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Abstract

A prominent stumbling block in the spread of the C++ programming language has been
a lack of programming and analysis tools to aid development and maintenance of C++
systems. One way to make the job of tool developers easier and to increase the quality
of the tools they create is to factor out the common components of tools and provide
the components as easily (re)used building blocks. Those building blocks include lexi-
cal, syntactic, and semantic analyzers, tailored database derivers, code annotators and
instrumentors, and code generators. From these building blocks, tools such as structure
browsers, data-flow analyzers, program/specification verifiers, metrics collectors, compil-
ers, interpreters, and the like can be built more easily and cheaply. We believe that for
C++ programming and analysis tools the most primitive building blocks are centered
around a common representation of semantically analyzed C++ code.

In this paper we describe such a representation, called REPRISE (REPResentation In-
cluding SEmantics). The conceptual model underlying REPRISE is based on the use of
expressions to capture all semantic information about both the C++ language and code
written in C4++. The expressions can be viewed as forming a directed graph, where
there is an explicit connection from each use of an entity to the declaration giving the
semantics of that entity. We elaborate on this model, illustrate how various features of
C++ are represented, discuss some categories of tools that would create and manipulate
REPRISE representations, and briefly describe our current implementation. This paper
is not intended to provide a complete definition of REPRISE. Rather, its purpose is to
introduce at a high level the basic approach we are taking in representing C++ code.

1 Introduction

A prominent stumbling block in the spread of the C++ programming language has been a lack
of programming and analysis tools to aid development and maintenance of C4++ systems. The
development of such tools has been, and continues to be, a daunting prospect. One reason for this is
that the language itself has been evolving, making it risky to invest much effort in the development
of language-specific tools; fortunately, this situation appears to be improving. Another reason is that
the language is inherently complex, both in its syntax and semantics. The developer of anything
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more than the most trivial of tools is faced with the prospect of having to devote a significant portion
of their tool—and time—to dealing with this complexity.

One way to make the job of tool developers easier and to increase the quality of the tools
they create is to factor out the common components of tools and provide those components as
easily (re)used building blocks. We believe that for C++ programming and analysis tools the most
primitive building blocks are centered around a common representation of semantically analyzed
C++ code.

Consider, for example, the design of the C++ Information Abstractor (CIA++) [9]. CIA++ is
a tool that constructs a database of information about the non-local entities in a C++ program. A
variety of display and analysis tools make use of this database to provide information to developers.
Thus, CIA++ is a building-block tool in the sense that it offers a common service, namely the
specialized filtering and structuring of information about C++ code, to a number of other tools. The
current version of CIA++ was built by painful modification of ¢front [1], which is a tool that performs
lexical, syntactic, and semantic analysis of C++ code, as well as a translation of the C++ code into
C. Relatively simple modifications included the careful removal of all code performing the actual
generation of C code. The difficult modifications stemmed from the manner in which the internal
data structures and code are organized in cfront. Specifically, the collection and representation of
semantic information is spread out across the code. Indeed, certain semantic information is “thrown
away” at various times during the translation process. While this organization might make sense
for translation of C4++ to C, it made the design of CIA++ very complex. Furthermore, to maintain
compatibility with the “official” c¢front, updates to the official version must be carefully incorporated
into CIA++. Had there instead been available a data structure representing the semantics of C++
code (and, of course, a tool to generate such a data structure) the developers of CIA++ could
have written a relatively simple tool to derive CIA4++ databases directly from the data structure
representation. Thus, the design of CIA4++ would have been greatly simplified, the time required
to implement it would have been drastically reduced, and the need to track updates to cfront would
have been avoided.

We have developed REPRISE, a representation for semantically analyzed C++ code.” REPRISE
can serve as the basic data structure for the building blocks of a wide variety of tools. Those
building blocks include lexical, syntactic, and semantic analyzers, tailored database derivers (e.g.,
CIA++), code annotators and instrumentors, and code generators. From these building blocks, tools
such as structure browsers, data-flow analyzers, program/specification verifiers, metrics collectors,
compilers, interpreters, and the like can be built more easily and cheaply.? Factoring out the
primitive components in this manner would free tool developers to concentrate on the unique, critical
aspects of their tools. An additional benefit of this approach is that tools operating on the same
C++ code can share the REPRISE representation of that code, resulting in a significant savings in
both space and time. Given our experience in defining, building, and using Ada programming and
analysis tools (e.g., [5, 14, 15, 20]) based on the D1aNA [7] and PARIS [8] representations, we believe
that this approach to the development of tools for C++ is a viable one to consider.

