from the Proceedings of the IEEE Computer Society 2nd International Workshop on
Empirical Studies of Software Maintenance, Bari, Italy, October 3, 1997

A Comparative Study of Regression Test Selection Techniques

David Rosenblum

Department of Information & Computer Science

444 Computer Science
University of California, Irvine
Irvine, CA 92697-3425
dsr@ics.uci.edu
http://www.ics.uci.edu/”~ dsr

Abstract

Regression test selection techniques attempt to re-
duce the cost of regression testing by selecting a
subset of an existing test suite for execution on
a modified program. Over the past two decades,
numerous regression test selection techniques have
been described in the literature. Initial empirical
studies of a few of these techniques have shown that
they can be beneficial, but the studies were per-
formed independently on dissimilar subjects. This
paper describes the first comparative evaluation of
two different regression test selection techniques on
the same experimental subjects. In particular, two
methods developed by the authors, DejaVu and
TestTube, were evaluated and compared in terms
of their precision in selecting test cases. The data
reveal that in some instances TestTube’s relative
lack of precision does not prevent it from compet-
ing with the more precise DejaVu, yet in other in-
stances DejaVu’s superior precision gives it a clear
advantage over TestTube. Such variation in per-
formance seriously complicates the tester’s choice
of which technique to use, and it suggests avenues
for further collaborative research and experimenta-
tion.

Keywords: software maintenance, regression test-
ing, empirical studies.

1 Introduction

Regression testing is a necessary but expensive
maintenance task, performed on modified programs
to instill confidence that changes are correct and
have not adversely affected unchanged portions of
the program. Regression test selection techniques
attempt to reduce the cost of regression testing

89

Gregg Rothermel
Department of Computer Science
Oregon State University
Dearborn Hall 307-A
Corvallis, OR 97331
grother@cs.orst.edu
http://www.cs.orst.edu/” grother

by selecting a subset of an existing test suite for
execution on a modified program. Over the past
two decades, numerous regression test selection
techniques have been described in the literature;
Rothermel and Harrold recently published a com-
prehensive analysis of these techniques [5]. Ini-
tial empirical studies of a few of these techniques
[1, 3,4, 7, 6, 8 have shown that they can be bene-
ficial, but that their costs and benefits vary widely
over different programs, program versions, and test
suites. These studies, however, were performed in-
dependently on dissimilar subjects; no studies have
compared techniques empirically.

This paper describes the first comparative evalu-
ation of two different regression test selection tech-
niques on the same experimental subjects. The
main goals of this study are to produce data reveal-
ing the relative merits of different regression test se-
lection techniques, to further our understanding of
the factors that influence the effectiveness of regres-
sion test selection techniques, and to guide future
empirical work.

2 Background

In previous work, the authors have independently
developed, implemented, experimented with, and
reported on two distinct regression test selection
techniques [1, 7]. Both techniques are safe, in the
sense that they are guaranteed to select all test
cases affected by a change (and possibly additional
test cases as well). We summarize the techniques
here; see the references for details.

DejaVu. Rothermel and Harrold developed a
family of test selection algorithms, and imple-
mented one algorithm as a tool called DejaVu.

DejaVu builds control flow graphs' for a program
P and modified version P’, collects test traces that
associate tests in 7" with edges in the control flow
graph for P, and performs synchronous depth-first
traversals of the two graphs, comparing the pro-
gram statements associated with nodes that are si-
multaneously reached in the two graphs. When the
algorithm discovers a pair of nodes N and N’ in
the graphs for P and P’, respectively, such that the
statements associated with N and N’ are not lex-
ically identical, the algorithm selects all tests from
T that, in P, reached N.

