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Abstract: Software architecture descriptions are high-level models of software systems.
Most existing special-purpose architectural notations have a great deal of
expressive power but are not well integrated with common development
methods. Conversely, mainstream development methodseessible to
developers, but lack the semantieseded for extensive analysis. In our
previous work, we described an approach to combining the advantages of
these two ways of modeling architectures. While d@ipigroach sggested a
practical strategy for bringing architectural modeling into wider use, it
introduced specialized extensions to a standard modeling notation, which
could also hamper wide adoption of the approach. This paper attempts to
assess the suitability of a standard design method “as is” for modeling
software architectures.

1. INTRODUCTION

Software architecture is an aspect of software engineering directed at
reducing the costs of developing applications and increasing the potential for
commonality among different members of a closely related product family

161



162 Nenad Medvidovic and David Rosenblum

[6, 19]. Software development based on common architectural idioms has its
focus shifted from lines-of-code to coarser-grained architectural elements
and their overall interconnection structure. This enables developers to
abstract away the unnecessary details and focus on the “big picture:” system
structure, high level communication protocols, assignment of software
components and connectors to hardware components, development process,
and so on [6, 7, 9, 19, 28, 29]. The basic promise of software architecture
research is that better software systems can result from modeling their
important aspects during, and especially early in the development. Choosing
which aspects to model and how to evaluate them are two decisions that
frame software architecture research [13].

Part of the software architecture research community has focused on
analytic evaluation of architecture descriptions. Many researchers have come
to believe that, to obtain the benefits of an architectural focus, software
architecture must be provided with its own body of specification languages
and analysis techniques [3, 5, 32]. Such languages are needed to demonstrate
properties of a system upstream, thus minimizing the costs of errors. They
are also needed to provide abstractions that are adequate for modeling a
large system, while ensuring sufficient detail for establishing properties of
interest. A large number of architecture description languages (ADLS) has
been proposed [2, 4, 9, 10, 12, 17, 25, 31].

Each ADL embodies a particular approach to the specification and
evolution of an architecture. Answering specific evaluation questions
demands powerful, specialized modeling and analysis techniques that
address specific aspects in depth. However, the emphasis on depth over
breadth of the model can make it difficult to integrate these models with
other development artifacts, because the rigor of formal methods draws the
modeler’s attention away from day-to-day development concerns. The use of
special-purpose modeling languages has made this part of the architecture
community fairly fragmented, as revealed by a recent survey of architecture
description languages [14].

Another part of the community has focused on modeling a wide range of
issues that arise in software development, perhaps with a family of models
that span and relate the issues of concern. By paying the cost of making such
models, developers gain the benefit of clarifying and communicating their
understanding of the system. However, emphasizing breadth over depth
potentially allows many problems and errors to go undetected, because lack
of rigor allows developers to ignore certain details. Several competing
notations have been used in this part of the community, but there now exists
a concerted effort to standardize methods for object-oriented analysis and
design [18].
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In our previous work, we described an approach to combining the
advantages of specialized, highly formal methods of modeling architectures
with general, less formal design methods [24]. This approach suggested a
practical strategy for bringing architectural modeling into wider use, namely
by incorporating substantial elements of architectural models into a standard
design method, the Unified Modeling Language (UML) [20]. However, our
technique is not without drawbacks: for each architectural approach and
ADL, we introduced a somewhat specialized extension to UML. In
particular, we relied heavily on UML’s Object Constraint Language (OCL)
[23] to specify architecture- and ADL-specific concepts.

OCL constraints are highly formal. Their formality may hamper wide
adoption of our technique, although end users of the enhanced UML meta-
model typically will not need to write OCL constraints. Furthermore, OCL is
a part of the standard UML definition and it is expected that standardized
UML tools will be able to process it. However, OCL is considered an
uninterpreted part of UML and UML tools may not support it to the extent
needed for creating, manipulating, analyzing, and evolving designs. For this
reason, in this paper we attempt to assess the suitability of UML “as is” for
modeling software architectures. In particular, we focus on one of the
architectural approaches we addressed previously [24], the C2 architectural
style [29]. We use a simple meeting scheduler application to highlight the
issues. In the process, we attempt to shed light on the relationship between
architecture and design.

