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ABSTRACT isolation of change). This is only partially adequate in the case
Software architectures have the potential to substantiallpf development with preexisting, large, multi-lingual, multi-
improve the development and evolution of large, complexplatform components that originate from multiple sources.
multi-lingual, multi-platform, long-running systems. However,  An explicit architectural focus can remedy many of these
in order to achieve this potential, specific architecture-basegtficulties and enable flexible construction and evolution of
modeling, analysis, and evolution techniques must be provideg, o systems. Software architectures present a high level view

This paper motivates and presents one such technique: a ty, . ;
theory for software architectures, which allows flexible, a system, enabling developers to abstract away the irrelevant

controlled evolution of software components in a manner th4{€tails and focus on the “big picture.” Another key property is
preserves the desired architectural relationships and propertid8€ir explicit treatment of software connectors, which separate
Critical to the type theory is a taxonomy that divides the spacé@mmunication issues from computation in a system. However,
of subtyping relationships into a small set of well definedexisting architecture research has thus far largely failed to take
categories. The paper also investigates the effects of large-scaldvantage of this potential for adaptability: few specific

development and off-the-shelf reuse on establishing typgechniques have been developed to support flexible
conformance between interoperating components in  agrchitecture-based design and evolution.

architecture. An existing architecture is used as an example to - . .
illustrate a number of different applications of the type theory Three distinct building blocks of a software architecture are

to architectural modeling and evolution. components, connectors, and architectural configurations
(topologies) [16]. Each of them may evolve. Our work to date
1. INTRODUCTION has addressed the evolution of connectors and topologies [14,

In order for large, complex, multi-lingual, multi-platform, 15, 19, 25]. This paper proposes a technique for evolving
long-running systems to be economically viable, they need tgoftware components. This technique has resulted from the
be evolvable. Support for software evolution includesrecognition that researchers in software architectures, and
techniques and tools that aid interchange, reconfiguratiofarticularly in architecture description languages (ADLs), can
extension, and scaling of software modules and/or systemigarn from extensive experience in the area of PLs, and object-
Evolution in the current economic context also requires suppoftiented languages (OOPLSs) in particular. The particular lesson
for reuse of third-party components. The costs of systerfil this case is that an existing software module can evolve in a
maintenance (i.e., evolution) are commonly estimated to be &9ntrolled manner via subtyping.
high as 60% of overall development costs [7]. Practitioners Our approach to component evolution is indeed based on a
have ftraditionally faced many problems with curbing thesdype theory. We treat each component specification in an
costs. The problems are often the result of poor understandimgchitecture as a type and support its evolution via subtyping.
of a system’s overall architecture, unintended and complekdowever, while PLs (and several existing ADLs [5, 6, 10])
dependencies among its components, decisions that are mamgport a single subtyping mechanism, we have demonstrated
too early in the development process, and so forth. Traditiondlhat architectures may require multiple subtyping mechanisms,
development approaches (e.g., structural programming anany of which are not commonly supported in PLs [13].
object-oriented analysis and design) have in particular failed tbherefore, existing PL type theories are inadequate for use in
properly decouple computation from communication within asoftware architectures.

system, thus supporting only limited reconfigurability and  Beyond evolution, types are also useful in establishing
reuse. Evolution techniques have also typically beerertain correctness criteria about a program or an architecture.
programming language (PL) specific (e.g., inheritance) andeveral existing ADLs support type checking (e.g., Aesop [5],
applicable on the small scale (e.g., separation of concerns parwin [12], Rapide [10], and UniCon [23]). However, as with
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systems out of existing parts. Those parts will typically not
perfectly conform to each other. We have demonstrated tha

partially mismatched components can in certain cases still be = : Sends task

- - A : . On-Line On-Line 5 Workflow  Zlers down

effectively combined in an architecture [14, 15]. Establishing @fersees | patapnase Type [ [N |° | 5ojicy Databasps a2 Pes
x

the degree of compatibility can also help determine the amour |

of work necessary to retrofit a component for use in a system. Oﬁ_*une

The contributions of this paper are threefold: Database A

 a taxonomy that divides the space of potentially complex e aphane was Sealy metaied (o.0)
subtyping relationships into a small set of well defined, man-[ g sst

ageable subspaces;

» a flexible type theory for software architectures that is

domain-, style-, and ADL-independent. By adopting a richer | Biling NOSS NOSS \lNorkforce

notion of typing, this theory is applicable to a broad class of 2™ Y s — VIR

design and reuse circumstances; and Transacton | ———
» an approach to establishing type conformance between inter- Manager(s) U] [u ]

operating components in an architecture. This approach is
better suited to support the “large scale development with Trane Consisl
off-the-shelf reuse” philosophy on which architecture ' Check Typel
research is largely based than other existing techniques. e

The remainder of this paper is organized as follows. %

I
Trans. Consist.

Check Type2

. . . . . . Cust. Support Cus. Supprt] y ‘Quick’ Local
Section 2 briefly discusses the architecture that is a basis (m - Loca Trans. Trans. State
examples used throughout the paper to illustrate the concepts |_Trans. Server (allows handoff) ———
the type theory. Section 3 introduces and discusses the gene ..[CW3zZPC |[W32PC Quick][ [ www
principles of the architectural type theory. Section 4 formally |e11 syste Ta;ﬁdpgngH”;:g Proct | IEHP | Servet| OS] interfacs
defines a particular instance of the type theory, or a type ‘ ‘ ‘ I
system, that exhib.its the necessary propertigs for component Reflexive ArchitecturdConans a connecion
evolution and architectural type checking. A discussion of our Model and Manager

H h f this design: Telephon
results to date, conclusions, and future work round out theEg‘gngjﬁg,ﬁcy s desion:  me—— Syt
paper. Replication of Services System Device

Location of state Configurator
2. EXAMPLE ARCHITECTURE Database contrc® | | User Interfacs

