are s traversals of/.

four important subsets of these input domains, which are
defined formally as follows: A FORMAL DEFINITION OF COMPONENT-BASED

TEST ADEQUACY
A test seflo is said to beC-adequatdf T satisfies the test
requirements induced by a test adequacy criteGoon

Definitions:

M-traverse(Dy) =
{d e Dg | execution of? on inputd traversesv }

Fig. 2. Graphical depiction of a subdomain-based test adequacy criterion.

program®.? Similarly, a test seT,, is C-adequateif T, 1. A test setT, for © is C-adequateif T contains at
satisfies the test requirements inducedtbgn component least one test case from each subdomai#tig(Ds).
M.

2. A test sefT,, for M is C-adequateif T,, contains at
The model of test adequacy for component-based software least one test case from each subdomad¥a(D,,).
developed below is defined in terms of applicable
subdslmalr&—basedktest adequacy clrltena as ddefmed b¥rhis definition captures the traditional notion of test
Frankl and Weyuker [6]. In particular, st adequacy j4equacy, and it makes no distinction between a program
criterion C is subdomain-basedif, for program ? and a component. In the remainder of the paper, criteria
(componentM), there is a nonempty multisei?.(Dq) will be assumed to be applicable and subdomain-based.
(0D(D,)) of subdomains o (D,), such thaC requires To demonstrate how a criterion induces a set of
the selection of one test case from each subdomain in

. : : subdomains, Fig. 2 illustrates a subdomain-based criterion
ID(D) (OD(Dy)). Furthermore is applicableif the C that is defined in terms of code entities withi® The

empty subdomain is not an element @f)(Ds) numbered circles inM represent these entities. The
(ODLD,)) [6]. Thus, adequacy is defined for subdomain- numbered circles i, represent the elements Mdfs input
based criteria as follows: domain, with the numbers indicating which entities an

Definition (C-adequate Given an applicable subdomain- gljebn;grr:qta?r?seriﬁgiéd-L(g,ev;ﬁﬁlgrglolgaﬁéeg?zﬁ;;g?s
based criteriorC, a progrant?, and a componem, that exercise entity. The shaded circles represent an
example of a test set that is adequate according to this
code-based criterion. Note that subdomains typically
overlap, as do the test cases in their coverage of
Test adequacy is usually defined in terms of subdomains.

program/specification pairs. However, the formal model
developed in this paper does not rely on the availability of a
specification for a program or component. Hence, in the
discussion that follows, and in the description of Frankl and
Weyuker's model of subdomain-based test adequacy
criteria, the specification is ignored. ° An example of such a criterionssatement coverage

4

2

As was observed previously, testers rarely satisfy 100% of
the test requirements induced by a test adequacy criterion.

In terms of subdomain-based criteria, they typically select pairwise correspondence between each subdomain in
test cases from fewer than 100% of the subdomains®(M-traverse(Dy)) and a subdomain i), (Ds), and
induced by the criterion they are using. It is therefore petween each subdomain D (M-bypass(B)) and a
useful to extend the definition of adequacy in a way that ,,p4omain ind?(Ds). In addition, each subdomain

accounts for the percentage of subdomains a test Se|tnduced by criteriorC on componenM is partitioned into

4
covers. its P-relevant subset and it§P-irrelevant subsets, with a
Definition (n% C-adequaieGiven criterionC, program®, similar pairwise correspondence established with
and componeri, subdomains indYy(D,). Note also that the definitions

discard empty subdomains, in order to retain the

1. A test setTy for is n% GCadequateif To applicability ofC

contains at least one test case fropercent of the
subdomains iRf?(Dy). Given the above definitions, adequate testing of
component-based software can now be formally defined.

2. A test setT, for M is n% Gadequateif T, First, the conceptC-adequate-fof? is defined to
contains at least one test case fropercent of the ., - - tarize adequateit testingof M:

subdomains iSD(D,,).
Definition (C-adequate-fof2): A test sefT,, is C-adequate-
Corollary 1: A test set isC-adequateif and only if it is for-? if it contains at least one test case from each
100% C-adequate subdomain iRSD(“P-relevant(Q,)).

