
ABSTRACT
Software architectures have the potential to substantially
improve the development and evolution of large, complex,
multi-lingual, multi-platform, long-running systems. However,
in order to achieve this potential, specific architecture-based
modeling, analysis, and evolution techniques must be provided.
This paper motivates and presents one such technique: a type
theory for software architectures, which allows flexible,
controlled evolution of software components in a manner that
preserves the desired architectural relationships and properties.
Critical to the type theory is a taxonomy that divides the space
of subtyping relationships into a small set of well defined
categories. The paper also investigates the effects of large-scale
development and off-the-shelf reuse on establishing type
conformance between interoperating components in an
architecture. An existing architecture is used as an example to
illustrate a number of different applications of the type theory
to architectural modeling and evolution.1

1. INTRODUCTION
In order for large, complex, multi-lingual, multi-platform,

long-running systems to be economically viable, they need to
be evolvable. Support for software evolution includes
techniques and tools that aid interchange, reconfiguration,
extension, and scaling of software modules and/or systems.
Evolution in the current economic context also requires support
for reuse of third-party components. The costs of system
maintenance (i.e., evolution) are commonly estimated to be as
high as 60% of overall development costs [7]. Practitioners
have traditionally faced many problems with curbing these
costs. The problems are often the result of poor understanding
of a system’s overall architecture, unintended and complex
dependencies among its components, decisions that are made
too early in the development process, and so forth. Traditional
development approaches (e.g., structural programming or
object-oriented analysis and design) have in particular failed to
properly decouple computation from communication within a
system, thus supporting only limited reconfigurability and
reuse. Evolution techniques have also typically been
programming language (PL) specific (e.g., inheritance) and
applicable on the small scale (e.g., separation of concerns or
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isolation of change). This is only partially adequate in the case
of development with preexisting, large, multi-lingual, multi-
platform components that originate from multiple sources.

An explicit architectural focus can remedy many of these
difficulties and enable flexible construction and evolution of
large systems. Software architectures present a high level view
of a system, enabling developers to abstract away the irrelevant
details and focus on the “big picture.” Another key property is
their explicit treatment of software connectors, which separate
communication issues from computation in a system. However,
existing architecture research has thus far largely failed to take
advantage of this potential for adaptability: few specific
techniques have been developed to support flexible
architecture-based design and evolution.

Three distinct building blocks of a software architecture are
components, connectors, and architectural configurations
(topologies) [16]. Each of them may evolve. Our work to date
has addressed the evolution of connectors and topologies [14,
15, 19, 25]. This paper proposes a technique for evolving
software components. This technique has resulted from the
recognition that researchers in software architectures, and
particularly in architecture description languages (ADLs), can
learn from extensive experience in the area of PLs, and object-
oriented languages (OOPLs) in particular. The particular lesson
in this case is that an existing software module can evolve in a
controlled manner via subtyping.

Our approach to component evolution is indeed based on a
type theory. We treat each component specification in an
architecture as a type and support its evolution via subtyping.
However, while PLs (and several existing ADLs [5, 6, 10])
support a single subtyping mechanism, we have demonstrated
that architectures may require multiple subtyping mechanisms,
many of which are not commonly supported in PLs [13].
Therefore, existing PL type theories are inadequate for use in
software architectures.

Beyond evolution, types are also useful in establishing
certain correctness criteria about a program or an architecture.
Several existing ADLs support type checking (e.g., Aesop [5],
Darwin [12], Rapide [10], and UniCon [23]). However, as with
most all of the existing PLs, these ADLs essentially establish
simple syntactic matches among interacting components. Our
approach also establishes semantic conformance of
components.

Furthermore, all existing type checking mechanisms regard
types as either compatible or incompatible. Although it is
beneficial to characterize component compatibility in this way,
determining thedegree of compatibility, and thus the potential
for component interoperability, is more useful. One of the goals
of the software architecture and component-based-development
communities is to provide more extensive support for building
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systems out of existing parts. Those parts will typically not
perfectly conform to each other. We have demonstrated that
partially mismatched components can in certain cases still be
effectively combined in an architecture [14, 15]. Establishing
the degree of compatibility can also help determine the amount
of work necessary to retrofit a component for use in a system.

The contributions of this paper are threefold:
• a taxonomy that divides the space of potentially complex

subtyping relationships into a small set of well defined, man-
ageable subspaces;

• a flexible type theory for software architectures that is
domain-, style-, and ADL-independent. By adopting a richer
notion of typing, this theory is applicable to a broad class of
design and reuse circumstances; and

• an approach to establishing type conformance between inter-
operating components in an architecture. This approach is
better suited to support the “large scale development with
off-the-shelf reuse” philosophy on which architecture
research is largely based than other existing techniques.

The remainder of this paper is organized as follows.
Section 2 briefly discusses the architecture that is a basis of
examples used throughout the paper to illustrate the concepts of
the type theory. Section 3 introduces and discusses the general
principles of the architectural type theory. Section 4 formally
defines a particular instance of the type theory, or a type
system, that exhibits the necessary properties for component
evolution and architectural type checking. A discussion of our
results to date, conclusions, and future work round out the
paper.