We begin in Section 2 by describing the model upon which the representation is based. In Sec-
tion 3 we sketch, through examples, how C++ code is actually represented in REPRISE. In Section 4
we discuss some categories of tools that would create and manipulate REPRISE representations. We
conclude in Section 5 with a brief description of our current implementation.

Note that this paper is not intended to provide a complete definition of REPRISE. Rather, its
purpose is to introduce at a high level the basic approach we are taking in representing C++ code.

1

1REPRISE is an acronym for REPResentation Including SEmantics. We intend this name to evoke a feeling of reuse
of representations, as in the musical term reprise, “a repetition of a phrase or verse” [11].

2Whether something is viewed as a tool or as a building block for tools is, of course, a matter of perspective. For
all intents and purposes, a building block is a kind of tool, so we do not distinguish between building blocks and tools
in the remainder of this paper.
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2 The Representation Model

As mentioned above, we imagine that a representation for semantically analyzed C++ code could
be used profitably by a wide variety of tools. The accommodation of such variety requires that the
representation exhibit the following characteristics:

e Primacy of semantics. The form of the representation must be driven by the semantics of
the language constructs, not by their syntax, since it is primarily at the semantic level that
sophisticated tools need to manipulate information about C++ code.?

o Regularity of form. The manipulations needed for basic processing of the representation, such
as traversal, must be straightforward to understand and implement. Regularity of form reduces
the need for tools to contain complicated, special-case code.

o Minimization of speciality. Different tools may want to treat portions of C++ code differently.
These necessary and desirable idiosyncrasies, however, must not be embedded in the form of
the representation. Rather, they should be reflected in the tools themselves. We cannot expect
to be able to anticipate the needs of all tools and, moreover, those needs may be in conflict.

o Fvolvability of representation. Although the language definition is stabilizing, there continue to
be proposals for changes (e.g., for templates [16] and exception handling [10]). It is important,
therefore, that the representation can be easily evolved along with the language. To facilitate
this, the representation must capture more than just the surface-level, user-visible semantics.
It must also effectively capture the basic fabric of the language—that is, the semantics of how
the language is put together.

o Uniformity of representation. The basic fabric of C+4 must be represented in the same way as
user-written code. Indeed, cognizance that a particular entity is primitive (i.e., a component
of the basic fabric) or not is something that should be left up to individual tools. Uniformity of
representation, like regularity of form, reduces the need for special-case code in tools. Moreover,
it allows tools to be constructed in such a way that they can more easily evolve along with the
language and representation.

These characteristics form recurring themes throughout the design of REPRISE.

The conceptual model underlying REPRISE can be viewed from two equivalent perspectives. The
first is as an expression language in which all semantic information about both the C++ language
and code written in C++ is uniformly represented as the application of operators to arguments. For
example, the expression F != 0, where F is a pointer variable, is represented as an application of the
language-defined inequality operator !=to the object F and the literal 0. A more interesting example
is a representation for a construct like the if-statement, where the language-defined operator if is
applied to two arguments, one an expression representing a condition and the other an expression
representing the statement to execute if the condition is true. Even declarations are represented as
expressions, as discussed in Section 3.

A second way of viewing REPRISE, and the one that we tend to use most often, is as a directed
graph. Unlike a traditional abstract syntax tree, a REPRISE graph explicitly captures semantic
information by connecting, through edges, entity uses with entity declarations. To do so, a REPRISE
graph, which could well be called an “abstract semantics graph”, employs two kinds of nodes and two
kinds of directed edges. The first kind of node is used to represent expressions (i.e., applications of
operators to arguments) and the second kind is used to represent literals (e.g., identifiers, numbers,
or strings). Expression nodes have one or more children. The first child is always an expression
representing the declaration, and hence semantics, of the operator being applied, while the other
children are the arguments to the operator. The two kinds of edges are used to distinguish between
the following two situations: 7) an expression node having a child that is the result of a previously
evaluated expression, and 4i) an expression node having a child that is an expression to be evaluated

3Note that this characteristic can lead to easy accommodation of graphics-based tools (i.e., those that present
C++ code to users through an iconic, rather than textual, syntax).
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Figure 1: REPRISE Representation of an if-statement.