The previous section formally partitionBs with D,, Second, the concepC-adequate-on-Mis defined to
according to?’s traversal ofM. These partitions carry characterize adequatetegration testingof ¢ with respect
over to the subdomains induced by an applicable to its usage of:

bdomain-based criteri@has follows: - .
su ! S rerignas ws Definition (C-adequate-on-MA test sefl is C-adequate-

Definitions: on-M if it traversesM with at least one element from each

subdomain iRSD(“P-relevant(Q,)).
ID(M-traverse(Dy)) =

{ Dc M-traverse(D) | 3D e SD(Dy) » DD’ Not_e that althgug_h it i$ that is being tested in integration
and D-D c M-bypass(R) and D = &%} testing, the criteriorC must be chosen and then evaluated
- in terms of Min order to ensure adequate testing of the
SD(M-bypass(B)) = re_Iatipnship betwe_ef? andM. For exampleC could be a
{ Dc M-bypass(B) | 3D e 3D(Dg) ®» Dc D’ criterion that requires each of the actual methodd td be

exercised at least once. This is a reasonable requirement
for adequate integration testing @f and the definition of
C-adequate-on-Mensures that the criterion would be
interpreted only with respect to the methodshvbthat <2
invokes anywhere in its source code. Of couGeged

and D-D c M-traverse(D») and D = &}

IDL(P-relevant(D,)) =
{ Dc P-relevant() | 3D € SD(D,) » Dc D’

and D-D ¢ “-irrelevant(D,) and D # &} not be the same criterion as the one used to d@signthe
) first place; it merely imposes a requirement on the testing
cS(DC(CP-lrrel_evant(qA)) = / / achieved byT.
{ D g P-irrelevant(D,) | 3D € 59.D,) * DcD
and D-D — P-relevant(Q,) and D = &} These definitions can be extended as before to

accommodate a notion of percentage of adequacy.

Note that according to these definitions, each subdomainDefinition (n% C-adequate-fo®: A test setT,, is n% C-
induced by criteriorC on progrant? is partitioned into its adequate-fof? if it contains at least one test case each
M-traversesubset and itsl-bypasssubset. Thus, there is a from n percent of the subdomainsdiv) (?-relevant(R,)).

Corollary 2: A test sefT,, is C-adequate-fof? if and only
“ Of course, low percentages of coverage can hardly bef it is 100% C-adequate-fd.
considered “adequate testing” in any qualitative sense of)
the term, especially since experimental studies have showrPefinition (n% C-adequate-on;MA test setTo is n% C-
that a test set must achieve coverage in the range of 90% ckdequate-on-Mf it traversesM with at least one element
greater in order to be truly effective at detecting faults [7]. each from n percent of the subdomains D (/-
However, the definitions given here simply formalize relevant(Q,)).

standard characterizations of coverage that are used in .
testing practice. g Corollary 3: A test sefly is C-adequate-on-Mf and only

SD3
SD;

Fig. 3. Subdomain relationships for proof of Theorem 1.

if it is 100% C-adequate-on-M and subdomains?(D,,) appearing in Fig. 2. Suppose that

There are a number of interesting consequences of thesdu CONtaINs the test cases whose circles are shaded light

definitions that merit discussion. These consequences ar@'@Y- Suppose that the elementsDpf whose circles are
stated as theorems, which are proven by appealing tfashed are thg*relevantelements oD,. ThenT, is C-
hypothesized subdomain relationships that could beadequate-fof? since it contains one test case drawn from
generated easily by programs and test sets specificallyeach of the “-relevant subdomains induced byC.
synthesized to exhibit such relationships. However,T,, contains no element fro®D, Hence,T,, is

The first two theorems concern the relationship betwizen notC-adequate.

adequateand C-adequate-fofP. In particular, a test s@, Corollary 5: There exist a prograr®, a componenM of
that isC-adequatenight not beC-adequate-fof?, and vice P, a criterionC, and a test sék, for M such thafT,, is n,%

versa. Theorem 1 is roughly analogous to Weyuker's C-adequateT,, is n,% C-adequate-fof?, andn, < n..
Axiom of Anticomposition.
Corollary 6: Given a prograni?, a componenM of ¢, a