The paper is organized as follows. The next section briefly describes
UML. Section 3 briefly describes the example application, a meeting
scheduler, used to illustrate our arguments throughout the paper. In
Section 4, we introduce the C2 style and discuss a possible C2 architecture
for the meeting scheduler application. Section 5 provides a “C2 style” UML
design of the meeting scheduler. We discuss the results and key lessons
learned in Section 6. Our conclusions round out the paper.

2. OVERVIEW OF UML

2.1 UML Background

A UML model of a software system consists of several partial models,
each of which addresses a certain set of issues at a certain level of fidelity.
There are eight issues addressed by UML models:

1. classes and their declared attributes, operations, and relationships;
2. the possible states and behavior of individual classes;
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3. packages of classes and their dependencies;

4. example scenarios of system usage including kinds of users and
relationships between user tasks;

5. the behavior of the overall system in the context of a usage scenario;

6. examples of object instances with actual attributes and relationships in
the context of a scenario

7. examples of the actual behavior of interacting instances in the context of

a scenario; and
8. the deployment and communication of software components on

distributed hosts.

Fidelity refers to how close the model will be to the eventual implementation
of the system: low-fidelity models tend to be used early in the life-cycle and
are more problem-oriented and generic, whereas high-fidelity models tend to
be used later and are more solution-oriented and specific. Increasing fidelity
demands effort and knowledge to build more detailed models, but results in
more properties of the model holding true in the system.

UML is a graphical language with fairly well-defined syntax and
semantics. The syntax of the graphical presentation is specified by examples
and a mapping from graphical elements to elements of the underlying
semantic model [22]. The syntax and semantics of the underlying model are
specified semi-formally via a meta-model, descriptive text, and constraints
[21]. The meta-model is itself a UML model that specifies the abstract
syntax of UML models. This is much like using a BNF grammar to specify
the syntax of a programming language. For example, the UML meta-model
states that a Class is one kind of model element with certain attributes, and
that a Feature is another kind of model element with its own attributes, and
that there is a one-to-many composition relationship between them.

UML is an extensible language in that new constructs may be added to
address new issues in software development. Three mechanisms are
provided to allow limited extension to new issues without changing the
existing syntax or semantics of the language C@nstraintsplace semantic
restrictions on particular design elements. T@yged valuesallow new
attributes to be added to particular elements of the modebt€Botypes
allow groups of constraints and tagged values to be given descriptive names
and applied to other model elements; the semantic effect is as if the
constraints and tagged values were applied directly to those elements.
Another possible extension mechanism is to modify the meta-model, but this
approach results in a completely new notation to which standard UML tools
cannot be applied. We discuss this approach in more detail in Section 2.2.

Figure 1 shows the parts of the UML meta-model used in this paper. We
have simplified the meta-model for purposes of illustration.
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Figure 1.Simplified UML meta-model (adapted from [21]).

2.2 Our Strategy for Adapting UML for Architecture
Modeling

In [24] we studied two possible approaches to using UML to model
architectures. One approach is to define an ADL-specific meta-model. This
approach has been used in more comprehensive formalizations of
architectural styles [1, 12]. Defining a new meta-model helps to formalize
the ADL, but does not aid integration with standard design methods. By
defining our new meta-classes as subclasses of existing meta-classes we
would achieve some integration. For example, defining Component as a
subclass of meta-class Class would give it the ability to participate in any
relationship in which Class can participate. This is basically the integration
that we desire. However, this integration approach requoicesficationsto
the meta-model that would nobnformto the UML standard; therefore, we
cannot expect UML-compliant tools to support it.

The approach for which we opted instead was to restrict ourselves to
using UML’s built-in extension mechanisms on existing meta-classes [24].
This allows the use of existing and future UML-compliant tools to represent
the desired architectural models, and to support architectural style
conformance checking when OCL-compliant tools become available. Our
basic strategy was to first choose an existing meta-class from the UML
meta-model that is semantically close to an ADL construct, and then define a
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stereotype that can be applied to instances of that meta-class to constrain its
semantics to that of the ADL.