as part of the parent expression’s evaluation. We call the first kind of edge a reference edge, since

the parent expression is actually referring to a previously determined result, and call the second

kind an evaluation edge, since the child expression is evaluated as part of the application of the

parent’s operator. Reference edges are also used to refer to children that are literal nodes. The need

to distinguish edges is a rather subtle issue explored further in Section 3. Fortunately, while the

distinction must be evident in the representation, it can in practice be ignored by most tools.
Figure 1 depicts a portion of a REPRISE graph representing the code fragment

if (F '= 0) *#F = G.crescendo(2);

where rectangles are expression nodes, ovals are literal nodes, dark arrows are evaluation edges, and
light arrows are reference edges. The connections between this code fragment and the declarations
for entities if, !=, * = . crescendo, F, and G are implied by the pictorial abbreviation —"entity".
(Many of the abbreviations appearing in this figure are expanded in Figure 3.) Although it is not
evident from the depiction, all occurrences of the same abbreviation in this figure denote the same
entity declaration. Thus, both edges —"F'" actually terminate at the same node, the root of the
subgraph representing the declaration of F. It is this kind of sharing that makes REPRISE a non-tree
graph. Indeed, a REPRISE graph may contain cycles.

The connections between uses and declarations drawn by edges are what capture the semantics of
the code being represented. For instance, looking at the expression node in Figure 1 that represents
the selection of member crescendo from object G, we see that it is an application of the language-
defined “dot” operator (i.e., the operator whose declaration is at the other end of the reference
edge?) to a particular object (the one whose declaration is at the other end of the reference edge)
and an expression (at the other end of the evaluation edge). A more extensive example is given in
the next section.

While a REPRISE graph clearly is not an abstract syntax tree, one easily can see where the
traditional abstract syntax tree resides, as a subgraph, within it. The existence of this subgraph is
important, since tree-based algorithms are generally more efficient than their graph-based counter-

4 A reference edge is used here because functions in C++ are first declared (the declaration expression is evaluated)
and then applied (referenced) in some number of other places, such as this one, in the code.
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parts; the abstract syntax tree subgraph can be used where appropriate in manipulating a REPRISE
representation.

Another subgraph of interest in a REPRISE representation is what we refer to as the core graph.
The core graph comprises all the nodes and edges used to represent the semantics of C++.%> Thus,
the core graph is totally self contained; no edges leave the core graph. Included in the core graph
are representations of such things as the declarations of the operators if and switch, as well as
declarations for the types int and float. Also included are even more primitive operators and types,
such as %1ist and %numeric,® that are not explicit in any user-written code, but are employed both in
the representation of the primitive operators and types themselves and in the representation of user-
written code. Conceptually, the core graph forms part of every REPRISE representation. Because it
is self contained, however, the core graph can be physically shared among those representations.

The core graph provides one view of the C+4 primitive semantics. Taking the expression-
language perspective, the primitive semantics can be viewed as a set of expressions declaring the
primitive types and operators. In other words, C++4 can be described as a particular set of de-
clared entities, where user-written code makes use of those declared entities. The advantage of this
perspective is that it becomes evident what the relationships, and “non-relationships”, are among
the primitive entities. Moreover, additions to the language, such as those proposed for exception
handling, amount to the declaration of some additional entities.

Let us relate the model underlying REPRISE to the characteristics listed at the beginning of
this section. The primacy of semantics is reflected in the explicit connection in the representation
from each use of an entity to the declaration giving the semantics of that entity. Indeed, it is
these semantic connections that make the representation much more than a typical abstract syntax
tree. Representing all aspects of C++ code as expressions and employing only two kinds of nodes
and two kinds of edges leads to both a very regular form for representations and a minimum of
speciality. Nevertheless, accommodating the special needs of specific tools, such as keeping track
of exercised branches and statements for test-coverage analysis, is straightforward, as discussed in
Section 4. Finally, the REPRISE core graph captures the complete primitive semantics of C4++ and,
moreover, does so in the same form as user-written code. Having the primitive semantics in this
form is useful in evolving the representation to accommodate new language features, since it is a
particularly malleable data structure.

3 Representing C++4+ Code with Reprise

In this section we describe how C++ code is represented as REPRISE graphs. The terminology we
use generally follows that of the C++ reference manual [6]. For purposes of illustration, we use the
REPRISE representation of the C+ program of Figure 2, a simple example involving a class called
ical. The REPRISE representation of this program is shown in Figure 3, except that core graph
entities are represented by the pictorial abbreviation —"entity", as before. Note that the source
program of Figure 2 includes the if-statement whose REPRISE representation is depicted in Figure 1;
thus, Figure 3 also illustrates how the representation of the if-statement fits into the larger context
of a complete C++ program.