Theorem 1There exist a prograf®, a componeni of 2, criterionC, and a test sat, for M,

a criterionC, and a test sef,, for M such thatT,, is C-

adequatebut notC-adequate-fof?. (VteT, 3D e SD(Prelevant(Q)) e t D)
Proof: Consider Fig. 3, which depicts the input dom@jp and (PD(P-relevant))| < [5DLD)) 1))
and subdomains).(D,,) appearing in Fig. 2. Suppose that — — C-adequate(])

T, contains the test cases whose circles are shaded light

gray. Suppose that the elementsDgf whose circles are Corollary 6 captures the situation when there is a
dashed are th&-relevantelements oD,. ThenT,, is C- subdomain inSY.((D,)) that has ndp-relevantmembers
adequatesince it contains one test case drawn from each ofand no test cases ifj,. In this situation,T,, is not C-

the subdomains induced By However,SD, contains only adequate

oneP-relevantelement, and that element is not a member

) The next two theorems concern the relationship betWeen
of T,. Hencef,, is notC-adequate-fof?.

adequateand C-adequate-on M In particular, a test sat,

Corollary 4: There exist a prograi®, a componenM of thatisC-adequatemight not beC-adequate-on-Mand vice

, a criterionC, and a test sak, for M such thaff, is n.% versa. As mentioned above, the criterion used to judge the
3 ’ M 1

, adequacy of testing wittM can be different from the
- 0, - -
C-adequateT, isn,% C-adequate-fof?, andn, > . criterion used to design the test set fBr Hence, the

Theorem 2There exist a prograf®, a componeni of 2, theorems are stated for two different criteti@ (used to
a criterionC, and a test sef,, for M such thatT,, is C- test®’) andCM (used to tesM). This implies that there
adequate-fof? but notC-adequate need not be a relationship between the subdomains in

IDa(M-traverse(Dy)) and the subdomains D, (P-

Proof: Consider Fig. 4, which depicts the input domBjn relevant(Q)). Theorem 3 is roughly analogous to

SDs3
SD,

Fig. 4 . Subdomain relationships for proof of Theorem 2.

Weyuker's Axiom of Antidecomposition. is n,% CP-adequateT,, is n,% CM-adequate-on-Mandn,
Theorem 3There exist a prograf®, a componeny of P, <N,

criteria C®? andCM, and a test séfy for such thafl is APPLICATIONS OF THE MODEL

C‘P-adequatéut notCM-adequate-on-M The formal model presented in the previous sections

. .. provides a foundation for studying and evaluating test
Proof: Suppose there is more than one subdomain iNadequacy for component-based systems. An important
dD(De) and thatT, contains at least one element from jssue is the practical applicability of the model. It is one
each of those subdomains.Te is thus CP-adequate thing to argue that components must be tested with respect
Suppose there is more than one subdomaias4hn, (- to the context of the larger systems in which they will be
re'evant(QA)), and Suppose that the test CasesT@f Used. It iS another th|ng to determine hOW thlS will be

traverseM through only one of those subdomains. Tign ~ accomplished, especially in light of the fact that the
is notCM-adequate-on-M component developer may be different from the system

developer and that the two developments may proceed at

Corollary 7: There exist a prograr®, a componenM of widely separate points in time.

P, criteriaC’? andCM, and a test séft, for > such thafle As mentioned in the introduction, the testing of component-
is n,% CP-adequate T is n,% CM-adequate-on-Mandn, based software can be viewed as both a unit testing
>, problem for componentM, and an integration testing

problem for progranf? containingM. The unit-testing
viewpoint requires the developer & to test M with
criterion C and to carry out the testing with a test set that is

Corollary 8: A test setly is notCM-adequate-on-Mf T
only contains elements froM-bypass([3).