To illustrate the concepts in this paper, we use the.. . .
architecture shown in Fig. 1. This architecture resulted from th ig. 1. Call Center Customer Care @4) System architecture:
) X 1) Corporate databases and billing;
case study conducted during the Second International Softwa8) Network Operations Support System (NOSS);
Architecture Workshop (ISAW-2) [26]. The system that the (3) Downstream systems;
architecture models isall center customer cargC4) system  (4) “Quick” service.
for a large telecommunications company. The architecturélighlighted components have been modeled extensively.

includes several subsystems identified by the telephone

company: - We have extensively modeled the components highlighted
+ Corporate databases and billing — customer account mair Fig. 1. These components were selected because they
agement; constitute a logical subsystem (basic customer service request

» Network Operations Support System (NOSS) — manag

ment and provisioning of the physical network Sandling) and exhibit interesting properties. The examples used

- Downstream systems — e.g., long-distance carrier servicel ﬁthr? remainder of the paper will be drawn from this modeling
911 service, voice mail, and so forth; ort.

“Quick” service — enables customers to directly communi-3  GENERAL PRINCIPLES OF THE TYPE THEORY
cate with the system; and

« “C4 core” — manages the above parts of the system and pro- EXplicit treatment of types enablesbtyping the evolution

vides support for service negotiations, account managemerif a given type to satisfy new requirements, gpe checking

and trouble-call management. the determination of whether instances of one type may be

The architecture in Fig. 1 addresses most of the majdegally used in places where another type is expected. This

system requirements and has previously been discussed in maa@ion of legality can help software developers keep program
detail [27]. It is modeled in the C2 architectural style: asemantics close to programmer intentions, and thus discipline
component communicates with components above and belowtite evolution and (re)use of objects. Furthermore, a
in the architecture by sending asynchronous messages, whichmbination of type declarations and type checking supports
are then routed to the appropriate components by connectgggurce code understandability and, ultimately, the generation of
[25]. Although some concerns have been voiced about thefficient executable code.
suitability of the C2 style for this particular application, the A useful overview of PL subtyping relationships is given
specifics of the style and of the architecture are not critical fosy Palsberg and Schwartzbach [21]. They describe a consensus
the purpose of demonstrating the concepts introduced in thig the OO typing community regarding the definition of a range
paper. Instead, we chose this particular example because it igfsOO typing relationshipsArbitrary subclassingallows any
well-defined requirements from an actual project and describegass to be declared a subtype of another, regardless of whether
a large-scale problem, for which software architectures arghey share a common set of methotme compatibility
particularly well suited. demands that there exist a shared set of method names available



(b) intand beh

Fig. 2. A framework for understanding OO subtyping relationships
as regions in a space of type systems.

(c) intand imp (d) imp and not int
U
{a
G(’ Imp
in both classes.Interface conformanceconstrains name <
compatibility by requiring that the shared methods have ) _ _
conforming signaturedvionotone subclassingquires that the Fig. 3. Examples of component subtyping relationships we have
subclass relationship be declared and that the subclass mgagountered in practice.
preserve the interface of the superclass, while possibly . ) ]
extending itBehavioral conformancf®, 3, 11, 29] allows any ~ changing components that communicate via asynchronous
class to be a subtype of another if it preserves the interface and€ssage passing (e.g., C2 architectural style [25]), without
behavior of all methods available in the supertype. Finally, affecting dependent components in a given architecture;

; : " behavioral conformancgFig. 3b) guarantees correctness
strictly monotone subclassingdditionally demands that the during component substitution:

subtype preserve the particular implementations used by thegyicy monotone subclassirig. 3c) enables extension of

supertype. the behavior of an existing component while preserving cor-
Protocol conformancegoes beyond the behavior of rectness relative to the rest of the architecture;

individual methods to specify constraints on the order in which implementation conformance with different interfaces

methods may be invoked. Explicitly modeling protocols has (Fig. 3d) allows a component to be fitted into an alternate

been shown to have practical benefits [1, 9, 18, 28, 29]. domain of discourse (e.g., by using software adaptors [28]);

However, component invariants and method preconditions arigMultiple conformance mechanisraiow creation of a new

postconditions can be used to describe all state-based protoco%gem%%ﬁ;ggﬂgg from several types using different subtyp-
constraints and transitions. Thus, our notion of behavioral :

conformance implies protocol conformance, and we do noﬁsingc’t?h?att;vriﬁﬁg%sf t?rgr]fn f':ﬁéthﬁ:lsel;(;g_psliﬁvsgrgt'zggéﬁ)
address them separately. . taxonomy. However, while in OOPLs the three subtyping
We have developed a framework for understanding thesgechanisms would be provided by three separate languages, in
subtyping relationships as regions in a space of type systemgehitectures they all need to be supported by the same ADL
shown in Fig. 2. The entire space of type systems is labeled 4, may actually be applied to components in a single
The regions Iabele_tht andBehcontaln_ systems that deman_d architecture. Also, the example in Fig. 3d does not have a
that two conforming types share interface and behaviokqresponding OOPL mechanism, further motivating the need
respectively. Thémp.reglon contains systems that demand that,, 5 flexible type theory for software architectures.
a type share parthularl implementations of all supertype At the same time, by giving a software architect more
methods, which also implies that types preserve the behavior fgtitude in choosing ’the direction in which to evolve a