The entities appearing in C++ user-written code fall into three broad categories: types, declara-
tions, and statements. We illustrate each of these categories with representative examples extracted
from Figure 3 and then conclude with a discussion of some of the conventions we use in representing
C++ code with REPRISE.

3.1 Representation of Types

There are three aspects to the representation of types in a REPRISE graph: the hierarchy of predefined
C++ types, a collection of operators called type constructors for representing the formation of user-

50f course, the most primitive semantics, namely operator application and argument evaluation, are not explicitly
represented in the graph, but are assumed to be “understood” by all tools.
6We prepend the character “%” to the names of primitive entities not available for use in user-written C++ code.
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class ical {

private:
int p, f;

public:
ical crescendo(int const c);
ical() { p=f =1; }

s

void main()
{
ical* F = 0;
ical G;
if (F '= 0) *F = G.crescendo(2);

Figure 2: A Sample C++ Program.

defined types, and a collection of operators called type modifiers for representing additional attributes
of types.

Figure 4 depicts the hierarchy of predefined types in C++. As shown in the figure, this hierarchy
is a subtype relationship. The subtype relationship is defined inductively in terms of the functions
that are defined for each type T'. In particular, the functions that are applicable to objects of type
T include i) zero or more functions that are defined explicitly for 7', plus ii) the functions applicable
to object’s of 1’s supertype. In addition, the language defines certain implicit type promotions
and conversions that allow the functions for one type to be applied to objects of another type. In
other words, if a function applied to an object of type T is not defined for type T, then either the
function must be defined for some supertype of T, or else there must be an implicit type promotion
or conversion defined by the language from type T' to type 7" such that the function is defined for
type 1".

The fundamental types of C4++ (char, int, etc.) appear at the “leaves” of the subtype hierarchy
and are shown in boldface in Figure 4. The remainder of the hierarchy comprises several meta-types
(denoted by a leading “%”), which are never used explicitly within user-written code. Figure 3
illustrates references to the fundamental types int and void, as well as references to the meta-types
%func, %class, and %pointer.

The utility of the subtype hierarchy can be appreciated by considering the fundamental type
int. The language predefines several functions for int, namely the arithmetic operators (unary and
binary + and -, *, /, and %), bitwise operators (~, &, |, and "), shift operators (<< and >>), and
relational operators (<, >, <=, >=, == and !=). As shown in Figure 4, int is a subtype of ¥numeric
The language predefines several functions for %numeric, namely the ternary conditional operator
(7:), increment operators (++), decrement operators (--), and logical operators (!, &&, and |1).
Thus, because int is a subtype of %numeric, all of the operators defined for %numeric are applicable
to objects of type int.

A type constructor represents the formation of a user-defined type from one or more existing
“ingredient” types,” while the type modifiers qualify a type as being either a constant, volatile, or
reference type. FEach user-defined type is a subtype of one of the meta-types shown in boxes in
Figure 4. In order to represent the subtyping semantics described above, one argument to each type
constructor is a reference to the type’s supertype in the subtype hierarchy. The other arguments
to a type constructor represent other attributes of the constructed type, including the ingredient
type(s) from which it is constructed (such as the base types of a class). The sole argument to a type
modifier is a reference to the modified type. Figure 3 illustrates the use of the type constructors
class, %function, and *, as well as the type modifier const.

The operator class is used to represent the definition of a class, structure, or union. All non-

"User-defined types are referred to as “derived types” in Section 3.6.2 of the C++ reference manual [6].