Neither of the two approaches answers the deeper question of UML’s
suitability for modeling software architectures “as is,” i.e., without defining
meta-models specific to a particular architectural approach or extending the
existing UML meta-model. Such an exercise would highlight the respective
advantages of special- and general-purpose design notations in modeling
architectures. It also has the potential to further clarify the relationship
between software architecture and design. Therefore, in this paper we study
the characteristics of using the existing UML features to model architectures
in a particular style, C2.

3. EXAMPLE APPLICATION

The example we selected to motivate the discussion in this paper is a
simplified version of the meeting scheduler problem, initially proposed by
van Lamsweerde and colleagues [8] and recently considered as a candidate
model problem in software architectures [27]. We have chosen this problem
partly because of our prior experience with designing and implementing a
distributed meeting scheduler in the C2 architectural style, described in [29].

Meetings are typically arranged in the following way. A meeting initiator
asks all potential meeting attendees for a set of dates on which they cannot
attend the meeting (their “exclusion” set) and a set of dates on which they
would prefer the meeting to take place (their “preference” set). The
exclusion and preference sets are contained in some time interval prescribed
by the meeting initiator (the “date range”).

The initiator also asks active participants to provide any special
equipment requirements on the meeting location (e.g., overhead-projector,
workstation, network connection, telephones); the initiator may also ask
important participants to state preferences for the meeting location.

The proposed meeting date should belong to the stated date range and to
none of the exclusion sets. It should also ideally belong to as many
preference sets as possible. A date conflict occurs when no such date can be
found. A conflict is strong when no date can be found within the date range
and outside all exclusion sets; it is weak when dates can be found within the
date range and outside all exclusion sets, but no date can be found at the
intersection of all preference sets. Conflicts can be resolved in several ways:
— the initiator extends the date range;

— some participants expand their preference set or narrow down their
exclusion set; or
— some participants withdraw from the meeting.
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4. MODELING THE EXAMPLE APPLICATION IN
C2

4.1 Overview of C2

C2 is a software architectural style for user interface intensive systems
[29]. c2sADEL is an ADL for describing C2-style architectures [12, 15];
henceforth, in the interest of clarity, we use “C2" to refer to the combination
C2 andc2sADEL. In a C2-style architecturepnnectorstransmit messages
between components, whitmponentsnaintain state, perform operations,
and exchange messages with other components via two interfaces (named
“top” and “bottom”). Each interface consists of a set of messages that may
be sent and a set of messages that may be received. Inter-component
messages are eithegquestsfor a component to perform an operation, or
notificationsthat a given component has performed an operation or changed
state.

In the C2 style, components may not directly exchange messages; they
may only do so via connectors. Each component interface may be attached to
at most one connector. A connector may be attached to any number of other
components and connectors. Request messages may only be sent “upward”
through the architecture, and notification messages may only be sent
“downward.”

The C2 style further demands that components communicate with each
other only through message-passing, never through shared memory. Also,
C2 requires that notifications sent from a component correspond to the
operations of its internal object, rather than the needs of any components that
receive those notifications. This constraint on notifications helps to ensure
substrate independencwhich is the ability to reuse a C2 component in
architectures with differing substrate components (e.g., different window
systems). The C2 style explicitly does not make any assumptions about the
language(s) in which the components or connectors are implemented,
whether or not components execute in their own threads of control, the
deployment of components to hosts, or the communication protocol(s) used
by connectors.

4.2 Modeling the Meeting Scheduler in C2

Figure 2 shows a graphical depiction of a possible C2-style architecture
for a simple meeting scheduler system. This system consists of components
supporting the functionality of &eetinglnitiator and several potential
meetingAttendeesandImportantAttendeesThree C2 connectors are used to



168 Nenad Medvidovic and David Rosenblum

route messages among the components. Certain messages filaitiatos

are sent both tdttendeesand ImportantAttendeeswhile others (e.g., to
obtain meeting location preferences) are only routdchfmrtantAttendees
Since a C2 component has only one communication port on its top and one
on its bottom, and all message routing functionality is relegated to
connectors, it is the responsibility BfainConnto ensure thafttConnand
ImportantAttConnabove it receive only those message relevant to their
respective attached components.

[mportant [mportant
|Attendee-'1| |Attendee 'M| Attaridea-1| -« |Aftendes N
lrrrrr. ZZlZZZZZZZZZZZZZZlZZZZZ
AttConn [mportant
2 AttConn
MMainConn
Meating

Initiator

Figure 2.A C2-style architecture for a meeting scheduler system.