2. EXAMPLE ARCHITECTURE
To illustrate the concepts in this paper, we use the

architecture shown in Fig. 1. This architecture resulted from the
case study conducted during the Second International Software
Architecture Workshop (ISAW-2) [26]. The system that the
architecture models is acall center customer care (C4) system
for a large telecommunications company. The architecture
includes several subsystems identified by the telephone
company:
• Corporate databases and billing — customer account man-

agement;
• Network Operations Support System (NOSS) — manage-

ment and provisioning of the physical network;
• Downstream systems — e.g., long-distance carrier services,

911 service, voice mail, and so forth;
• “Quick” service — enables customers to directly communi-

cate with the system; and
• “C4 core” — manages the above parts of the system and pro-

vides support for service negotiations, account management,
and trouble-call management.

The architecture in Fig. 1 addresses most of the major
system requirements and has previously been discussed in more
detail [27]. It is modeled in the C2 architectural style: a
component communicates with components above and below it
in the architecture by sending asynchronous messages, which
are then routed to the appropriate components by connectors
[25]. Although some concerns have been voiced about the
suitability of the C2 style for this particular application, the
specifics of the style and of the architecture are not critical for
the purpose of demonstrating the concepts introduced in this
paper. Instead, we chose this particular example because it has
well-defined requirements from an actual project and describes
a large-scale problem, for which software architectures are
particularly well suited.

We have extensively modeled the components highlighted
in Fig. 1. These components were selected because they
constitute a logical subsystem (basic customer service request
handling) and exhibit interesting properties. The examples used
in the remainder of the paper will be drawn from this modeling
effort.

3. GENERAL PRINCIPLES OF THE TYPE THEORY
Explicit treatment of types enablessubtyping, the evolution

of a given type to satisfy new requirements, andtype checking,
the determination of whether instances of one type may be
legally used in places where another type is expected. This
notion of legality can help software developers keep program
semantics close to programmer intentions, and thus discipline
the evolution and (re)use of objects. Furthermore, a
combination of type declarations and type checking supports
source code understandability and, ultimately, the generation of
efficient executable code.

A useful overview of PL subtyping relationships is given
by Palsberg and Schwartzbach [21]. They describe a consensus
in the OO typing community regarding the definition of a range
of OO typing relationships.Arbitrary subclassing allows any
class to be declared a subtype of another, regardless of whether
they share a common set of methods.Name compatibility
demands that there exist a shared set of method names available
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in both classes.Interface conformance constrains name
compatibility by requiring that the shared methods have
conforming signatures.Monotone subclassing requires that the
subclass relationship be declared and that the subclass must
preserve the interface of the superclass, while possibly
extending it.Behavioral conformance[2, 3, 11, 29] allows any
class to be a subtype of another if it preserves the interface and
behavior of all methods available in the supertype. Finally,
strictly monotone subclassing additionally demands that the
subtype preserve the particular implementations used by the
supertype.

Protocol conformance goes beyond the behavior of
individual methods to specify constraints on the order in which
methods may be invoked. Explicitly modeling protocols has
been shown to have practical benefits [1, 9, 18, 28, 29].
However, component invariants and method preconditions and
postconditions can be used to describe all state-based protocol
constraints and transitions. Thus, our notion of behavioral
conformance implies protocol conformance, and we do not
address them separately.

We have developed a framework for understanding these
subtyping relationships as regions in a space of type systems,
shown in Fig. 2. The entire space of type systems is labeledU.
The regions labeledInt andBeh contain systems that demand
that two conforming types share interface and behavior,
respectively. TheImp region contains systems that demand that
a type share particular implementations of all supertype
methods, which also implies that types preserve the behavior of
their supertypes. TheNam region demands only shared method
names, and thus includes every system that demands interface
conformance.

Each subtyping relationship described in [21] and
summarized above can be denoted via set operations on these
regions. For example,behavioral conformance, which requires
that both interface and behavior of a type be preserved,
corresponds to the intersection of the Int and Beh regions and is
expressed asint and beh (Fig. 3b). Each region in Fig. 2
encompasses a set of variations of a given subtyping
relationship, rather than a single relationship. Thus, for
example, the different flavors of the behavioral conformance
relationship, described by Zaremski and Wing [29], represent
different points in theint and beh subspace. The architectural
type system we propose in the next section also represents a
selection of individual points within the different subspaces.

This type theory was motivated by our previous work,
where we have encountered numerous situations in which new
components were created by preserving one or more aspects of
one or more existing components [13, 15]. Several examples
are shown in Fig. 3:
• interface conformance(Fig. 3a) has proven useful in inter-

changing components that communicate via asynchronous
message passing (e.g., C2 architectural style [25]), without
affecting dependent components in a given architecture;

• behavioral conformance(Fig. 3b) guarantees correctness
during component substitution;

• strictly monotone subclassing(Fig. 3c) enables extension of
the behavior of an existing component while preserving cor-
rectness relative to the rest of the architecture;

• implementation conformance with different interfaces
(Fig. 3d) allows a component to be fitted into an alternate
domain of discourse (e.g., by using software adaptors [28]);

• multiple conformance mechanisms allow creation of a new
type by subtyping from several types using different subtyp-
ing mechanisms.

Note that we referred to the first three examples (Fig. 3a-c)
using the terminology from the Palsberg-Schwartzbach
taxonomy. However, while in OOPLs the three subtyping
mechanisms would be provided by three separate languages, in
architectures they all need to be supported by the same ADL
and may actually be applied to components in a single
architecture. Also, the example in Fig. 3d does not have a
corresponding OOPL mechanism, further motivating the need
for a flexible type theory for software architectures.