Lh;r;: eSSUp;r:tdy?ﬁj s Tr?;djﬂgqef %'\?Qrs esr;;atg(rjns tc;]r;llty ds grir;r? drsnﬁ;[? é)r(fj cognponent, we allow some potentially unde;sirable side effec@s.
conforr’nance 45t ex_ample, by preserving a component's interface, but not its
L : . : . behavior, the component and its resulting subtype may not be
Each subtyping relationship described in [21] andinerchangeable in a given architecture. However, it is up to the
summarized above can be denoted via set operations on thegepitect to decide whether to preserve architectural type
regions. For exampléehavioral conformancewhich requires  correctness, in a manner similar to America [2], Liskov and
that both mterfacg and bgahawor of a type be preservedying [11], Leavens et al. [3], and others (depicted in Fig. 3b),
corresponds to the intersection of the Int and Beh regions and s simply to enlarge the palette of design elements in a

expressed asnt and beh (Fig. 3b). Each region in Fig.2 controlled manner, in order to use them in the future.
encompasses a set of variations of a given subtyping
relationship, rather than a single relationship. Thus, fod. ARCHITECTURAL TYPE SYSTEM
example, the different flavors of the behavioral conformance |, [13] we discussed the types of syntactic constructs
relationship, described by Zaremski and Wing [29], represerieeded in an ADL in order to support our type theory. In this
different points in thent and behsubspace. The architectural section we present a type system for software architectures that
type system we propose in the next section also represent§natantiates the type theory. The two possible applications of an
selection of individual points within the different subspaces. grchitectural type theory—evolution of existing components by
This type theory was motivated by our previous work,software architects, and type checking of architectural
where we have encountered numerous situations in which nesescriptions—are discussed below in Sections 4.2 and 4.3,
components were created by preserving one or more aspectsr@$pectively. All definitions are specified in Z, a language for
one or more existing components [13, 15]. Several example@aodeling mathematical objects based on first order logic and
are shown in Fig. 3: set theory [24]. Z uses standard logical connectives (00 ,
* interface conformancéFig. 3a) has proven useful in inter-




etc.) and set-theoretic operatiorfs ( to denote §etS, n, , provided orrequired. Only provided operations will have an
etc.). implementation in a given component. The preconditions and
postconditions of required operations express éRkpected

4.1. Components o ) semantics for those operations. Formal specification of an
Every component specification is architectural typeWe  grchitectural type (component) is shown in Fig. 4.

distinguish architectural types frobasic typede.g., integers, In the interest of space, Fig.4 does not specify the

strings, arra}ys,brecords_, etc.). Ungke t(h)OPLtS)', 'ntWh.'Ch 0kf)tlect?elationship of component invariants to operation pre- and

communicateé by passing around other OBJECtS, In SOMwalgqqiqngitions. This relationship can be summarized semi-

architectures components are distinguished from the data th <¥rmally as follows. Given a component C and operation O

exchange during  communication. In other words, rovided by C, for all valid input states of O that satisfy C's

?Srggg?g:; olgetr(lgrr?egr?gnl[ninvgrxczgcvgﬁegtsuerelttohg:]%tﬁernev invariant and O’s precondition, there exists a valid output state
P P " that satisfies both O’s postcondition and C’s invariant.

A component has a name, a set of interface elements, an ;.0 \ve separate the interface from the behavior, we
associated behavior, and (possibly) an implementation. Eag.ne' 5 functionjnt_op_map which maps every interface
mter_face element has a direction mdmatqmo(nc_ied or ement to an operation of the behavior. This function is a total
required), a name, a set of parameters, and (possibly) a res@ riection: each interface element is mapped to a single
Each parameter, !n turn, hasaname and atype._ operation, while each operation implements at least one

A component's behavior consists of an invariant and a Sgterface. An interface element can be mapped to an operation
of operations. The invariant is used to specify any prptoc%my if the types of its parameters are subtypes of the
constraints on the use of the component. Each operation hagrresponding variable types in the operation, while the type of
preconditions, postconditions, and (possibly) a result. Sincgs result is a supertype of operation’s result type. This property
operations are decoupled from interface elements, they algfrectly enables a single operation to export multiple interfaces.
provide a set of variables used to express preconditions and An example of component specification, given in C2's
postconditions. Like interface elements, operations can bRDL is shown in Fig. 5. Only partial specifica:cions of Da-

Line DatabasgOnLineDB andNOSS Interaction Transaction
Manager(NOSS_Mdr components from Fig. 1 are shown due

— Variable
name : STRING to space constraints. For example, we show only the portion of
type - BASIC_TYPE NOSS_Mgthat is intended to interact wibnLineDB

In a C2 architecture, a component has no dependencies on
—Int_FElement

dir : DIRECTION
name : STRING
params : P Variable
result : BASIC_TYPE

— Operation

vars : P Variable

precond : Logic_Pred

postcond : Logic_Pred

result : BASIC_TYPFE

dir : DIRECTION

implementation : seq STATEMENT

dir = req = implementation = &

— Component

Basic_Type_Conformance

name : STRING

interface : P Int_FElement

invariant : Logic_Pred

operations : P Operation

int_op_map : Int_FElement — Operation

dom int_op_map = interface
ran int_op_map = operations

Ve : Int_Element; o : Operation |
ie € interface N\ o € operations e
(ie, 0) € int_op_map
<~

te.dir = o.dir A
(ie.result, o.result) € Basic_Conf N
(Vv : Variable | iv € ie.params o
Jov : Variable | ov € o.vars e

components below it (principle dfubstrate independence
Thus, OnLineDB has no dependencies dMOSS_Mgrand
consequently has no required services. An example of mapping
two interface elements to the same operation is given in the
NOSS_Mgr component: both ActivatePhoneLine and
ActivateSpecialLinge.g., information or emergency) can be
mapped top2if SPEC_NUMs a subtype dPHONE_NUM

4.2. Architectural Type Conformance
Informally, a subtyping relation,< , between two
components, €¢and G, is defined as the disjunction of the
nam int, beh andimp relations shown in Fig. 2:
(Z4,Co:Component)(C ,<C =
Snam(‘-’l Re) Sint G oG sbehcl oG simp Cl)

We consider these four relations in more detail below.

4.2.1. Name Conformance

Name conformance requires that a subtype share its
supertype’s interface element names and all interface parameter
names. The subtype may introduce additional interface
elements and additional parameters to existing interface
elements. Two interface elements in a single component can
have identical names, but then their sets of parameter names
must differ. Name conformance rules are formally specified in
Fig. 6.

Note that the possibility of introducing additional
parameters to existing interface elements is different from
method overloading and is typically not allowed in a PL.