Theorem 4There exist a prograf®, a componeni of 2, C-adequate-fof?. ~ The integration-testing viewpoint
criteriaC? andCM, and a test séf, for 2 such thafTy is requires the developer & to test”? with a test set that is
CM-adequate-on-Nbut notCP-adequate C-adequate-on-M Both of these requirements are

reasonable (and some would say barely sufficient) ways of
Proof: Suppose that the number of subdomains<n,(?- systematically testing the quality M and<?. If the test
relevant(,)) is much smaller than the number of adequacy criteria being used are code coverage criteria,
subdomains inSD((De)). Suppose that the number of then satisfaction of these requirements (or the percentage of
test cases iM» is exactly the number of subdomains in coverage achieved) can be checked easily and
5D, (P-relevant()) and that each test case traverbks automatically with the aid of test coverage analysis tools.
through a different subdomain. Thén is CM-adequate- However, there is a problem with the unit-testing
on-M but notCP-adequate viewpoint. IfM is an off-the-shelf component produced by

a supplier other than the developer @ a practical

Coro!lary 9: There exist a prograr®, a componenM of question arises as to how adequacy of the testing isfto
P, criteriaC? andCM, and a test séf; for ? such thafT,, be assured and/or determined. Even with a way of

determining the adequacy of the testingwbfe.g., using a scenario is complicated by the fact that such testing can
techniqgue such as the one described by Devanbu andnterfere with the ongoing use of the system’s constituent
Stubblebine [3]), asM is used within more and more components by other applications.

programs, the unit-testing viewpoint could require more CONCLUSION

and more tests to be run bh . .

This paper has described a formal model of test adequacy
Another approach to studying the applicability of the model for component-based software. The model is captured in
is to consider the different scenarios that will be the definitions ofC-adequate-fof? and C-adequate-on-M
encountered in the process of testing component-basedrhe model applies to unit testing of individual components
software. These scenarios involve both the testing ofand to integration-testing of compositions of components.
individual components as well as the testing of the systems) o .
that are composed from multiple components. The The work described in this paper is part of a broader study
scenarios below are described in terms of actions that nee@f the problem of validating distributed component-based
to be performed by “the developer’ or “the tester’ of a software. Many of the characteristics of distributed
component; of course, this developer (tester) may actuallycomponent-based software complicate and even limit the
be a large team of developers (testers) within a softwareWays in which they can be tested prior to deployment.

development organization. The notion of test adequacy can be viewed ultimately as a

Component testing prior to deploymefitie developer of a 100l that attempts to produce a high degree of fault
new component must thoroughly test the component priordetec’uon in a component. Furthermore, high levels of
to deploying it within a larger system. This scenario is @deéquacy or coverage may go a long way towards
complicated by the fact that the developer will not be able identifying faults in the component, independently of the
to predict all of the ways in which the component will be €xtént to which testing is carried out in the context of larger

used by other components. This complication is capturedP’ograms using the component. This possibility has been
in the definition ofC-adequate-fof?. born out in experimental studies of coverage criteria, such

as the study of Hutchins et al.[7]. However, more
Testing an integrated systends developer desiring to extensive empirical studies are needed that are targeted to
create a new system by integrating a collection of evaluating the ways in which relationship between a
components in a particular way must test the new component and the programs that use it affect the fault
configuration prior to deployment. This scenario is detecting ability of a test adequacy criterion.

complicated by the fact that it may not be convenient to

subject some of the components to a testing process, sinc . . X
the components may only be available as black_boxcompolnent-based software testing. For instance, it would
be fruitful to study how a component-based viewpoint

cysiems. The teat requirements.for this scenario. areifects the diferent relaionships between test adeguacy
captured in the definition &-adequate-on-M criteria that have been studied in the testing literature,
including the traditionasubsumptiomelation as well as the
Testing in the presence of system evolutidriester may different relations studied by Frankl and Weyuker [6].
desire to regression test a component or system for which

he or she is responsible whenever another developer ha,SAddmonaIIy, the model defined in this paper is relevant to

installed a new version of some other constituent architectural-level testingf a software system, in which a

component of the system. This scenario is complicated b or_mal_architgcture qescription of the system is used to
the [f)act that the ryeplacement can happen d)?namically),/gu'de integration testing of the system [10]. The model is

without the knowledge of the affected tester, meaning that arelevant as well tgelective regression testinghereby test

previous round of adequate testing may no longer peCases are selected from a regression test suite for the system
adequate, from either the unit-testing viewpoint or the acco_rdmg to the changes that are made 1o create each new
integration-testing viewpoint, version of_the system [11,12]. In both cases, a component-

based orientation would be helpful for ensuring the
Testing in the presence of new featurkesester may desire adequacy of the testing that is carried out.