TestTube. Chen, Rosenblum and Vo developed
the TestTube method of test selection specifi-
cally to address considerations of cost-effectiveness.
TestTube is a general method of test selection based
on coarse-grained analysis of the coverage relation-
ship between test cases and the system under test,
and it has been implemented for the C program-
ming language. In the implementation of TestTube
for C, each test case is associated with function def-
initions, global variable definitions, type definitions
and preprocessor macro definitions that 1t covers or
potentially covers. If a change is made to one of
the entities associated with a test case, then the
whole entity is considered to be changed, and the
test case is selected (even though the test case may
not cover the particular subpaths through the en-
tity that are affected by the change). Thus, the
TestTube method sacrifices some measure of preci-
sion in order to gain efficiency in test selection.

Analytical comparisons. In [5], Rothermel and
Harrold discuss theoretical issues relevant to regres-
sion test selection, present a framework for analyti-
cally comparing regression test selection techniques,
and use the framework to compare existing tech-
niques. According to that analysis, both DejaVu
and TestTube belong to a class of regression test
selection algorithms described as safe: the defin-
ing characteristic of such algorithms being that, un-
der certain well-defined conditions, they select ev-
ery test from the original test suite that can expose
faults in the modified program. Rothermel and Har-
rold show that among safe approaches, DejaVu is
more precise than TestTube, in that it selects the
fewest unnecessary tests. However, DejaVu obtains

LA control flow graph is a directed graph in which nodes
represent program statements, and edges represent the flow
of control between statements.

90

its extra precision at additional cost: TestTube is
more efficient than DejaVu.

3 Empirical Studies

Analytical results notwithstanding, we require em-
pirical data to determine the relative costs and ben-
efits, in practice, of regression test selection tech-
niques. Ultimately, we would like to measure the
effort required to select tests, and the reduction in
testing effort achieved by eliminating unnecessary
tests. To obtain such data, we must assemble a col-
lection of experimental subjects, on which all algo-
rithms being compared function. We must then ex-
ercise reasonable implementations of the algorithms
on those subjects under controlled conditions, and
gather data about the analysis and test execution
time. If we do not possess implementations, we may
be able to obtain some data by simulating tech-
niques.

Objective. Our initial studies, reported in this
paper, focus on precision. The objective of these
studies is to measure and compare the number of
tests selected by DejaVu and TestTube; this number
is an indicator of the relative savings we can expect
from the techniques.

Subjects. Table 1 describes the experimental
subjects used in our studies. Each subject consists
of a base program, a number of modified versions,
a large test pool, and a number of test suites.

The base programs, modified programs, and test
pools described on the first seven lines of Table 1
were assembled originally by Hutchins et al. [2], for
use in experiments with dataflow- and controlflow-
based test adequacy criteria. These subjects were
subsequently modified and equipped with test suites
by Rothermel and Harrold, for use in studies of re-
gression testing[7]. For each of the subjects, 1000
branch-coverage-adequate test suites? were gener-
ated. Table 1 lists the average size of the branch-
coverage-adequate test suites provided with each of
the first seven subjects.

Hutchins et al. sought to study error detection;
thus, they created faulty modified versions of base
programs by manually seeding faults into the base
programs. For the purpose of our studies, we view

2A test suite T is branch-coverage-adequate for program
P if every dynamically feasible outcome of every predicate
in P is exercised by at least one test in T'.

Program Number of | Lines of | Number of | Test Pool | Test Suite | Description

Name Functions Code Versions Size Avg Size | of Program

replace 21 516 32 5542 19 pattern replacement
printtok?2 20 483 7 4115 12 lexical analyzer
printtok1 21 402 10 4130 16 lexical analyzer
schedule2 16 297 10 2710 8 priority scheduler
schedulel 18 299 9 2650 8 priority scheduler
totinfo 16 346 23 1054 7 information measure
tcas 8 138 41 1608 6 altitude separation
player 766 49316 5 1033 1033 transaction manager

Table 1: Experimental subjects.

the faulty modified versions of base programs as ill-
fated attempts to create modified versions of the
base programs.