(ov.type, iv.type) € Basic_Conf) However, software architectures are at a level of abstraction

Fig. 4.Z specification of architectural types (components). Relation, ~capitalized identifiers are the basic (unelaborated) types in a Z speci-

Basic_Confis defined in the schentgasic_Type_Conforman@nd fication. Trivial schemas and schemas whose meanings are obvious are
relates two basic types, the first of which is a supertype of the seconghitted for brevity.



Component OnLineDB is
State
Customers
Custlds
CustByld
Interface
prov ipl:
prov ip2:
prov ip3:
prov ip4:
Invariant
#Customers
Operations
prov opl:
Let
Pre
Post
prov op2:
Let

: set CUST;

: set CUST_ID;
:CUST_ID -CUST;
AddNewCust(new_cust:CUST);
RemoveCust(cust:CUST_ID);
ModifyCust(cust: CUST_ID; new_rec:CUST);
AccessCust(cust:CUST_ID) : CUST;

>0;

c:CUST;
¢ 0O Customers;
Customers’ = Customers

{ch
c:CUST;

— P(I,W‘(l,T’I,,N(LTH,670()Hf()7‘7",(l,"(}€

Prm_Nam_Conf : Int_FElement — Int_FElement

Viel,ie2: Int_FElement o

(iel, ie2) € Prm_Nam_Conf
<~
(Vpl: Variable | pl1 € iel.params o
Sip2 : Variable | p2 € ie2.params o
pl.name = p2.name A
(VY p3, p4: Variable |

p3 € tel.params N\ p4d € ie2.params o

p3.name = p4d.name
<~

(pl=p3Ap2=p4)Vv

(p1 # p3 A p2 # p4)))

Pre

Post
prov op3:

Let

¢ [0 Customers;
Customers’ = Customers - {c};

id:CUST_ID;
c:CUST;

id OCustlds
¢ [OCustomers

Pre dJ

Post

prov op4:
Let
Pre
Post

Map

ipl -> opl(new_cust -> c);

ip2 -> op2(cust -> ¢);

ip3 -> op3(cust -> id, new_rec -> c);

ip4 -> op4(cust -> id);

Customers;
CustByld(id) =c;

id:CUST_ID;
id OCustlds;
result = CustByld(id);

— Name_Conformance

Param_Name_Conformance
Nam_Conf : Component — Component

Vel, c2: Component o
(c1, ¢2) € Nam_Conf
<~

(Viel : Int_Element | iel € cl.interface ®
Jie2 : Int_Element | ie2 € c2.interface o

tel.name = ie2.name N

(iel, ie2) € Prm_Nam_Conf)

end OnLineDB;

Component NOSS_Mgr is

State
Numbers : ADDR - PH_NUM;
Interface
prov ipl: ActivatePhoneLine(a:ADDR; num:PH_NUM);
prov ip2: ActivateSpecialLine(a:ADDR; n:SPEC_NUM);
prov ip3: DeactivatePhoneLine(a:ADDR; num:PH_NUM);
reqirl:  AddNewCust(new_cust:CUST);
reqir2:  RemoveCust(cust: CUST_ID);
Operations
prov opl:
Let addr:ADDR;
pn:PH_NUM;
Pre pn O Numbers(addr);
Post pn  ONumbers’(addr);
prov op2:
Let addr:ADDR;
pn:PH_NUM;
Pre pn O Numbers(addr);
Post pn  ONumbers’(addr);
req orl:
Let c:CUST;
cust_sv:STATE_VARIABLE;
Pre c [Oecust_sy,
Post ¢ Ocust_sv;
req or2:
Let c:CUST;
cust_sv:STATE_VARIABLE;
Pre c Ucust_sv;
Post ¢ Ocust_sv';
Map

ipl -> opl (a -> addr, num -> pn);
ip2 -> op1 (a ->addr, n -> pn);
ip3 -> op2 (a -> addr, num -> pn);
irl ->orl (new_cust -> c);
ir2 -> or2 (cust -> c);

end NOSS_Mgr;

Fig. 5. Partial specifications of th®©nLineDB and NOSS_Mgr
components from Fig.1 in the C2 ADL. Basic type
STATE_VARIABLE is discussed in Section 4.3.1. Labels for interface
elements and operations (e.g., ip1, or2) are a notational convenience.

that is above source code and this feature may be supported
the architecture implementation infrastructure. For example
the implementation of the C2 class framework [14] allows the
sender of the communication message to include paramete
the receiver component does not expect; those parameters
simply ignored by the receiver. It is up to the architect to decid

and

Fig. 6. Name conformance.

4.2.2. Interface Conformance

Name conformance is a rather

weak conformance

requirement and we have encountered it in practice only as part
of the strongeinterfaceconformance relationship. Component

C, is an interface subtype of, @ and only if it provides at least
(but not necessarily only) the interface elements provided, by C

with identical direction indicators, anehatching parameters
and results for each interface element. Two parameters

belonging to the two components’ interface elements match if

only if they have
(Param_Name_Conformancechema in

— Param_Conformance

identical names
Fig. 6) and each

Basic_Type_Conformance
Param_Name_Conformance
Prm_Conf : Int_Element <« Int_Flement

Viel,ie2: Inl_Flemenl o
(zel, ie2) € Prm_Conf
o4
(zel,ie2) € Prmm_Nam_Conf A
(Ypl,p2: Variable |

(p2.type, pl.type) € Basic_Conf)

pl € iel.params A p2 € ie2.params N\ pl.name = p2.name o

— Interface_Conformance

Name_Conformance
Param_Conformance
Int_Conf : Component — Component

Vecl, e2: Component o
(cl, e2) € Int_Conf
<~
, (cl,¢2) € Nam_Conf A
b (Viel, ie2 : Int_Element |
iel € cl.interface A ie2 € c2.interface o

(iel.result, ie2.result) € Basic_Conf)

rs
are iel.dir = 1e2.dir A
b (iel, ie2) € Prm_Nam_Conf = (iel,ie2) € Prm_Conf A

whether such a situation should be permitted in a give
architecture.