The Initiator component sends requests for meeting information to
Attendeesand ImportantAttendeesThe two sets of components notify the
Initiator component, which attempts to schedule a meeting and either
requests that each potential attendee mark it in his/her calendar (if the
meeting can be scheduled), or it sends other requests to attendees to extend
the date range, remove a set of excluded dates, add preferred dates, or
withdraw from the meeting. EachAttendee and ImportantAttendee
component, in turn, notifies tHaitiator of its date, equipment, and location
preferences, as well as excluded datstendeeand ImportantAttendee
components cannot make requests ofMeetinglnitiatorcomponent, since
they are above it in the architecture.

Most of this information is implicit in the graphical view of the
architecture shown in Figure 2. For this reason, we specify the architecture
in C2SADEL, a textual language for modeling C2-style architectures [11, 12,
15]. For simplicity, we assume that all attendees’ equipment needs will be
met, and that a meeting location will be available on the given date and that
it will be satisfactory for all (or most) of the important attendees.

The Meetinglnitiatorcomponent is specified below. The component only
communicates with other parts of the architecture through its top port.



Assessing the Suitability of a Standard Design Method

169

component Meetinglnitiator is
interface
top_domain is
out
GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
GetLocPrefs ();
RemoveExclSet ();
RequestWithdrawal (to Attendee);
RequestWithdrawal (to ImportantAttendee);
AddPrefDates ();
MarkMtg (d : date; | : loc_type);

PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
LocPref (I : loc_type);
bottom_domain is
out null;
in null;
parameters null;
methods
procedure Start ();
procedure Finish ();
procedure SchedMtg (p : set date_rng; e : set date_rng);
procedure AddPrefSet (pref : date_rng);
procedure AddExclSet (exc : date_rng);
procedure AddEquipReqts (eq : equip_type);
procedure AddLocPref (I: loc_type);
function AttendInfoCompl () return boolean;
procedure IncNumAttends (n : integer);
function GetNumAttends () : return integer;
behavior
startup
invoke_methods Start;
always_generate GetPrefSet, GetExclSet, GetEquipReqts,
GetLocPrefs;
cleanup
invoke_methods Finish;
always_generate null;
received_messages PrefSet;
invoke_methods AddPrefSet, IncNumAttends, AttendinfoCompl,
GetNumAttends, SchedMtg;
may_generate RemoveExclSet xor RequestWithdrawal xor
MarkMtg;
received_messages ExclSet;
invoke_methods AddExclSet, AttendinfoCompl, GetNumAttends,
SchedMtg;
may_generate AddPrefDates xor RemoveExclSet xor
RequestWithdrawal xor MarkMtg;
received_messages EquipReqts;
invoke_methods AddEquipReqts, AttendIinfoCompl,
GetNumAttends, SchedMtg;
may_generate AddPrefDates xor RemoveExclSet xor
RequestWithdrawal xor MarkMtg;
received_messages LocPref;
invoke_methods AddLocPref;
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always_generate null;
context
bottom_most computational_unit ;
end Meetinglnitiator;

The Attendee and ImportantAttendeecomponents receive meeting
scheduling requests from thaitiator and notify it of the appropriate
information. The two types of components only communicate with other
parts of the architecture through their bottom ports.

component Attendee is
interface
top_domain is
out null;
in null;
bottom_domain is
out
PrefSet (p : date_rng);
ExclSet (e : date_rng);
EquipReqts (eq : equip_type);
Witdrawn ();

GetPrefSet ();
GetExclSet ();
GetEquipReqts ();
RemoveExclSet ();
RequestWithdrawal ();
AddPrefDates ();
MarkMtg (d : date; | : loc_type);
parameters null;
methods
procedure Start ();
procedure Finish ();
procedure NoteMtg (d : date; | : loc_type);
function DeterminePrefSet () return date_rng;
function DetermineExclSet () return date_rng;
function AddPrefDates () return date_rng;
function RemoveExclSet () return date_rng;
procedure DetermineEquipReqts (eq : equip_type);
behavior
startup
invoke_methods Start;
always_generate null ;
cleanup
invoke_methods Finish;
always_generate null ;
received_messages GetPrefSet;
invoke_methods DeterminePrefSet;
always_generate PrefSet;
received_messages AddPrefDates;
invoke_methods AddPrefDates;
always_generate PrefSet;
received_messages GetExclSet;
invoke_methods DetermineExclSet;
always_generate ExclSet;
received_messages GetEquipReqts;
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invoke_methods DetermineEquipReqts;
always_generate EquipReqts;