124 C++ Conference USENIX Association



Legend I ="%ile"

Expression ;
Node

"class"

—T—= "%ist"
Literal — < —T1 = "% unction_def"
O Node — @ —T"> "% unction"
"%l ass” r

— 1 ="ofunc"

. 1
Evaluation — —
|
Reference .
Edge nopistr U}=p—

"voi d"

"%ist"

— "% unc_i nst"

> "% ist"

—="%ist"
"private"'<——-—— "y

'"pri vat e"'<+—— —="public" T —_—1
"%obj ect _decl "<— — —
@<._ " o —1—="%bj ect _decl "
- public
tintt<=—— —~ _‘>< : )
R IR e

"4 i st "<—roI

—

T <=
|

>< —=" %0bj ect _decl " —
r> __>® N —
F I =int" "Y%pointer” l

— p— A
<> =]

e oghi .
"9gonst ruct or _def " <—— =" %obj ect _decl

Cea—F =5 =

"% unc_i nst"<—— L vk

_— |
— >

"o%ist" —
"% unction"

"ohist”

| — " of unc”

X
|
=
;

I
I
©

- —
> 1 - g VU
{ =
"%ist" =—p— "%ist"

"9 unct i on_decl "

e opist @

"Yarg_init" i —="% unction"

" S - — -
@ t 9% unc_i nst — " 9% unc —
= "% ist" j

—t—="const"

> - =

Figure 3: REPRISE Representation of the C++ Program of Figure 2.
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Figure 4: Subtype Hierarchy of Predefined C++ Types.

union classes are subtypes of the meta-type %class. Anonymous unions are subtypes of the meta-
type %anon_union, while all other unions are subtypes of the meta-type %union (see Figure 4). Note
that from the perspective of the subtype relationship, a structure is semantically the same as a class
and is thus a subtype of the meta-type %class. Non-union classes are further related according to
an inheritance relationship that is specified explicitly in the user-written code, using the inheritance
syntax of C++. The semantics of the inheritance relationship is quite different from the semantics
of the subtype relationship, and hence the two relationships are represented in different ways in
a REPRISE graph. In particular, given a class C' and a class D derived from C, the inheritance
relationship between the two classes is represented by a reference edge from the representation of D
to the representation of C'. On the other hand, both classes are subtypes of %class, and therefore
the representations of the classes are connected by reference edges to the representation of %class.
If there also happens to be a subtype relationship between C' and D, this fact can be determined
from their inheritance relationship and from their definitions. The differences in the semantics of
the inheritance and subtype relationships are discussed in detail by Moss and Wolf [12].

Figure 5 illustrates the use of the operator class; it contains the portion of the graph of Figure 3
devoted to the representation of class ical. As shown in the figure, class takes a name as its
first argument, the appropriate supertype as its second argument, a list of base classes as its third
argument, and a list of member declarations as its fourth argument. Both lists are represented by an
application of the operator %1ist, which is defined in the core graph and can take a variable number
of arguments. Because class ical has no base classes, the second argument to this application of
class is an empty list.

The operator %function is used to represent the type of a function in the representation of
function declarations, function definitions, and pointer-to-function types. Figure 6 illustrates the
use of the operator %function; it contains the portion of Figure 3 devoted to representing the
type of member function crescendo of class ical. Figure 6 also illustrates the use of the type
modifier const, which simply qualifies its argument as being a constant type. The first argument
to %function is a reference to the supertype of the function type, the second argument is a list
of argument types, and the third argument is a reference to the return type. The supertype of
a function type having a fixed number of arguments is the meta-type %func, while the supertype
of a function type having a variable number of arguments is the meta-type %varfunc. Note that
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argument names and argument initializers are not semantically part of the type of a function; for
instance, two functions that have the same set of argument and return types, but different sets of
argument names and initializers, could both be assigned to a variable of the appropriate pointer-
to-function type (which may have been declared with still another set of names and initializers).
Therefore, argument names and initializers are associated with the representation of each declaration
whose type involves a function type (e.g., a function, or a variable that is a pointer to a function),
instead of with the representation of the function type itself (see Section 3.2).

Two additional things should be noted about the representation of types in a REPRISE graph.
First, supertypes and ingredient types are existing types from which new types are built; thus, when
supertypes and ingredient types are specified as arguments to a type constructor, they are specified
with reference edges. Second, when newly defined components of a type (such as a list of class
members or function argument types) are specified as arguments to a type constructor, they are
specified with evaluation edges.

3.2 Representation of Declarations

C++ declarations are represented by expressions involving operators called declaration constructors.
A declaration constructor represents the declaration of a variable, function, or typedef. Figure 3
illustrates the use of the declaration constructor for variables (%object _decl) and three of the decla-
ration constructors for functions (%function decl, %function. def, and %constructor. def). Note
that class members are represented simply as variables or functions that are defined within classes.
In addition to the declaration constructors, several declaration modifiers are used to represent vari-
ous attributes of declarations, such as access specifiers (e.g., private), storage class specifiers (e.g.,
static), function specifiers (e.g., friend), and linkage specifications (e.g., extern "C").