At the same time, by giving a software architect more
latitude in choosing the direction in which to evolve a
component, we allow some potentially undesirable side effects.
For example, by preserving a component’s interface, but not its
behavior, the component and its resulting subtype may not be
interchangeable in a given architecture. However, it is up to the
architect to decide whether to preserve architectural type
correctness, in a manner similar to America [2], Liskov and
Wing [11], Leavens et al. [3], and others (depicted in Fig. 3b),
or simply to enlarge the palette of design elements in a
controlled manner, in order to use them in the future.

4. ARCHITECTURAL TYPE SYSTEM
In [13] we discussed the types of syntactic constructs

needed in an ADL in order to support our type theory. In this
section we present a type system for software architectures that
instantiates the type theory. The two possible applications of an
architectural type theory—evolution of existing components by
software architects, and type checking of architectural
descriptions—are discussed below in Sections 4.2 and 4.3,
respectively. All definitions are specified in Z, a language for
modeling mathematical objects based on first order logic and
set theory [24]. Z uses standard logical connectives ( , , ,
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etc.) and set-theoretic operations (  to denote sets, , , ,
etc.).

4.1. Components
Every component specification is anarchitectural type. We

distinguish architectural types frombasic types (e.g., integers,
strings, arrays, records, etc.). Unlike OOPLs, in which objects
communicate by passing around other objects, in software
architectures components are distinguished from the data they
exchange during communication. In other words, a
“component” in the sense in which we use it here is never
passed from one component in an architecture to another.

A component has a name, a set of interface elements, an
associated behavior, and (possibly) an implementation. Each
interface element has a direction indicator (provided or
required), a name, a set of parameters, and (possibly) a result.
Each parameter, in turn, has a name and a type.

A component’s behavior consists of an invariant and a set
of operations. The invariant is used to specify any protocol
constraints on the use of the component. Each operation has
preconditions, postconditions, and (possibly) a result. Since
operations are decoupled from interface elements, they also
provide a set of variables used to express preconditions and
postconditions. Like interface elements, operations can be

provided or required. Only provided operations will have an
implementation in a given component. The preconditions and
postconditions of required operations express theexpected
semantics for those operations. Formal specification of an
architectural type (component) is shown in Fig. 4.2

In the interest of space, Fig. 4 does not specify the
relationship of component invariants to operation pre- and
postconditions. This relationship can be summarized semi-
formally as follows. Given a component C and operation O
provided by C, for all valid input states of O that satisfy C’s
invariant and O’s precondition, there exists a valid output state
that satisfies both O’s postcondition and C’s invariant.

Since we separate the interface from the behavior, we
define a function,int_op_map, which maps every interface
element to an operation of the behavior. This function is a total
surjection: each interface element is mapped to a single
operation, while each operation implements at least one
interface. An interface element can be mapped to an operation
only if the types of its parameters are subtypes of the
corresponding variable types in the operation, while the type of
its result is a supertype of operation’s result type. This property
directly enables a single operation to export multiple interfaces.

An example of component specification, given in C2’s
ADL, is shown in Fig. 5. Only partial specifications of theOn-
Line Database (OnLineDB) andNOSS Interaction Transaction
Manager (NOSS_Mgr) components from Fig. 1 are shown due
to space constraints. For example, we show only the portion of
NOSS_Mgr that is intended to interact withOnLineDB.

In a C2 architecture, a component has no dependencies on
components below it (principle ofsubstrate independence).
Thus, OnLineDB has no dependencies onNOSS_Mgrand
consequently has no required services. An example of mapping
two interface elements to the same operation is given in the
NOSS_Mgr component: both ActivatePhoneLine and
ActivateSpecialLine (e.g., information or emergency) can be
mapped toop2 if  SPEC_NUM is a subtype ofPHONE_NUM.

4.2. Architectural Type Conformance
Informally, a subtyping relation, , between two

components, C1 and C2, is defined as the disjunction of the
nam, int, beh, andimp relations shown in Fig. 2:

( C 1,C 2:Component)(C 2 C1

C2 namC1 C2 int C1 C2 beh C1 C2 imp C1)
We consider these four relations in more detail below.

4.2.1. Name Conformance
Name conformance requires that a subtype share its

supertype’s interface element names and all interface parameter
names. The subtype may introduce additional interface
elements and additional parameters to existing interface
elements. Two interface elements in a single component can
have identical names, but then their sets of parameter names
must differ. Name conformance rules are formally specified in
Fig. 6.

Note that the possibility of introducing additional
parameters to existing interface elements is different from
method overloading and is typically not allowed in a PL.
However, software architectures are at a level of abstraction

2. Capitalized identifiers are the basic (unelaborated) types in a Z speci-
fication. Trivial schemas and schemas whose meanings are obvious are
omitted for brevity.
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that is above source code and this feature may be supported by
the architecture implementation infrastructure. For example,
the implementation of the C2 class framework [14] allows the
sender of the communication message to include parameters
the receiver component does not expect; those parameters are
simply ignored by the receiver. It is up to the architect to decide
whether such a situation should be permitted in a given
architecture.