Fig. 7.Interface conformance.



Component CallPlanDB is subtype OnLineDB(int) __Oper_Conformance

Interface Basic_ T Conf
provipl: AddNewCust(new_cust:CUST); astc—type_Conjormance
prov ip2: RemoveCust(cust:CUST_ID); Logical_TImplication
prov ip3:  ModifyCust(cust: CUST_ID; new_rec:CUST); Oper_Conf : Operation — Operation
prov ip4: AccessCust(cust:CUST_ID) : CUST; L - -
prov ip5:  EnterCallPlan(c:CUST_ID; p:CALL_PLAN); Yol,02: Operation e
Inv.a.rlfant (01, 02) € Oper_Conf
Operations <
prov op10: (Vvl: Variable | vl € ol.vars e
Let I%Iglrl#%L_I_II_D;PLAN; Fv2: Variable | v2 € 02.vars ¢
Pre id OCustlds plan CallPlans; (vl.type, v2.type) € Basic_Conf V
Post plan [(CustPlans(CustByld(id)); (v2.type, vl.type) € Basic_Conf) A
: ‘ol.precond, 02.precond) € Logic_Impl N\
M

(02.postcond, ol.postcond) € Logic_Tmpl N\

ap
ip5 -> op10(c -> id, p -> plan);
(ol.result, 02.result) € Basic_Conf

end Cé]IiDIanDB;

— Behavior_Conformance

Fig. 8.CallPlanDBis an interface subtype @nLineDB Oper_Conformance

) ] Logical_TImplication
parameter type of {Cis a subtype of the corresponding | Beh_Conf : Component — Component
parameter type of Lcontravariance of parameterdefined in Vel, ¢2: Component o
the Param_Conformancechema in Fig. 7). The results of two (cl,¢2) € Beh_Conf

Pl : ; -

f:orrespondlng interface eIemenFs match if the result typg in G (2. invariant, ¢l invariant) € Logic_Tmpl A
is a supertype of the result type ip (Covariance of resujt For (Y ol : Operation | o1 € cl.operations e
each interface element, the subtype must provide at least (hQut F 02 : Operation | 02 € c2.0peralions o
not necessarily only) the parameters that match the supertypée’s Olid"; o2.dir
parameters. Interface conformance rules are formally specified (01, 02) € Oper_Conf)

in Fig. 7. o . Fig. 10.Behavior conformancéd.ogic_Implis a relation that denotes
For example, compone@allPlanDB, shown in Fig. 8, is  that the first element in the relation implies the second.
an interface subtype dDnLineDB from Fig. 5. It does not

matter what the invariant, operations, amd_op_mapof (o |ationship between the variable types is allowed so long as
CallPlanDBare for this relationship to hold. These details havgy,o propgr relationships betweé% operation pre- gnd

thus been omitted. postconditions are maintained. The rules for behavior
4.2.3. Behavior Conformance conformance are specified in Fig. 10.

Behavior conformance requires that the invariant of the Fig. 11 shows an example of behavior conformance.
supertype be ensured by that of the subtype. Furthermore, edé@mponentBoundedDBis a behavior subtype @nLineDB
operation of the supertype must have a corresponding operatiti@m Fig. 5. The interface andt_op_mapof BoundedDBare
in the subtype (the subtype can also introduce additionainimportant for this relationship to hold. These details have
operations), where the subtype’s operation has the santleus been omittedBoundedDBis a behavior subtype of
direction indicator as the supertype’s, the same or weaképnLineDBbecause it provides (at least) the same operations as

preconditions, same or stronger postconditions, and preserv@lLineDBand its invariant (number of customers, representing
result covariance. the size of the database), is between zero and one million,

No constraints are placed on the relationship between tHBclusive, which impliesOnLineDBs invariant (number of
types of the supertype’s and subtype’s corresponding operatiGh/SIOMers Is zero or greatgr). _
variables. This relationship can vary, but is always an instance The subtyping relationship that results from the

of one of the two cases depicted in Fig.9. Thus, angombination of the Behavior_Conformance and
Interface_Conformancechemas (in particular, tigeh_Conf

andInt_Confrelations they define), and the mapping function,

Supertype Subtype . . . . . .
Component Component int_op_map represents a point in the region depicted in
Interface subtype F|g.3p. This relatllonshlp is S|m|Ia( to othgr notions of
Parameter  [5..6] (Contravariance of argument [4.7] beha\'/loralllsubtypmg [2, 3, 11] in that it guarantees
Type g § Q g subs_tltutab|l|ty between a supertype and a subtype in an
=Y = architecture.
g O| g O|
U)E mg
b Component BoundedDB is subtype OnLineDB(beh)
el 1 )
Type ) subtype p [2.9] (b) Invgrla:t#Customers <000000;
Operations

Fig. 9.Contravariance of arguments and itite op_magunction do

not guarantee a particular relationship between supertype’s and
subtype’'s operation variable types (illustrated using integer
subranges): (a) supertype component’s variable type is a supertype ofend BoundedDB;

subtype component’s; (b) supertype component’s variable type is a

subtype of subtype component’s. Fig. 11.BoundedDHs a behavior subtype @inLineDB

[OnLineDB operations]

Map



Component OnLineDB-2 is subtype OnLineDB(int and beh)
State
Customers
Custlds
CustByld
CallPlans
CustPlans
Interface
prov ipl:
prov ip2:
prov ip3:
prov ip4:
prov ip5:
Invariant
0 < #Customers
Operations
prov opl:
Let
Pre
Post
prov op2:
Let

: set CUST;
: set CUST_ID;
:CUST_ID -CUST;
: set CALL_PLAN;
: CUST - set CALL_PLAN;

AddNewCust(new_cust:CUST);
RemoveCust(cust:CUST_ID);
ModifyCust(cust: CUST_ID; new_rec:CUST);
AccessCust(cust:CUST_ID) : CUST;
EnterCallPlan(c:CUST_ID; p:CALL_PLAN);