All declarations in C++ code have an associated scope within which they are visible. Scopes are
represented in a REPRISE graph by several operators that are defined in the core graph. In particular,
a file scope is delimited by an application of the operator %file, as shown in Figure 3. The scope
of a function argument or statement label is delimited by an application of one of the declaration
constructors for functions. The scope of a variable declared in a for-loop header is delimited by an
application of the operator for. All other scopes are delimited by the operator {},® which is used
to denote the scope of a declaration in a compound statement (including the outermost scope of a
function body) and the scope of a class member.”

3.2.1 Variable Declarations

A variable declaration is represented by an application of the operator %object_decl. Figure 7
depicts the portion of the graph of Figure 3 devoted to the representation of data member p of class
ical. The first argument to %object_decl is the name of the declared object. The second argument
is a reference to the type of the object. The third argument is the list of name/initializer pairs for
the type; in this case, the third argument is null since the type does not involve a function type.
The fourth argument is an initializer for the object, which in Figure 7 is null because no initializer
is specified for p.

The %object_decl expression of Figure 7 by itself simply represents the declaration of a variable
called p. However, since p is a member of class ical, the %object_decl expression appears as the
argument to an instance of the declaration modifier private, which represents the fact that p is a
private class member. In addition to the declaration modifier private, there are also declaration
modifiers public (see Figure 3) and protected for representing access specifiers of class members.

The representation of the declaration of G in Figure 3 illustrates how initialization of class objects
is represented. Even though no initializer is specified explicitly for this variable in the program of
Figure 2, semantically it is initialized by the constructor that is defined for class ical. Thus,
the fourth argument to the %object_decl expression is an expression representing a call to this
constructor.

8The operator {} is pronounced “Curly”.
9Note that the access specifiers protected and public in effect extend the scope of a class member.

128 C++ Conference USENIX Association



"private's—i—

r—— --------------- Member Declaration

"%obj ect _decl "=—— Object Name
: ---------- Object Type
( """"""""" Argument Names & Initializers
i ...,.“~~~~|nitia|izer

Figure 7: REPRISE Representation of Data Member p of Class ical, Extracted from Figure 3.

Function Name -.. —]——="96unction_decl "

Function Type --==-========="1 —
| cr escendo

Argument Names & Initializers "ical ()(const int)

"0ist" =—1— —t+—=="% unc_i nst"

............ Names and Initializers

' """""""""" Argument Names & Initializers
of the Return Type

"Yarg_init"<——

_____ .--- Argument Name
— _______________ Argument Names & Initializers
. of the Argument Type
""""" - Argument Initializer
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As is done in the representation of types, reference edges and evaluation edges are used to
distinguish, respectively, between the existing entities in a REPRISE graph upon which a declaration
depends (such as the type of the declared entity) and those entities that are defined specifically for
a declaration (such as the initializer of an object, or the argument name/initializer pairs and body
of a function).

3.2.2 Function Declarations and Definitions

A function is represented by an application of either the operator %function_decl or the operator
%function_def. The former is used to represent functions declared with a header but no body, while
the latter is used to represent functions that are declared with their bodies. The only difference
between the two is that the latter has an extra argument for representing the function body.

Figure 8 contains the portion of the graph of Figure 3 devoted to the representation of member
function crescendo of class ical and illustrates the use of the operator %function decl. The
first argument to %function decl is the name of the declared function. The second argument is
a reference to the type of the function; the representation of the type of crescendo is shown in
Figure 6. The third argument represents the name/initializer pairs for this particular use of the
function type. We call such a particular use a function-type instantiation. As mentioned above,
the name/initializer pairs are associated with the function declaration rather than the function type
because semantically they are not attributes of the function type.
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As shown in the figure, the operator %func_inst is used to represent a function type instantiation.
The first argument to %func_inst is the list of name/initializer pairs for the arguments of the
function type. The second argument is the %func_inst expression for the return type, which in this
case is null since the return type does not instantiate a function type. The operator %arg-init is
used to represent each name/initializer pair. The first argument to %arg_init is the name of the
argument, the second argument is the %func_inst expression for its type, and the third argument
is its initializer. The second and third arguments to %arg_init are both null in this case since ¢ has
no initializer and its type does not instantiate a function type.