The program described on the last line of Table
1, player, is a component of the software distribu-
tion for the Internet-based game, Empire. Several
modified versions of Empire have been created, to
fix bugs or add functionality. Most of these ver-
sions alter the player program. For the base ver-
sion listed in Table 1, five “real” versions, created
by different programmers for different reasons, were
collected. Table 2 summarizes significant statistics
about these five versions.

The test pool for player contains “black box”
tests, constructed using the Empire information
files, which describe the 154 commands recognized
by player, and discuss parameters and special side
effects of each command. The information files were
treated as informal specifications; for each com-
mand, tests were created to exercise each parameter
and special feature, and test erroneous parameter
values and conditions. Because the complexity of
commands and parameters varies widely over the
player commands, this process yielded between 1
and 30 tests of each command, and ultimately pro-
duced a test suite of 1035 tests.

Functions | Lines of Code
Version | Modified Changed
1 3 114
2 2 55
3 11 726
4 11 62
5 42 221

Table 2: Modified versions of player.

91

Method. We can obtain data on the precision of
DejaVu by applying the DejaVu implementation to
our experimental subjects; however, our TestTube
implementation does not yet function on these sub-
jects. Work 1s in progress to enable the direct ap-
plication of TestTube. In the meantime we have
discovered a way to simulate TestTube’s test se-
lection algorithm, to measure the precision of its
test selection. To simulate TestTube, we modified
the DejaVu code, such that whenever DejaVu lo-
cates changed code during its graph walk, the mod-
ified version selects all tests that enter the proce-
dure that contains the code. Although the mod-
ified DejaVu requires greater execution time than
that expected for TestTube, it selects exactly the
tests that TestTube would select. Thus, although
the simulation does not provide data on the relative
efficiency of the analysis tools, it does provide data
on their relative precision.

Our process for performing studies is as follows.
For each base program P, modified version P’, and
test suite T', we ran all tests in 7" on an instrumented
version of P, and saved the test trace information.
Weran DejaVuon P, P/, T, and the test trace infor-
mation, and counted the number of tests selected.
We then ran our TestTube simulation on P, P’, and
T, and the test trace information, and counted the
number of tests selected.

Study 1: TestTube vs DejaVu on
Coverage-Based Test Suites

Study 1 investigated the precision of TestTube ver-
sus the precision of DejaVu on programs 1 through
7, using coverage-based test suites. Figure 1 de-
picts the results of the study. The figure contains
a separate graph for each base program. In each

replace printtok2
100 100
0 0
8 80 -8 80
g 70 g 70
B .
E 50 E 50
B 4 B 4
8% B x
20 20
10 10
° 123456 7 891011121314 1516 1718192021 2223 24 252627 28 2930 3132 ° 1234567 8910
version version
. tot_info _ schedulel - schedule2
%0 1 % 90
8 8 1 -8 80 -8 80
g B ., g 70
» 60 7 ?, 60 0 60
E 5 9 g 50 E 50
“5. 40 1) 40 E. 40
g . g 5 g %
B 20 20
10 10 10
° 12 3456 7 89 1011 12 13 14 15 16 17 18 19 20 21 22 23 0 > 345675809 0 12 3456 7 89 10
version version version
o tcas . printtok1
90 0
-8 80 -8 80
g 70 g 70
j g
E 50 E 50
“C_f 40 “EJ- 40
L L
20 20
10 10
0 1234567 89 10111213141516 17181920_21222324252627 282930 3132 3334 353637 3839 40 41 0 12 34.557
version version

Figure 1: Test selection statistics for subjects 1-7, with coverage-based test suites. DejaVu (grey bars) versus

TestTube (black bars).

graph, each version of the program occupies a posi-
tion along the x-axis and is represented by a pair of
vertical bars. The two bars depict the percentage of
coverage-based tests selected by DejaVu (grey bars)
and by TestTube (black bars) in that version, on
average over the 1000 test suites.