4.2.2. Interface Conformance
Name conformance is a rather weak conformance

requirement and we have encountered it in practice only as part
of the strongerinterface conformance relationship. Component
C2 is an interface subtype of C1 if and only if it provides at least
(but not necessarily only) the interface elements provided by C1
with identical direction indicators, andmatching parameters
and results for each interface element. Two parameters
belonging to the two components’ interface elements match if
and only if they have identical names
(Param_Name_Conformance schema in Fig. 6) and each

Component OnLineDB is
State

Customers : set CUST;
CustIds : set CUST_ID;
CustById : CUST_ID CUST;

Interface
prov ip1: AddNewCust(new_cust:CUST);
prov ip2: RemoveCust(cust:CUST_ID);
prov ip3: ModifyCust(cust:CUST_ID; new_rec:CUST);
prov ip4: AccessCust(cust:CUST_ID) : CUST;

Invariant
#Customers  0;

Operations
prov op1:

Let c:CUST;
Pre c  Customers;
Post Customers’ = Customers  {c};

prov op2:
Let c:CUST;
Pre c  Customers;
Post Customers’ = Customers - {c};

prov op3:
Let id:CUST_ID;

c:CUST;
Pre id  CustIds  c  Customers;
Post c  Customers  CustById(id) = c;

prov op4:
Let id:CUST_ID;
Pre id  CustIds;
Post result = CustById(id);

Map
ip1 -> op1(new_cust -> c);
ip2 -> op2(cust -> c);
ip3 -> op3(cust -> id, new_rec -> c);
ip4 -> op4(cust -> id);

end OnLineDB;

→

≥

∉
∪

∈

∈ ∧ ∉
∈ ∧

∈

Fig. 5. Partial specifications of theOnLineDB and NOSS_Mgr
components from Fig. 1 in the C2 ADL. Basic type
STATE_VARIABLE is discussed in Section 4.3.1. Labels for interface
elements and operations (e.g., ip1, or2) are a notational convenience.

Component NOSS_Mgr is
State

Numbers : ADDR PH_NUM;
Interface

prov ip1: ActivatePhoneLine(a:ADDR; num:PH_NUM);
prov ip2: ActivateSpecialLine(a:ADDR; n:SPEC_NUM);
prov ip3: DeactivatePhoneLine(a:ADDR; num:PH_NUM);
req ir1: AddNewCust(new_cust:CUST);
req ir2: RemoveCust(cust:CUST_ID);

Operations
prov op1:

Let addr:ADDR;
pn:PH_NUM;

Pre pn  Numbers(addr);
Post pn  Numbers’(addr);

prov op2:
Let addr:ADDR;

pn:PH_NUM;
Pre pn  Numbers(addr);
Post pn  Numbers’(addr);

req or1:
Let c:CUST;

cust_sv:STATE_VARIABLE;
Pre c  cust_sv;
Post c  cust_sv’;

req or2:
Let c:CUST;

cust_sv:STATE_VARIABLE;
Pre c  cust_sv;
Post c  cust_sv’;

Map
ip1 -> op1 (a -> addr, num -> pn);
ip2 -> op1 (a -> addr, n -> pn);
ip3 -> op2 (a -> addr, num -> pn);
ir1 -> or1 (new_cust -> c);
ir2 -> or2 (cust -> c);

end NOSS_Mgr;

→

∉
∈

∈
∉

∉
∈

∈
∉

Fig. 6.Name conformance.

Name Conformance

Param Name Conformance

Nam Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Nam Conf

,

(8 ie1 : Int Element j ie1 2 c1:interface �

9 ie2 : Int Element j ie2 2 c2:interface �

ie1:name = ie2:name ^

(ie1; ie2) 2 Prm Nam Conf )

Param Name Conformance

Prm Nam Conf : Int Element $ Int Element

8 ie1; ie2 : Int Element �

(ie1; ie2) 2 Prm Nam Conf

,

(8 p1 : Variable j p1 2 ie1:params �

9 p2 : Variable j p2 2 ie2:params �

p1:name = p2:name ^

(8 p3; p4 : Variable j

p3 2 ie1:params ^ p4 2 ie2:params �

p3:name = p4:name

,

(p1 = p3 ^ p2 = p4) _

(p1 6= p3 ^ p2 6= p4)))

1

Fig. 7. Interface conformance.

Interface Conformance

Name Conformance

Param Conformance

Int Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Int Conf

,

(c1; c2) 2 Nam Conf ^

(8 ie1; ie2 : Int Element j

ie1 2 c1:interface ^ ie2 2 c2:interface �

ie1:dir = ie2:dir ^

(ie1; ie2) 2 Prm Nam Conf ) (ie1; ie2) 2 Prm Conf ^

(ie1:result ; ie2:result) 2 Basic Conf )

Param Conformance

Basic Type Conformance

Param Name Conformance

Prm Conf : Int Element $ Int Element

8 ie1; ie2 : Int Element �

(ie1; ie2) 2 Prm Conf

,

(ie1; ie2) 2 Prm Nam Conf ^

(8 p1; p2 : Variable j

p1 2 ie1:params ^ p2 2 ie2:params ^ p1:name = p2:name �

(p2:type; p1:type) 2 Basic Conf )



parameter type of C1 is a subtype of the corresponding
parameter type of C2 (contravariance of parameters, defined in
theParam_Conformance schema in Fig. 7). The results of two
corresponding interface elements match if the result type in C1
is a supertype of the result type in C2 (covariance of result). For
each interface element, the subtype must provide at least (but
not necessarily only) the parameters that match the supertype’s
parameters. Interface conformance rules are formally specified
in Fig. 7.