received_messages RemoveExclSet;
invoke_methods RemoveExclSet;
always_generate ExclSet;

received_messages RequestWithdrawal;
invoke_methods Finish;
always_generate Withdrawn;

received_messages MarkMtg;
invoke_methods NoteMtg;
always_generate null ;

context
top_most computational_unit
end Attendee;

ImportantAttendeeils a specialization of théttendeecomponent: it
duplicates all ofAttendeé&s functionality and adds specification of meeting
location preferencedmportantAttendeds thus specified as a subtype of
Attendeethat preserves its interface and behavior, but can implement that
behavior in a new manner.

component ImportantAttendee is subtype Attendee (int and beh )
interface
bottom_domain is
out
LocPrefs (I : loc_type);
in
GetLocPrefs ();
methods
function DetermineLocPrefs () return loc_type;
behavior
received_messages GetLocPrefs;
invoke_methods DetermineLocPrefs;
always_generate LocPrefs;
end ImportantAttendee;

The MeetingSchedulearchitecture depicted in Figure 2 is shown below.
The architecture is specified with conceptual components (i.e., component
types). Each conceptual component (eAfttendeg can be instantiated
multiple times in a system.

architecture MeetingScheduler is
conceptual_components
top_most
Attendee;
ImportantAttendee;
internal null
bottom_most
Meetinglnitiator;
connectors
connector MainConn is
message_filter no_filtering
end MainConn;

’
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connector AttConn is
message_filter no_filtering ;
end AttConn;
connector ImportantAttConn is
message_filter no_filtering ;
end ImportantAttConn;
architectural_topology
connector AttConn connections
top_ports
Attendee;
bottom_ports
MainConn;
connector ImportantAttConn connections
top_ports
ImportantAttendee;
bottom_ports
MainConn;
connector MainConn connections
top_ports
AttConn;
ImportantAttConn;
bottom_ports
Meetinglnitiator;
end MeetingScheduler;

An instance of the architecture (a system) is specified by instantiating the
components. For example, an instance of the meeting scheduler application
with three participants and two important participants is specified as follows.

system MeetingScheduler_1 is
architecture MeetingScheduler with
Attendee instance Att_1, Att 2, Att_3;
ImportantAttendee instance ImpAtt_1, ImpAtt_2;
Meetinglnitiator instance Mtglnit_1;
end MeetingScheduler_1;

5. MODELING THE C2-STYLE MEETING
SCHEDULER APPLICATION IN UML

The process of designing a C2-style application in UML should be driven
and constrained both by the rules of C2 and the modeling features available
in UML. The two must be considered simultaneously. For this reason, the
initial steps in this process are to develop a domain model for a given
application in UML and an informal C2 architectural diagram, such as the
one from Figure 2. Such an architectural diagram is key to making the
appropriate mappings between classes in the domain and architectural
components. Furthermore, it points to the need to explicitly model
connectors in any C2-style architecture. Another important aspect of C2
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architectures is the prominence of components’ message interfaces. This is

reflected in a UML design by modeling interfaces explicitly and
independently of the classes that will implement those interfaces.

e
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Figure 3.UML class diagram for the meeting scheduler application. Details (attributes and
methods) of each individual class have been suppressed for clarity.

Our initial attempt at a UML class diagram for the meeting scheduler
application is shown in Figure 3. The diagram shows the domain model for
the meeting scheduler application consisting of the domain classes, their
inheritance relationships, and their associations. The diagram abstracts away
many architectural details, such as the mapping of classes in the domain to
implementation components, the order of interactions among the different
classes, and so forth. Furthermore, much of the semantics of class interaction
is missing from the diagram. For example, tindtesassociation associates
two Meetings with one or moreAttendeesand one Meetinglnitiator.
However, the association does not make clear the fact that thddetings
are intended to represent a range of possible meeting dates, rather than a pair
of related meetings.