As foretold by analytical results, DejaVu is never
less precise than TestTube: it never selects more
tests. In fact, although the figure does not show
this, the set of tests selected by DejaVu is always
a subset (not necessarily proper) of the set of tests
selected by TestTube. However, the relative preci-
sions of the two techniques vary widely over vari-

92

ous modified versions. For example, on the seven
versions of printtokl, the two techniques select
nearly equivalent (within 1%) sets in three cases.
DejaVu is between 30% and 50% more precise than
TestTube in two cases, and more than 50% pre-
cise than TestTube in two cases. In contrast, on
schedule2, DejaVu is never more than 1% more
precise than TestTube.

We can explain this variation in part by noting
that some of the versions involved small changes
to conditional expressions inside the function main,
which caused TestTube to select all tests that cover
main (i.e., the full test suite). Because of DejaVu’s

greater precision, it was able to select only those
test cases directly affected by changes in main.

Study 2: TestTube vs DejaVu on a
Larger Scale

Study 2 investigated the precision of TestTube ver-
sus the precision of DejaVu on the player pro-
gram. Figure 2 depicts the results of the study: for
each version, two bars depict the percentage of the
1033 player tests selected by DejaVu (grey bars)
and by TestTube (black bars). Again, as foretold
by analytical results, DejaVu always selects fewer
tests than TestTube. On versions 4 and 5, in fact,
TestTube selects all tests, whereas DejaVu reduces
test set size by over 90%. On versions 1, 2, and 3,
however, DejaVu offers only minor savings.

100 -
90
80 -
70 -
60 4
50 -
40 =
30 4
20 -
10 4
0 -

pct. of tests selected

vl v2 v3

version

v4 v5

Figure 2: Test selection statistics for player; De-
jaVu (grey bars) versus TestTube (black bars).

4 Discussion

We have described results of a comparative eval-
uation of two regression test selection techniques:
DejaVu and TestTube. In this initial study, we set
up infrastructure to enable us to carry out a com-
parative evaluation, and we focused on comparing
the techniques in terms of their precision in select-
ing test cases. A proper comparison must of course
consider additional factors, including a comparison
between the cost of applying the techniques and the
testing costs saved by eliminating test cases. Based
on our initial results, we observe that the choice of
which regression test selection technique to use on a
particular system under test is complicated by the
following somewhat contradictory facts:

93

1. “Coarse-grained” techniques such as TestTube,
despite their relative lack of precision, are fre-
quently competitive with “fine-grained” tech-
niques such as DejaVu in terms of their abil-
ity to produce significant reductions in the test
cases that are selected.

2. Fine-grained techniques sometimes substan-
tially outperform coarse-grained techniques.

In addition, we observe the following related fact,
which further complicates the choice of technique
to use:

3. The relative difference in the performance of
two techniques on any one version of a program
is highly sensitive to the specific changes that
are made to create the version.

These facts raise the following questions:

1. What are the proper criteria to be used for
comparing the two different techniques? For
instance, is TestTube to be preferred for test-
ing the player system because “usually” it is
nearly as precise as DejaVu, or is DejaVu to
be preferred because it periodically offers much
more substantial reductions than TestTube?
The answer to this question depends in part
on what the average-case behavior of the tech-
niques will be over all future versions. Yet this
is something that can only be predicted prob-
abilistically rather than revealed analytically.

2. Is 1t possible to develop a hybrid approach
(in both space and time) that combines the
best features of coarse-grained and fine-grained
techniques? For instance, fine-grained tech-
niques could be used for the analysis of main
functions and other “core” entities, while
coarse-grained techniques could be used for
the analysis of infrequently used entities. Per-
haps profiling data and/or an operational pro-
file could be used to guide the choice of analysis
techniques on different entities.

All of this suggests that much additional research
is needed to uncover the various factors that influ-
ence the relative variation in performance of differ-
ent techniques over multiple versions of a software
system. The research by Rosenblum and Weyuker
on predicting the cost-effectiveness of regression
test selection techniques represents initial effort in
studying these issues [4].