For example, componentCallPlanDB, shown in Fig. 8, is
an interface subtype ofOnLineDB from Fig. 5. It does not
matter what the invariant, operations, andint_op_map of
CallPlanDBare for this relationship to hold. These details have
thus been omitted.

4.2.3. Behavior Conformance
Behavior conformance requires that the invariant of the

supertype be ensured by that of the subtype. Furthermore, each
operation of the supertype must have a corresponding operation
in the subtype (the subtype can also introduce additional
operations), where the subtype’s operation has the same
direction indicator as the supertype’s, the same or weaker
preconditions, same or stronger postconditions, and preserves
result covariance.

No constraints are placed on the relationship between the
types of the supertype’s and subtype’s corresponding operation
variables. This relationship can vary, but is always an instance
of one of the two cases depicted in Fig. 9. Thus, any

relationship between the variable types is allowed so long as
the proper relationships between operation pre- and
postconditions are maintained. The rules for behavior
conformance are specified in Fig. 10.

Fig. 11 shows an example of behavior conformance.
ComponentBoundedDB is a behavior subtype ofOnLineDB
from Fig. 5. The interface andint_op_map of BoundedDBare
unimportant for this relationship to hold. These details have
thus been omitted.BoundedDB is a behavior subtype of
OnLineDB because it provides (at least) the same operations as
OnLineDB and its invariant (number of customers, representing
the size of the database), is between zero and one million,
inclusive, which impliesOnLineDB’s invariant (number of
customers is zero or greater).

The subtyping relationship that results from the
combination of the Behavior_Conformance and
Interface_Conformance schemas (in particular, theBeh_Conf
andInt_Conf relations they define), and the mapping function,
int_op_map, represents a point in the region depicted in
Fig. 3b. This relationship is similar to other notions of
behavioral subtyping [2, 3, 11] in that it guarantees
substitutability between a supertype and a subtype in an
architecture.

Component CallPlanDB is subtype OnLineDB(int)
Interface

prov ip1: AddNewCust(new_cust:CUST);
prov ip2: RemoveCust(cust:CUST_ID);
prov ip3: ModifyCust(cust:CUST_ID; new_rec:CUST);
prov ip4: AccessCust(cust:CUST_ID) : CUST;
prov ip5: EnterCallPlan(c:CUST_ID; p:CALL_PLAN);

Invariant
. . .

Operations
prov op10:

Let id:CUST_ID;
plan:CALL_PLAN;

Pre id  CustIds  plan  CallPlans;
Post plan  CustPlans(CustById(id));

. . .
Map

ip5 -> op10(c -> id, p -> plan);
. . .

end CallPlanDB;

∈ ∧ ∈
∈

Fig. 8.CallPlanDB is an interface subtype ofOnLineDB.
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Fig. 9.Contravariance of arguments and theint_op_map function do
not guarantee a particular relationship between supertype’s and
subtype’s operation variable types (illustrated using integer
subranges): (a) supertype component’s variable type is a supertype of
subtype component’s; (b) supertype component’s variable type is a
subtype of subtype component’s.

Fig. 10.Behavior conformance.Logic_Impl is a relation that denotes
that the first element in the relation implies the second.

Behavior Conformance

Oper Conformance

Logical Implication

Beh Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Beh Conf

,

(c2:invariant ; c1:invariant) 2 Logic Impl ^

(8 o1 : Operation j o1 2 c1:operations �

9 o2 : Operation j o2 2 c2:operations �

o1:dir = o2:dir ^

(o1; o2) 2 Oper Conf )

Oper Conformance

Basic Type Conformance

Logical Implication

Oper Conf : Operation $ Operation

8 o1; o2 : Operation �

(o1; o2) 2 Oper Conf

,

(8 v1 : Variable j v1 2 o1:vars �

9 v2 : Variable j v2 2 o2:vars �

(v1:type; v2:type) 2 Basic Conf _

(v2:type; v1:type) 2 Basic Conf ) ^

(o1:precond ; o2:precond) 2 Logic Impl ^

(o2:postcond ; o1:postcond) 2 Logic Impl ^

(o1:result ; o2:result) 2 Basic Conf

Component BoundedDB is subtype OnLineDB(beh)
Interface

. . .
Invariant

0  #Customers  1000000;
Operations

[OnLineDB operations]
. . .

Map
. . .

end BoundedDB;

≤ ≤

Fig. 11.BoundedDB is a behavior subtype ofOnLineDB.



The OnLineDB-2 component, shown in Fig. 12 is a
candidate interface and behavior subtype ofOnLineDB from
Fig. 5. OnLineDB-2 includes the already discussed features
from CallPlanDB and BoundedDB. Additionally, it slightly
changed operation specifications forop1 and op2
(corresponding, in this case, to interface elementsAddNewCust
andRemoveCust). Op1 will not add a customer to the database
if the database is already full.Op2 does not require that the
customer already be in the database; instead, it will check for
the customer record and, if found, remove it. ForOnLineDB-2
to be anint and beh subtype ofOnLineDB, the following must
be true (from the schemaOper_Conformance in Fig. 10):
• OnLineDB op1 pre  OnLineDB-2 op1 pre

(c  Customers)
(#Customers < 1000000  c  Customers)

• OnLineDB-2 op1 post  OnLineDB op1 post
(Customers’ = Customers  {c})
(Customers’ = Customers  {c})

• OnLineDB op2 pre  OnLineDB-2 op2 pre
(c  Customers)  true

• OnLineDB-2 op2 post  OnLineDB op2 post
(c  Customers

Customers’ = Customers - {c})
(Customers’ = Customers - {c})
The first implication is not true. The left hand side (LHS)

may be true even if the database is full, in which case the right
hand side (RHS) is false. The second implication is true since
LHS and RHS are the same. The third implication is true, since
OnLineDB-2’s op2 does not have any preconditions. Finally,
the fourth implication is true. It has the form (A B) B,

which is false if both A and B are false. However, B in our case
will always be true because of the definition of set subtraction:
if c Customers , c  will be removed from the new value of
the Customers set (Customers’ ); if this is not the case,
Customers  will simply remain the same.