<000000;

c:CUST;
#Customers < 1000000
Customers’ = Customers

c:CUST;
¢ OCustomers O
Customers’ = Customers - {c};

id:CUST_ID;
c:CUST;

id OCustlds

c [ Customers

o
{cH

Culstomers;

Post
prov op3:
Let

Pre
Post
prov op4:
Let
Pre
Post
prov op5:
Let

d]  Customers;

CustByld(id) = c;

id:CUST_ID;
id OCustlds;
result = CustByld(id);

id:CUST_ID;

plan:CALL_PLAN;

id OCustlds plan CallPlans;
plan [CustPlans(CustByld(id));

Pre
Post
Map

ipl -> opl(new_cust -> c);

ip2 -> op2(cust -> c);

ip3 -> op3(cust -> id, new_rec -> c);

ip4 -> op4(cust -> id);

ip5 -> op5(c -> id, p -> plan);

end OnLineDB-2;

Fig. 12.0OnLineDB-2is a candidate interface and behavior subtype
of OnLineDB

The OnLineDB-2 component, shown in Fig.12 is a
candidate interface and behavior subtypeOoLineDB from

— Implementation_Conformance
Behavior_Conformance
Imp_Conf : Component — Component

Vel, e2: Component o

(el, ¢2) € Imp_Conf
<~

(e, ¢2) € Beh_Conf A

(el.invariant, c2.invariant) € Logic_Impl A

(V ol : Operation | o1 € cl.operations o

J02 : Operation \ 02 € c2.operalions e
(02,01) € Oper_Conf A
ol.implementation = o2.implementation)

Fig. 13.Implementation conformance.

which is false if both A and B are false. However, B in our case
will always be true because of the definition of set subtraction:
if ¢ OCustomers , ¢ will be removed from the new value of
the Customers  set Customers’ ); if this is not the case,
Customers will simply remain the same.

The first implication above is therefore the only one that
violates the required relationship. It is because of this that
OnLineDB-2is not anint and behsubtype oOnLineDB Note
that the architect may still decide to u$enLineDB-2
particularly since it is so closely related@oalLineDB but must
understand thatOnLineDB-2 cannot be substituted for
OnLineDBin a correctness-preserving manner.

4.2.4. Implementation Conformance

Although useful in practice for evolving components,
implementationconformance is not a particularly interesting
relationship from a type-theoretic point of view.
Implementation conformance may be established with a simple
syntactic check if the operations of the subtype have identical
implementations (both syntactically and semantically) as the
corresponding operations of the supertype. Implementation
conformance between two types thus also requires a behavioral

Fig. 5. OnLineDB-2 includes the already discussed feature€quivalence between their shared operations, as shown in

from CallPlanDB and BoundedDB Additionally, it slightly
changed operation specifications foopl and op2
(corresponding, in this case, to interface elemadtiNewCust
andRemoveCujtOplwill not add a customer to the database

Fig. 13.

4.3. Type Checking a Software Architecture
In order to discuss type conformance of interoperating

components, we must define an architecture that includes those
components. There is no single, universally accepted set of
%fuidelines for composing architectural elements. Instead,
architectural topology depends on the ADL in which the
architecture is modeled, characteristics of the application
domain, and/or the rules of the chosen architectural style. We
therefore had to make certain choices in specifying properties
of an architecture:

we model connectors explicitly, unlike, e.g., Darwin [12] and

if the database is already fullp2 does not require that the
customer already be in the database; instead, it will check f
the customer record and, if found, remove it. BotineDB-2
to be anint and behsubtype ofOnLineDB the following must
be true (from the schen@per_Conformancen Fig. 10):
e OnLineDB opl prell OnLineDB-2 opl pre

(c  uCustomers) ad

(#Customers < 1000000 cO Customers)
e OnLineDB-2 opl postl  OnLineDB opl post

(Customers’ = Customers {ch O Rapide [10];

(Customers’ = Customers {ch « we allow direct connector-to-connector links, unlike, e.g.,
* OnLineDB op2 pred OnLineDB-2 op2 pre Wright [1];

(c  OCustomers) frue « finally, we assume certain topological constraints that are
e OnLineDB-2 op2 post]  OnLineDB op2 post derived from the rules of the C2 style [25]: a component is

(c_ DOCustomers U attached to single connectors on its top and bottom sides,

Customers’ = Customers - {c}) O

while a connector can be attached to multiple components
(Customers’ = Customers - {c}) _ and connectors on its top and bottom.
The first implication is not true. The left hand side (LHS)  None of the above choices is required by our type theory. It
may be true even if the database is full, in which case the righ§ indeed possible to provide a definition of architecture that
hand side (RHS) is false. The second implication is true SinGgflects any other compositional guidelines. However, these

LHS and RHS are the same. The third implication is true, sincgecisions were necessary in order to formally specify and
OnLineDB-2s op2 does not have any preconditions. Finally, check type conformance criteria.

the fourth implication is true. It has the form (A B)



— Architecture — Minimal_Type_Conformance

components : P Component Interface_Conformance
connectors : P Connector Behavior_Conformance
comp_conn : Componenl - Connector Architecture

conn_comp : Connector — Component

Vel : Component | ¢l € components e
conn_conn : Connector <« Connector comp | b

, 3 .
Comm_Link : Component — Component dez: (/Vomp‘o7‘l‘ent | 02,6 components A (cl, ¢2) € Comm-_Link
(Fiel, ie2 : Int_Element |
dom comp_conn = components tel € cl.interface N ie2 € c2.interface o
ran comp_conn = connectors tel.name = 1e2.name N
dom conn_comp = connectors tel.dir = req N ie2.dir = prov A
ran conn_comp = components (iel,ie2) € Prn_Conf A
dom conn_conn = connectors (cl.int_op_map(iel),
ran copn_conn = connectors c2.int_op_map(ie2)) € Oper_Conf)
dom Comm_Link = components
ran Comm_Link = components — Full_Type_Conformance