Each class exports one or more interfaces, shown in Figure 4. The
ImportantMtginit and ImportantMtgAttend interfaces inherit from the
Mtglnit and MtgAttendinterfaces, respectively. The only difference is the
added operation to request and notify of location preferences.
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Note that every interface element corresponds to a C2 message in the
architecture specified in Section 4.2. All methods in the UML design will be
implemented as asynchronous message passes, as they would in C2. Since
C2 components communicate via implicit invocation, C2 messages do not
have return values; this is also reflected in Figure 4.

<<interfaca>» <<inter face =
MteInit MtoAttend
GetPrafSat (); PrafZat {date_rng);
GatBxclsat () ExclSat (date_rng);
BamoveBrelsat (), EquipBaqts (aquip_type);
BaquestWithdrawal (Attendea); Witdrawn ().
AddPrafDatas (), %
% <<interface ==
<<interface == [mportantbtgAttand
[mportantMtglnit LocPrefs (loc_type);

GetLocPrats (1

Figure 4.Meeting scheduler class interfaces.

In order to model a C2 architecture in UML, connectors must be defined.
Although connectors fulfill a role different from components, they can also
be modeled with UML classes. However a C2 connector is by definition
generic and can accommodate any number ant type of C2 components;
informally, the interface of a C2 connector is a union of the interfaces of its
attached components. UML does not support this form of genericity, so that
the connectors specified in UML have to be application-specific. For that
purpose, the connectors for the meeting scheduler application share the
components’ interfaces. Each connector can be thought of as a simple class
that forwards each message it receives to the appropriate components.
Therefore, while the component class interface specifications, shown in
Figure 4, correspond to the different C2 components’ outgoing messages
(i.e., their provided functionality), the connector interfaces are routers of
both the incoming and outgoing messages, as depicted in Figure 5.
Connectors do not add any functionality at the domain model level; we have
thus chosen to omit them from the class diagram in Figure 3.
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<<interfaca=>
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CretBxelSat ()

EamovaBrelsat ()
EequestWithdrawal (Attendee);
AddPrafDates ();

PrafSat (data_rng);

ExclSat (datz_rng);

EquipReqts (2quip_type);
Witdrawn (),

<<interface>>
[mportantAtt Conn

GetLocPrafs (),
LocPrafs (loc_type),

I

<<inferfaca»»
MainConn

Figure 5.Application-specific UML classes representing C2 connectors.

A refined class diagram for the meeting scheduler application is shown in
Figure 6. The Attendee and ImportantAttendeeclasses are related by
interface inheritance, which is depicted in Figure 4, but is only implicit in
Figure 6 (and altogether omitted from Figure 3). We have omitted from
Figure 6 thelLocation Meeting andDate classes shown in Figure 3, since
they have not been impacted. We have also omitted the two superclasses for
the components and connectdPe(sonandConn respectively).

Note that the class diagram in Figure 6 is similar in its structure to the C2
architecture depicted in Figure 2. The only difference is that the diagram in
Figure 2 depicts instances of the different components and connectors, while
a UML class diagram depicts classes and their associations. UML provides
several types of diagrams that depict class instances (objects). One candidate
is UML'’s object diagrams; however, we choose to depict a collaboration
diagram to further draw the contrast between UML and C2.
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Figure 6.UML class diagram for the meeting scheduler application designed in the C2
architectural style.

Figure 7 shows the collaboration between an instance of the
Meetinglnitiator class MI) and any instances ofAttendee and
ImportantAttendeelassesMI issues a request for a set of preferred meeting
dates;MC, an instance of thilainConnclass routes the request to instances
of both connectors above AC andIAC, which, in turn, route the requests to
all components attached on their top sides; each participant component
chooses a preferred date and notifies any components below it of that choice;
these notification messages will eventually be routedMio via the
connectors. Note that, Ml had sent the request to get meeting location
preferencesGetLocPrefdn thelmportantMtglinitinterface in Figure 4MC
would have routed them only tAC and none of the instances of the
Attendeeclass would have received that request
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Figure 7.Collaboration diagram for the meeting scheduler application showing a response to
a request issued by thMeetinglnitiatorto bothAttendeesindimportantAttendees

The above diagrams, and particularly Figure 6, differ from a C2
architecture in that they explicitly specify only the messages a component
receives (via interface attachments to a component rectangle). UML also
allows specification of messages a component sends; we believe those
messages to be obvious from the diagram and have thus chosen to omit them
to simplify the diagrams.