The first implication above is therefore the only one that
violates the required relationship. It is because of this that
OnLineDB-2 is not anint and beh subtype ofOnLineDB. Note
that the architect may still decide to useOnLineDB-2,
particularly since it is so closely related toOnLineDB, but must
understand thatOnLineDB-2 cannot be substituted for
OnLineDB in a correctness-preserving manner.

4.2.4. Implementation Conformance
Although useful in practice for evolving components,

implementation conformance is not a particularly interesting
relationship from a type-theoretic point of view.
Implementation conformance may be established with a simple
syntactic check if the operations of the subtype have identical
implementations (both syntactically and semantically) as the
corresponding operations of the supertype. Implementation
conformance between two types thus also requires a behavioral
equivalence between their shared operations, as shown in
Fig. 13.

4.3. Type Checking a Software Architecture
In order to discuss type conformance of interoperating

components, we must define an architecture that includes those
components. There is no single, universally accepted set of
guidelines for composing architectural elements. Instead,
architectural topology depends on the ADL in which the
architecture is modeled, characteristics of the application
domain, and/or the rules of the chosen architectural style. We
therefore had to make certain choices in specifying properties
of an architecture:
• we model connectors explicitly, unlike, e.g., Darwin [12] and

Rapide [10];
• we allow direct connector-to-connector links, unlike, e.g.,

Wright [1];
• finally, we assume certain topological constraints that are

derived from the rules of the C2 style [25]: a component is
attached to single connectors on its top and bottom sides,
while a connector can be attached to multiple components
and connectors on its top and bottom.

None of the above choices is required by our type theory. It
is indeed possible to provide a definition of architecture that
reflects any other compositional guidelines. However, these
decisions were necessary in order to formally specify and
check type conformance criteria.

Component OnLineDB-2 is subtype OnLineDB(int and beh)
State

Customers : set CUST;
CustIds : set CUST_ID;
CustById : CUST_ID CUST;
CallPlans : set CALL_PLAN;
CustPlans : CUST set CALL_PLAN;

Interface
prov ip1: AddNewCust(new_cust:CUST);
prov ip2: RemoveCust(cust:CUST_ID);
prov ip3: ModifyCust(cust:CUST_ID; new_rec:CUST);
prov ip4: AccessCust(cust:CUST_ID) : CUST;
prov ip5: EnterCallPlan(c:CUST_ID; p:CALL_PLAN);

Invariant
0  #Customers  1000000;

Operations
prov op1:

Let c:CUST;
Pre #Customers < 1000000  c  Customers;
Post Customers’ = Customers  {c};

prov op2:
Let c:CUST;
Post c  Customers

Customers’ = Customers - {c};
prov op3:

Let id:CUST_ID;
c:CUST;

Pre id  CustIds  c  Customers;
Post c  Customers  CustById(id) = c;

prov op4:
Let id:CUST_ID;
Pre id  CustIds;
Post result = CustById(id);

prov op5:
Let id:CUST_ID;

plan:CALL_PLAN;
Pre id  CustIds  plan  CallPlans;
Post plan  CustPlans(CustById(id));

Map
ip1 -> op1(new_cust -> c);
ip2 -> op2(cust -> c);
ip3 -> op3(cust -> id, new_rec -> c);
ip4 -> op4(cust -> id);
ip5 -> op5(c -> id, p -> plan);

end OnLineDB-2;

→

→

≤ ≤
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∪
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Fig. 12.OnLineDB-2is a candidate interface and behavior subtype
of OnLineDB.
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Fig. 13.Implementation conformance.

Implementation Conformance

Behavior Conformance

Imp Conf : Component $ Component

8 c1; c2 : Component �

(c1; c2) 2 Imp Conf

,

(c1; c2) 2 Beh Conf ^

(c1:invariant ; c2:invariant) 2 Logic Impl ^

(8 o1 : Operation j o1 2 c1:operations �

9 o2 : Operation j o2 2 c2:operations �

(o2; o1) 2 Oper Conf ^

o1:implementation = o2:implementation)

1



The formal definition of architecture is given in Fig. 14.
Connectors are treated simply as communication routing
devices; therefore their definitions are omitted. Two
components can interoperate if there is a communication link
between them. This means that they are either on the opposite
sides of the same connector or one can be reached from the
other by following one or more connector-to-connector links
(defined by theComm_Link relation).

For example, in the architecture from Fig. 1, there is a
communication link betweenOnLineDB and NOSS_Mgr
components (via a single connector-to-connector link). There is
also a link betweenTransaction Consistency Checker and
Customer Support Local Transaction State components
(different sides of the same connector). On the other hand, there
is no communication link betweenOn-Line and NOSS
databases: they are attached below the same (top-most)
connector; however, theComm_Link relation mandates that
they be on different sides of a connector, which reflects C2’s
communication rules.