Interface_Conformance
Behavior_Conformance
Architecture

V¢ : Component; b: Connector |
¢ € components A\ b € connectors e
(e, b) € comp_conn = (b, ¢) ¢ conn_comp A

(b, ¢) € conn_comp = (¢, b) ¢ comp_conn Vel : Component; iel : Int_Element |

Vbl,b2: Connector | bl € connectors A b2 € connectors 3 cé E(/c;omponenzs /\ ;eljetcglmtwﬁtlc‘e Aeldir=req o
1. b2 _conn = (bl £ b2 A (b2, b1 3 ¢2 : Component; te2 : Int_Elemen .
(b1, 52) € conn_conn (b1 # ( ) & conn_conn) c2 € components A (cl, c2) € Comm_Link A

Vel, ¢2: Component | ¢l € components A ¢2 € components e ie2 € c2.interface A ie2.dir = prov e

(e, ¢2) € Comm_Link iel.name = ie2.name A
=3 (zel,ie2) € Prm_Conf A
el # c2 A (cl.int_op_map(iel), c2.int_op_map(ie2)) € Oper_Conf
(361,02 : Connector | bl € connectors N\ b2 € connectors e
((e1,b1) € comp_conn A Fig. 15.Type conformance predicates.
(b2, ¢2) € conn_comp A
(b1, b2) € conn_conn™)

v component is provided by some component along its com-
((¢2,01) € comp_conn A munication |.|nkS. ] . ) )
(b2, c1) € conn_comp A They are defined in Fig. 15. The predicates expressing the
(b1, b2) € conn_conn™)) degree of utilization of a component’s provided services in an

architecture can be specified in a similar manner [17].

Depending on the requirements of a given project
o ) o o (reliability, safety, budget, deadlines, etc.), type conformance
components can interoperate if there is a communication linkchitectural type correctness is expressible in terms of a

between them. This means that they are either on the 0opposircentage corresponding to the degree of conformance (per
sides of the same connector or one can be reached from ponent or for the architecture as a whole).

other by following one or more connector-to-connector links
(defined by the&€omm_Linkrelation). 4.3.1. Type Conformance and Off-the-Shelf Reuse
For example, in the architecture from Fig. 1, there is a Before we can illustrate architectural type conformfcmce
communication link betweerOnLineDB and NOSS_Mgr With an example, we need to address another issue.
components (via a single connector-to-connector link). There i§Stablishing type conformance brings up the question of how
also a link betweerfTransaction Consistency Checkand Much a component may know about other components with
Customer Support Local Transaction Statemponents Which it will interoperate. Although magnified by our
(different sides of the same connector). On the other hand, the}gparation of provided from required component services, this
iS no communication link betweei®n-Line and NOSS issue is not unique to our type theory. Rather, it is pertinent to
databases: they are attached below the same (top-mod{) approaches that model behavior of a type and enforce
connector; however, th€omm_Linkrelation mandates that béhavioral conformance.
they be on different sides of a connector, which reflects C2’s To demonstrate behavioral conformance between two
communication rules. interoperating components, by definition one must show that a
Given this definition of architecture, it is possible to SPecific relationship holds between their respective behaviors.

specify type checking predicates. As already discussedhis relationship is one of several flavors of equivalence or
components need not be able to fully interoperate in alnplication, summarized in [29].
architecture. The two extreme points on the spectrum of type Establishing whether two components can interoperate
conformance are: includes matching the specification of what is expected by a
« minimal type conformancevhere at least one service (inter- required operation of one component against what another

face and corresponding operation) required by each compaemponent’s provided operation supplies. Behavior of an

nent is provided by some other component along it$peration is modeled in terms of its interface parameters (in our

communication links; and ) . approach, operation variables) and component state variables.
+ full type conformancewhere every service required by every A" component may thus need to refer to state variables that

Fig. 14.Formal definition of architecture.



belong to another component in order to specifiequired In the example from Fig. 5SNOSS_Mgrrequires two
operation’s expected behavior. However, doing so would be services:AddNewCustwhich is mapped to its operati@nl,
violation of the “provider” component’s abstraction. It would and RemoveCust mapped to or2. OnLineDB provides
also violate some basic principles of component-basedperations with matching interfaces (as required by the type
development: conformance predicates). Thus, to establish type conformance,
« the designer may not know in advance which, if any, compowe must now make sure that the operation pre- and

nents will contain a matching specification for the requirechostconditions are properly related. In the interest of space, we

operation and, thus, what the appropriate (types of) state vago so only foror1:

ables are. This is particularly the case when using behaviQr nNoss Mgr orl pré]  OnLineDB opl pre

matching to aid component discovery and retrieval. For (¢~ Scust sv) (8  Customers)

example, it is not reasonable to expect that a user @fthe |y this casecust_sv is instantiated witfCustomers and

operation in theNOSS_Mgrcomponent from Fig. 5 would e have an implication of the form A A, which is obvi-
know that its behavior is expressed in terms of a function gusly true.

(Numberg that, given an address, returns a set of phone num- OnLineDB opl post] NOSS_Mgr orl post

bers; (Customers’ = Customers {cp 0
* large-scale, component-based development treats an off-the- (¢ Ocust_sv)

shelf component as a black box, thereby intentionally hiding In this case, sinceustomers is the only state variable in the
the details of its internal state. Having to explicitly refer to provided operationopl), cust_sv is again instantiated with
those details would require them to be exposed. Customers , and the implication becomes