Class constructors and destructors are special kinds of functions and are represented by applica-
tions of the operators %constructor decl, %constructor def, %destructor_decl, and %destruc-
tor_def. The semantics of the arguments to the operator %constructor_decl are identical to those
of %function_ decl. The operator %constructor def is similar to %function_def except that it
has an additional argument (its fourth argument) for representing the optional list of initializers for
members and base classes; the use of this operator is illustrated in Figure 3, which shows the fourth
argument as being an empty list because there are no initializers specified for the constructor of
class ical. The operators for representing destructors differ from those for representing “normal”
functions only in their lack of an argument for representing function argument /initializer pairs, since
destructors do not take arguments.

Overloaded functions are represented using the declaration constructors for functions in the
same manner as is illustrated in Figure 3 for functions that are not overloaded. There is nothing
special about the representation of an overloaded function other than the fact that multiple function
declarations with the same name can can appear in a REPRISE graph. However, unlike a simple
abstract syntax tree representation of C++ code, a REPRISE graph contains no ambiguities as to
which function is being called in a reference to an overloaded function, because each such reference
is resolved in the form of a semantic connection between the reference and its matching declaration.

C++ defines several functions on its fundamental types, such as the operator + that takes two
int arguments and returns an int. The declarations of these predefined functions are represented
by %function_decl expressions in the core graph. Certain predefined functions, such as the pointer
dereferencing operator *, are polymorphic, since they are defined once for a category of types. A
full discussion of the representation and use of polymorphism in REPRISE is beyond the scope of
this paper.

3.3 Representation of Statements

Representation of C++ statements in REPRISE is straightforward. C+4 expression statements fit
naturally with REPRISE’s expression-based model and are thus represented simply by nested appli-
cations of operators. Each of the remaining kinds of C++ statements is represented by a REPRISE
operator whose name is the same as that of the statement (if, switch, continue, etc.). Figure 3
illustrates the representation of three kinds of statements—expression statements, if-statements, and
compound statements. The operator if is used to represent if-statements and is described in Sec-
tion 2. The operator {} represents compound statements, simply taking a list of declarations and
statements as its sole argument.

3.4 Conventions

Our method of representation adheres to several informal conventions. For example,

e the first argument to each declaration constructor specifies the name of the declared entity;

e the second argument to each declaration constructor specifies the type of the declared entity;
and

e an operator argument that is an empty list is represented by a %list expression having zero
arguments, rather than by the null value.

These and other such conventions add to the uniformity of the representation, further simplifying
the job of implementing REPRISE-based programming and analysis tools.
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Figure 9: “Pre-semantic” Form of the REPRISE Representation in Figure 1.

4 Reprise and Tools

As discussed in Section 1, the purpose of REPRISE is to serve as a common data structure for
programming and analysis tools that depend upon semantic information about C++ code. The
previous two sections concentrate on the representation itself. Here we turn attention to the tools
that would make use of the representation. There appear to be at least four categories of such tools,
each of which is discussed below. For purposes of exposition, the categories are discussed separately,
but of course hybrid tools are also possible.

4.1 Generative Tools

Generative tools create REPRISE representations. The most obvious generative tool is what tradi-
tionally serves as the front end of a compiler, performing lexical, syntactic, and semantic analysis.
The input would be C++ source text and the output would be the REPRISE representation of that
source text. One way that this tool could work (in fact, the way that such tools work for the PARIs
representation of Ada) is to first generate the abstract syntax tree subgraph through lexical and syn-
tactic analysis; and then modify that subgraph through semantic analysis to capture the semantic
connections between entity uses and entity declarations. Figure 9 shows the so-called “pre-semantic”
form of the representation shown in Figure 1. In essence, the “post-semantic” form of Figure 1 dif-
fers from the pre-semantic form in that certain literal nodes are replaced with semantic connections
to the declarations of the referenced entities. Note that as a consequence of the overloading and
scoping rules of C4++, there is likely to be a many-to-one mapping of literals to declarations in the
pre-semantic form. The direct capture of the semantic connections in (post-semantic) REPRISE,
however, eliminates any possible ambiguity.

Less traditional generative tools would be C++ semantics-directed editors'® and graphics-based
editors, where the textual syntax of C4++ has been replaced with an iconic syntax. While these tools
would not take actual C++ source text as input, they would still produce REPRISE representations
that could be manipulated by the other categories of tools.