Given this definition of architecture, it is possible to
specify type checking predicates. As already discussed,
components need not be able to fully interoperate in an
architecture. The two extreme points on the spectrum of type
conformance are:
• minimal type conformance, where at least one service (inter-

face and corresponding operation) required by each compo-
nent is provided by some other component along its
communication links; and

• full type conformance, where every service required by every

component is provided by some component along its com-
munication links.

They are defined in Fig. 15. The predicates expressing the
degree of utilization of a component’s provided services in an
architecture can be specified in a similar manner [17].

Depending on the requirements of a given project
(reliability, safety, budget, deadlines, etc.), type conformance
corresponding to different points along the spectrum may be
adequate. What would be classified as a “type error” in one
architecture may be acceptable in another. Therefore,
architectural type correctness is expressible in terms of a
percentage corresponding to the degree of conformance (per
component or for the architecture as a whole).

4.3.1. Type Conformance and Off-the-Shelf Reuse
Before we can illustrate architectural type conformance

with an example, we need to address another issue.
Establishing type conformance brings up the question of how
much a component may know about other components with
which it will interoperate. Although magnified by our
separation of provided from required component services, this
issue is not unique to our type theory. Rather, it is pertinent to
all approaches that model behavior of a type and enforce
behavioral conformance.

To demonstrate behavioral conformance between two
interoperating components, by definition one must show that a
specific relationship holds between their respective behaviors.
This relationship is one of several flavors of equivalence or
implication, summarized in [29].

Establishing whether two components can interoperate
includes matching the specification of what is expected by a
required operation of one component against what another
component’s provided operation supplies. Behavior of an
operation is modeled in terms of its interface parameters (in our
approach, operation variables) and component state variables.
A component may thus need to refer to state variables that

Fig. 14.Formal definition of architecture.

Architecture

components : �Component

connectors : �Connector

comp conn : Component � Connector

conn comp : Connector $ Component

conn conn : Connector $ Connector

Comm Link : Component $ Component

domcomp conn = components

ran comp conn = connectors

domconn comp = connectors

ran conn comp = components

domconn conn = connectors

ran conn conn = connectors

domComm Link = components

ranComm Link = components

8 c : Component ; b : Connector j
c 2 components ^ b 2 connectors �

(c; b) 2 comp conn ) (b; c) =2 conn comp ^
(b; c) 2 conn comp ) (c; b) =2 comp conn

8 b1; b2 : Connector j b1 2 connectors ^ b2 2 connectors �
(b1; b2) 2 conn conn ) (b1 6= b2 ^ (b2; b1) =2 conn conn)

8 c1; c2 : Component j c1 2 components ^ c2 2 components �
(c1; c2) 2 Comm Link

,
c1 6= c2 ^
(9 b1; b2 : Connector j b1 2 connectors ^ b2 2 connectors �

((c1; b1) 2 comp conn ^
(b2; c2) 2 conn comp ^
(b1; b2) 2 conn conn�)

_
((c2; b1) 2 comp conn ^
(b2; c1) 2 conn comp ^
(b1; b2) 2 conn conn�))

Fig. 15.Type conformance predicates.

Full Type Conformance

Interface Conformance

Behavior Conformance

Architecture

8 c1 : Component ; ie1 : Int Element j

c1 2 components ^ ie1 2 c1:interface ^ ie1:dir = req �

9 c2 : Component ; ie2 : Int Element j

c2 2 components ^ (c1; c2) 2 Comm Link ^

ie2 2 c2:interface ^ ie2:dir = prov �

ie1:name = ie2:name ^

(ie1; ie2) 2 Prm Conf ^

(c1:int op map(ie1); c2:int op map(ie2)) 2 Oper Conf

Minimal Type Conformance

Interface Conformance

Behavior Conformance

Architecture

8 c1 : Component j c1 2 components �

9 c2 : Component j c2 2 components ^ (c1; c2) 2 Comm Link �

(9 ie1; ie2 : Int Element j

ie1 2 c1:interface ^ ie2 2 c2:interface �

ie1:name = ie2:name ^

ie1:dir = req ^ ie2:dir = prov ^

(ie1; ie2) 2 Prm Conf ^

(c1:int op map(ie1);

c2:int op map(ie2)) 2 Oper Conf )



belong to another component in order to specify arequired
operation’s expected behavior. However, doing so would be a
violation of the “provider” component’s abstraction. It would
also violate some basic principles of component-based
development:
• the designer may not know in advance which, if any, compo-

nents will contain a matching specification for the required
operation and, thus, what the appropriate (types of) state vari-
ables are. This is particularly the case when using behavior
matching to aid component discovery and retrieval. For
example, it is not reasonable to expect that a user of theop1
operation in theNOSS_Mgr component from Fig. 5 would
know that its behavior is expressed in terms of a function
(Numbers) that, given an address, returns a set of phone num-
bers;

• large-scale, component-based development treats an off-the-
shelf component as a black box, thereby intentionally hiding
the details of its internal state. Having to explicitly refer to
those details would require them to be exposed.