Existing approaches to behavior modeling and (Customers’ = Customers {cH O
conformance checking have not addressed this problem. The (€ Customers) e
problem does not apply to component subtyping: the designer.-lt—h's !mpl|ca|t|on |stalfs§)htruet(|f an item is added to a set, that
must know all of existing component’s details in order to |eVrVn |shan et(;men ? blith:d).that at the least. minimal tvoe
effectively evolve it. Thus, those approaches that focus on € have thus esta o ! = yp
behavioral subtyping (e.g., America [2], Liskov and Wing [11],confprmance holds in the architectural interaction between
and Leavens et al. [3]) do not encounter this problem. ZaremsfanI"neDI‘D""mdNOSS—Mgr
and Wing [29] do address component retrieval andt.4. Summary

interoperability. However, their approach makes the very This section defined and demonstrated with examples the
assumption that the (_:iesigner will have access to a “prowdef’hajor elements of our type theory: multiple subtyping
component’s state (via a shared Larch trait [8]). Fischer angb|ationships (Section 4.2) and type conformance (Section 4.3).
colleagues [4, 22] model components at the level of a singlgertain characteristics of our type theory are unique (e.g.,
procedure. In order to be able to properly specify pre- andeparation of interface from behavior) and give rise to
postconditions, they include all the necessary varlaples aemingly anomalous relationships when considered in
procedure parameters. Thus, for example, the stack itself jsolation (e.g., supertype and subtype operation variable types
passed as a parameter to pishprocedure. depicted in Fig. 9). However, the type theory as a whole
The solution to this problem we propose is based on tweupplies mechanisms that prevent any such anomalies. For
requirements arising from a more realistic assessment @kample, thent_op_mapfunction constrains the actual use of

component-based development: operation variables with the types of interface parameters
 we do not have access to a “provider” component's internahrough which the variables are accessed. The desired
state (unlike Zaremski and Wing's approach), and relationship between a supertype’s and subtype’s operation

» we cannot change the way many software components, espgyiables is thus ensured.
cially in the OO world, are modeled (unlike Fischer et al.).
These two requirements result in an obvious third requiremens. CONCLUSIONS AND FUTURE WORK

* we must somehow refer to a “provider” component’s state  gogare architectures show great potential for reducing

when modeling operations, even though we do not kno a0 : ; :
what that state is. V&evelopment costs while improving the quality of the resulting

This seeming paradox actually suggests our approach. TIF@ftware. Architectures also provide a promising basis for
initial results of this approach are promising and we intend t§UPPOrting software evolution. However, improved evolvability
further investigate its practicality. cannot be gchleyed simply by exphmtly focusing on

We model a required operation as if we have access to%ichltectures, just like a new programming Ianguz_ige cannot by
itself solve the problems of software engineering. A

provider” components state. However, since we do not knovérogramming language is only a tool that allows (but does not

the actual “provider” state variables or their types, we introduc : ; .
) o ’ orce) developers to put sound software engineering techniques
a generic typeSTATE_VARIABLEwhich is a supertype of all into practice. Similarly, one can think of software architectures,

basic types. Thus, variables of this type are essentlallgnd ADLs in particular, as tools which also must be supported

placeholders in logical predicates. When matching, e.g., a. - . . . ; A
required and provided precondition, we attempt to unify\‘?’blth specific techniques to achieve desired properties. This

. ; ) : paper has outlined such a technique for supporting evolution of
(instantiate) each variable of tS§ATE_VARIABLEype in the software components in a manner that preserves the desired
required precondition with a corresponding state variable in thgrchitectural relationships and properties

provided precondition. If the unification is possible and the

implication (with all instances of STATE_VARIABLE This technique is based on the recognition that, unlike PLs,
placeholders replaced with actual variables) holds, then the tviPftware architectures need not always be rigid in establishing
preconditions conform. properties such as consistency and completeness. For example,

it is not always the case that two components that share a
communication link can actually communicate (e.g., due to



mismatched interfaces). At the architectural level, this can be
detected via type checking and prevented. However, even if
such a configuration is allowed to propagate into th
implemented system, implementation-time decisions (e.g-;
communication via implicit invocation) may result in the loss

of communication messages [15, 25], but still allow the rest of
the system’s architecture to perform at least in a degraded

tures. InProceedings of the Fourth ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSB8n Fran-
cisco, CA, October 1996.

?13] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using

Object-Oriented Typing to Support Architectural Design in the
C2 Style. InProceedings of the Fourth ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (FSEdh
Francisco, CA, October 1996.

mode. Thus, informing the architect of the potential problenil4] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-

and leaving the decision up to the architect is often preferable
to automatically rejecting the option.

We have already put many of these ideas into practice in

Shelf Components in C2-Style Architectures.Proceedings of

the 1997 Symposium on Software Reusability (SSRI8¥Pro-
ceedings of the 1997 International Conference on Software Engi-
neering (ICSE’'97)Boston, MA, May 1997.

the context of the C2 style and its accompanying ADL. We arfl5] N. Medvidovic and R. N. Taylor. Exploiting Architectural Style

currently developing a set of tools to support architectural
subtyping, type checking, and mapping of architectura
descriptions to the C2 implementation infrastructure [14]. Wi
are also considering several existing theorem provers and
model checkers to aid us specifically in establishing component
invariant and operation pre- and postcondition conformance:
NORA/HAMMR [22], Larch proof assistant (LP) [8], VCR [4],
and PVS [20].

A number of issues remain items of future work. These
include investigation of the applicability of our type theory for

evolving connectors, application of the type theory to othel8l

ADLs and across multiple levels of architectural refinement,
further research of issues in adapting and adopting legacy

to Develop a Family of Application$EE Proceedings Software
Engineering October-December 1997.

16] N. Medvidovic and R. N. Taylor. A Framework for Classifying

and Comparing Architecture Description Language®rbteed-
ings of the Sixth European Software Engineering Conference
together with the Fifth ACM SIGSOFT Symposium on the Foun-
dations of Software Engineeringurich, Switzerland, September
1997.

[17] N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal

Modeling of Software Architectures at Multiple Levels of
Abstraction. InProceedings of the California Software Sympo-
sium Los Angeles, CA, April 1996.

O. Nierstrasz. Regular Types for Active ObjectsPmceedings

of the ACM Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications (OOPSLA'88ashington,
D.C., USA, October 1993.

components into architectures using the subtyping approach.o] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-Based

and automating the evolution of existing components to
populate partial architectures.
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