to regression test mponent or tem for which he or_. . .
0 fegression 1est a component or system 1o ch he o dnally, the model can be used to study the relationship

she is responsible whenever another developer has Changé;etween component-based test adequacy and the reliability

or enhanced the functionality of some other constituento]c component-based software. A good starting point for
component of the system. This scenario is a variant of the P Sed sortware. 9 starting pol

previous scenario, with the additional complication that the Sucl? a E}tu?y lwosuld be the reliability framework described
affected tester may have no knowledge about the changegy rankl etal. [5].
in functionality to expect. ACKNOWLEDGMENTS

Non-functional testing’A tester may desire to perform This material is based upon work supported by the National

various kinds of non-functional testing on a system, such aSScience Foundation under Grant No. CCR-9701973. This
ffort was also sponsored by the Defense Advanced

performance testing, stress testing and load testing. Thi esearch Projects Agency, and Rome Laboratory, Air

ghere are a number of directions for future work on

8

Force Materiel Command, USAF, under agreement number{7]
F30602-97-2-0021. The U.S. Government is authorized to
reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
author and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research8]
Projects Agency, Rome Laboratory or the U.S.
Government.

REFERENCES [9]
[1] K. Brockschmidt, Inside OLE Redmond, WA:
Microsoft Press, 1995.

[2] D. Chappell, Understanding ActiveX and OLE
Redmond, WA: Microsoft Press, 1996. [10]

[3] P. Devanbu and S.G. Stubblebine, “Cryptographic
Verification of Test Coverage Claims™®roc.
Sixth European Software Engineering
Conference/Fifth ACM SIGSOFT Symposium on [11]
the Foundations of Software Engineerirfrich,
Switzerland, 1997.

[4] J. Feiler and A. MeadowEssential OpenDoc
Reading, MA: Addison-Wesley, 1996.
12
[5] P. Frankl, D. Hamlet, B. Littlewood, and L. 42
Strigini, “Choosing a Testing Method to Deliver
Reliability”, Proc. 19th International Conference
on Software Engineerindgoston, MA, pp. 68—78,
1997. [13]

[6] P.G. Frankl and E.J. Weyuker, “A Formal
Analysis of the Fault-Detecting Ability of Testing [14]
Methods”, IEEE Transactions on Software
Engineeringvol. 19, no. 3, pp. 202-213, 1993.

M. Hutchins, H. Foster, T. Goradia, and T.
Ostrand, “Experiments on the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy
Criteria”, Proc. 16th International Conference on
Software EngineeringSorrento, ltaly, pp. 191-—

200, 1994.

JavaSoft, “JavaBeans 1.0 API Specification”, Sun
Microsystems, Inc., Mountain View, CA version
1.00-A, December 4 1996.

D.E. Perry and G.E. Kaiser, “Adequate Testing
and Object-Oriented ProgrammingJournal of
Object-Oriented Programmingvol. 2, no. 5, pp.
13-19, 1990.

D.J. Richardson and A.L. Wolf, “Software Testing
at the Architectural Level”, Proc. Second
International Software Architecture Workshop
San Francisco, CA, pp. 68—71, 1996.

D.S. Rosenblum and E.J. Weyuker, “Using
Coverage Information to Predict the Cost-
Effectiveness of Regression Testing Strategies”,
IEEE Transactions on Software Engineetingl.

23, no. 3, pp. 146-156, 1997.

G. Rothermel and M.J. Harrold, “Analyzing
Regression Test Selection Technique$EEE
Transactions on Software Engineerjngol. 22,
no. 8, pp. 529-551, 1996.

J. Siegel, CORBA Fundamentals and
Programming New York, NY: Wiley, 1996.

E.J. Weyuker, “Axiomatizing Software Test Data
Adequacy”, IEEE Transactions on Software
Engineering vol. SE-12, no. 12, pp. 1128-1138,
1986.