Existing approaches to behavior modeling and
conformance checking have not addressed this problem. The
problem does not apply to component subtyping: the designer
must know all of existing component’s details in order to
effectively evolve it. Thus, those approaches that focus on
behavioral subtyping (e.g., America [2], Liskov and Wing [11],
and Leavens et al. [3]) do not encounter this problem. Zaremski
and Wing [29] do address component retrieval and
interoperability. However, their approach makes the very
assumption that the designer will have access to a “provider”
component’s state (via a shared Larch trait [8]). Fischer and
colleagues [4, 22] model components at the level of a single
procedure. In order to be able to properly specify pre- and
postconditions, they include all the necessary variables as
procedure parameters. Thus, for example, the stack itself is
passed as a parameter to thepush procedure.

The solution to this problem we propose is based on two
requirements arising from a more realistic assessment of
component-based development:
• we do not have access to a “provider” component’s internal

state (unlike Zaremski and Wing’s approach), and
• we cannot change the way many software components, espe-

cially in the OO world, are modeled (unlike Fischer et al.).
These two requirements result in an obvious third requirement:
• we must somehow refer to a “provider” component’s state

when modeling operations, even though we do not know
what that state is.

This seeming paradox actually suggests our approach. The
initial results of this approach are promising and we intend to
further investigate its practicality.

We model a required operation as if we have access to a
“provider” component’s state. However, since we do not know
the actual “provider” state variables or their types, we introduce
a generic type,STATE_VARIABLE, which is a supertype of all
basic types. Thus, variables of this type are essentially
placeholders in logical predicates. When matching, e.g., a
required and provided precondition, we attempt to unify
(instantiate) each variable of theSTATE_VARIABLE type in the
required precondition with a corresponding state variable in the
provided precondition. If the unification is possible and the
implication (with all instances of STATE_VARIABLE
placeholders replaced with actual variables) holds, then the two
preconditions conform.

In the example from Fig. 5,NOSS_Mgr requires two
services:AddNewCust, which is mapped to its operationor1,
and RemoveCust, mapped to or2. OnLineDB provides
operations with matching interfaces (as required by the type
conformance predicates). Thus, to establish type conformance,
we must now make sure that the operation pre- and
postconditions are properly related. In the interest of space, we
do so only foror1:
• NOSS_Mgr or1 pre  OnLineDB op1 pre

(c  cust_sv)  (c  Customers)
In this case,cust_sv  is instantiated withCustomers  and
we have an implication of the form A A, which is obvi-
ously true.

• OnLineDB op1 post  NOSS_Mgr or1 post
(Customers’ = Customers  {c})
(c  cust_sv’)

In this case, sinceCustomers  is the only state variable in the
provided operation (op1), cust_sv  is again instantiated with
Customers , and the implication becomes

(Customers’ = Customers  {c})
(c  Customers’)

This implication is also true (if an item is added to a set, that
item is an element of the set).

We have thus established that, at the least, minimal type
conformance holds in the architectural interaction between
OnLineDB andNOSS_Mgr.

4.4. Summary
This section defined and demonstrated with examples the

major elements of our type theory: multiple subtyping
relationships (Section 4.2) and type conformance (Section 4.3).
Certain characteristics of our type theory are unique (e.g.,
separation of interface from behavior) and give rise to
seemingly anomalous relationships when considered in
isolation (e.g., supertype and subtype operation variable types
depicted in Fig. 9). However, the type theory as a whole
supplies mechanisms that prevent any such anomalies. For
example, theint_op_map function constrains the actual use of
operation variables with the types of interface parameters
through which the variables are accessed. The desired
relationship between a supertype’s and subtype’s operation
variables is thus ensured.

5. CONCLUSIONS AND FUTURE WORK
Software architectures show great potential for reducing

development costs while improving the quality of the resulting
software. Architectures also provide a promising basis for
supporting software evolution. However, improved evolvability
cannot be achieved simply by explicitly focusing on
architectures, just like a new programming language cannot by
itself solve the problems of software engineering. A
programming language is only a tool that allows (but does not
force) developers to put sound software engineering techniques
into practice. Similarly, one can think of software architectures,
and ADLs in particular, as tools which also must be supported
with specific techniques to achieve desired properties. This
paper has outlined such a technique for supporting evolution of
software components in a manner that preserves the desired
architectural relationships and properties.

This technique is based on the recognition that, unlike PLs,
software architectures need not always be rigid in establishing
properties such as consistency and completeness. For example,
it is not always the case that two components that share a
communication link can actually communicate (e.g., due to
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∈
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mismatched interfaces). At the architectural level, this can be
detected via type checking and prevented. However, even if
such a configuration is allowed to propagate into the
implemented system, implementation-time decisions (e.g.,
communication via implicit invocation) may result in the loss
of communication messages [15, 25], but still allow the rest of
the system’s architecture to perform at least in a degraded
mode. Thus, informing the architect of the potential problem
and leaving the decision up to the architect is often preferable
to automatically rejecting the option.

We have already put many of these ideas into practice in
the context of the C2 style and its accompanying ADL. We are
currently developing a set of tools to support architectural
subtyping, type checking, and mapping of architectural
descriptions to the C2 implementation infrastructure [14]. We
are also considering several existing theorem provers and
model checkers to aid us specifically in establishing component
invariant and operation pre- and postcondition conformance:
NORA/HAMMR [22], Larch proof assistant (LP) [8], VCR [4],
and PVS [20].

A number of issues remain items of future work. These
include investigation of the applicability of our type theory for
evolving connectors, application of the type theory to other
ADLs and across multiple levels of architectural refinement,
further research of issues in adapting and adopting legacy
components into architectures using the subtyping approach,
and automating the evolution of existing components to
populate partial architectures.
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