Comparative evaluations of regression testing
techniques require substantial infrastructure in the
form of programs, modified versions, fault data, and
test suites. Assembling such an infrastructure is dif-
ficult; however, once assembled, the infrastructure
can serve as a basis for benchmark experiments. We
suggest that all of our experimental subjects, with
their versions and test suites, constitute the begin-
nings of a benchmark suite for use in comparative
studies of regression testing. Additional work is nec-
essary, however, to correctly estimate the extent to
which results gathered on these subjects general-
ize to larger populations. Additional subjects that
account for the factors (some as yet undiscovered)
that affect test selection techniques will be needed.

We further suggest that studies of the sort we
have conducted can serve as a model for bench-
mark experiments with regression test selection
techniques. In addition to measuring precision,
however, such experiments should also measure al-
gorithm run-time, costs of executing selected and
non-selected tests, and inclusiveness of techniques
(how well the techniques do at selecting the tests,
in T, that reveal the faults present in a version.)

In the future, we plan to continue our compara-
tive evaluation of DejaVu and TestTube, with the
following action items:

e We will apply the implementation of TestTube
for C to the player system, thereby obtaining
accurate cost data that could not be obtained
by the simulation of TestTube.

o We will gather data on all relevant costs
and benefits involved in applying DejaVu and
TestTube to player, in order to compare
the techniques in terms of their overall cost-
effectiveness.

e Since data are available from a full cost
study of the application of TestTube to the
KornShell [3, 4], we will apply DejaVu to the
KornShell and gather all relevant cost data,
in order to provide an additional point of com-

parison between DejaVu and TestTube.

e We will continue the analysis of our data in an
attempt to further explain why DejaVu some-
times substantially outperforms TestTube in
test selection and why at other times it se-
lects the same or nearly the same test cases
as TestTube.

94

e We will apply and enhance the predic-
tion model described by Rosenblum and
Weyuker [4] in an attempt to develop ways of
predicting performance variations among dif-
ferent regression test selection techniques.

We expect these additional studies to dramatically
increase our understanding of the nature of selective
regression testing.

Acknowledgments

We thank the anonymous referees for several help-
ful comments that improved the presentation. This
work was supported in part by a grant from Mi-
crosoft, Inc., and by a National Science Foundation
Faculty Early Career Development Award, CCR-
9703108, to Oregon State University.

References

[1] Y.F. Chen, D.S. Rosenblum, and K.P. Vo. Test-
Tube: A system for selective regression testing. In
Proceedings of the 16th International Conference on
Software Fngineering, pages 211-222, May 1994.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceed-
ings of the 16th International Conference on Soft-
ware Engineering, pages 191-200, May 1994.

D. Rosenblum and E. J. Weyuker. Lessons learned
from a regression testing case study. Empirical Soft-
ware Engineering Journal, 2(2), 1997.

D. Rosenblum and E. J. Weyuker. Using coverage
information to predict the cost-effectiveness of re-

gression testing strategies. IEFFE Transactions on
Software Engineering, 23(3):146-156, March 1997.

G. Rothermel and M.J. Harrold. Analyzing regres-
sion test selection techniques. ITEFE Transactions on
Software Engineering, 22(8):529-551, August 1996.

G. Rothermel and M.J. Harrold. Experience with
regression test selection. FEmpirical Software Engi-
neering Journal, 2(2), 1997.

G. Rothermel and M.J. Harrold. A safe, efficient re-
gression test selection technique. ACM Transactions
on Software Engineering and Methodology, 6(2):173—
210, April 97.

L.J. White, V. Narayanswamy, T. Friedman,
M. Kirschenbaum, P. Piwowarski, and M. Oha. Test
Manager: a regression testing tool. In Proceedings
of the Conference on Software Maintenance - 1993,
pages 338-347, September 1993.