10Today’s “syntax-directed” editors generally perform semantic checks as well, and thus it is really a disservice to
continue calling them syntax-directed editors rather than semantics-directed editors.
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4.2 Deriver Tools

Deriver tools create specialized representations of C++ code, using REPRISE representations of
the code as their input. These specialized representations are tailored to the needs of particular
tools or set of tools. A specialized representation might, for instance, contain a subset of the
information contained in a REPRISE representation or provide a different structure to the information
appropriate to a particular kind of processing. CIA++4, discussed in the introduction, is an excellent
candidate for a deriver tool. Of course, specialized representations do not have to replace the
REPRISE representations from which they were derived, but can be used in conjunction with those
REPRISE representations as well. For instance, a tool that creates an index of identifier names, for
fast access to declarations in a REPRISE graph, can be thought of as a deriver tool.

4.3 Annotation and Instrumentation Tools

Annotation and instrumentation tools “decorate” the REPRISE representation of C+4 code with
specialized information. Examples of tools that produce or make use of such decorations are test-
coverage tools, performance analyzers, debuggers, and tools that produce embedded constraint-
checking code from formal specifications (e.g., APP [13]). A test-coverage tool, for example, might
work as follows: Given a piece of code and some test input, the tool tries to make a determination
of which branches would be taken in the code and which statements would be executed. For each
branch and statement in the code, the tool keeps track of which test input, if any, exercised (i.e.,
covered) that branch or statement.

The key issue raised by annotation and instrumentation tools is whether specialized, supple-
mentary information, such as test coverage, can be associated with a REPRISE representation in
an unobtrusive way—that is, without affecting tools not concerned with the information. To some
extent, this is a question of how REPRISE as an abstraction is actually implemented, since the choice
of implementation technique can have a significant impact on this issue [18]. In general, however, we
note that REPRISE lends itself to an approach in which nodes and edges can be uniquely identified,
and that those identities can be used as keys for auxiliary data structures. The values associated
with those keys, and hence with nodes and edges, make up the supplementary information relevant
to particular tools. Thus, in the case of the test-coverage tool, information about which test inputs
exercise which branch or statement can be captured in a separate data structure known only to the
test-coverage tool. The connection between that data structure and the C++ code is made by the
unique identity of nodes and edges representing branches and statements in a REPRISE graph.

An interesting tool to consider in this category is the preprocessor ¢pp [1]. This tool interprets
special statements, called preprocessor directives, that appear in files containing C++ code. The
preprocessor uses the directives to determine what C4++ code to pass on to other tools for processing.
There are some tools, such as CIA++, that make use of information contained in preprocessor
directives, and therefore it is important to be able to retain this information along with the REPRISE
representation of the actual C++4 code. The natural way to do this is to have an auxiliary data
structure (perhaps created by a version of ¢pp) that serves this purpose. An important advantage of
this approach is that the connections between preprocessor directives and C++ code can be made
at a semantic level, not simply a syntactic one.

4.4 “Vanilla” Tools

Generally, tools that do not create REPRISE representations, derive specialized representations, or
annotate or instrument C++ code with specialized information, use REPRISE representations directly
and as is. In other words, the REPRISE representation contains all the information the tools would
need and in a form appropriate to their tasks. Tools that would fall into this category include pretty
printers, metrics collectors, data-flow analyzers, inheritance-hierarchy displayers, code generators,
and the like.
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5 Conclusion

The efficacy of programming and analysis tools using and sharing graph-based representations of
semantically analyzed code has already been demonstrated for languages other than C++. The
Arcadia environment [17], for example, has a full arsenal of concurrency analysis [2, 21], interface
analysis [20], testing [4], and interpretation [22] tools, all based on such representations of Ada
and Ada-like code. REPRISE represents an application of this technology to C+4 programming
environments.

To date, we have implemented the REPRISE data structures as a library of C++ classes. The
classes are built on top of a persistence library called Persi [19], which supports long-term storage of
C++ objects and shared concurrent access to those objects. We have built an enhanced version of
cfront called rfront, which generates pre-semantic REPRISE graphs from C++ source code. We have
also implemented a variety of tools that manipulate REPRISE representations, including a prototype
name resolver that transforms pre-semantic graphs into post-semantic graphs.

We believe that REPRISE provides an excellent mechanism for constructing C++ environments,
for simplifying development of C4++ programming and analysis tools, and for increasing tool quality.
In other words, we see REPRISE increasing the tempo at which C++ programming and analysis tools
are developed, and orchestrating an harmonious interaction among them.
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