6. DISCUSSION

The exercise of modeling a C2-style architecture in UML has been fairly
successful. Part of the success can be attributed to the fact that many
architectural concepts are found in UML (e.g., interfaces, component
associations, behavioral modeling, and so forth). On the other hand, the
modeling capabilities provided by UML do not always fully satisfy the needs
of architectural description. We discuss several major similarities and
differences in this section.

6.1 Software Modeling Philosophies
Neither C2 nor UML constrain the choice of implementation language or

require that any two components be implemented in the same language or
thread of control. C2 limits communication to asynchronous message
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passing and UML supports this restriction. Both C2 and UML include
specifications of messages that may be sent and received.

Although we did not model details of the internal parts of a C2
component or the behavior of any C2 constructs (components, connectors,
communication ports, and so forth) in our UML specification, we believe
that many of those aspects could be modeled with UML's sequence,
collaboration, statechart, and activity diagrams. Existing ADLs, including
C2SADEL, are often not able to support all of these kinds of semantic models
[14].

6.2 Assumptions

Like any notation, UML embodies its developers’ assumptions about its
intended usage. “Architecting” a system was not an intended use of UML.
While one can indeed focus on the different perspectives when modeling a
system (discussed above), a software architect may find that the support for
those perspectives found in UML only partially satisfies his/her needs.

For example, in modeling the collaboration among C2 components
shown in Figure 7, we were forced to assign a relative ordering to messages
in the architecture. In effect, since all C2 components and connectors can
execute in their own thread(s) of control, such an ordering cannot always be
determined. Indeed, it is possible that message 4 would be sent before
message 3.

6.3 Problem Domain Modeling

UML supports modeling a problem domain, as we have briefly shown in
this paper. A C2 architectural model, however, often hides some of the
information present in a domain model. For example, meeting, equipment,
and location information is present in Figure 3, but is missing from the C2
architecture specified in Section 4 and its corresponding UML diagram in
Figure 6. Modeling all the relevant information early in the development
lifecycle is crucial to the success of a software project. Therefore, a domain
model should be considered a separate and useful architectural perspective
[13, 30].

6.4 Architectural Abstractions

Some concepts of C2, and software architectures in general, are very
different from those of UML and object-oriented design in general.
Connectors are first-class entities in C2. While the functionality of a
connector can typically be abstracted by a class/component [9, 10], C2
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connectors have the added property that their interfaces are context
reflective. This property is designed irtBsADEL and C2’'s implementation
infrastructure [16] for all connectors, whereas the approach described in this
paper requires specialized modeling of application-specific connector classes
in UML.

The underlying problem is even deeper. Although UML may provide
modeling power equivalent to or surpassing that of an ADL, the abstractions
it provides may not match an architect's mental model of the system as
faithfully as the architect's ADL of choice. If the primary purpose of a
language is to provide a vehicle of expression that matches the intuitions and
practices of users, then that language should aspire to reflect those intentions
and practices [26]. We believe this to be a key issue and one that argues
against considering a notation like UML to be a “mainstream” ADL: a given
language (e.g., UML) offers a set of abstractions that an architect uses as
design tools; if certain abstractions (e.g., components and connectors) are
buried in others (e.g., classes), the architect's job is made more (and
unnecessarily) difficult; separating components from connectors, raising
them both to visibility as top-level abstractions, and endowing them with
certain features and limitations also raises them in the consciousness of the
designer.

6.5 Architectural Styles

Architecture is the appropriate level of abstraction at which rules of a
compositional style (i.e., an architectural style) can be exploited and should
be elaborated. Doing so results in a set of heuristics that, if followed, will
guarantee a resulting system certain desirable properties.

Standard UML provides no support for architectural styles. The rules of
different styles have to be built into UML by constraining its meta-model, as
we have done previously [24]. Therefore, in choosing to use UML “as is”,
we have removed one shortcoming of our previous approach, only to
introduce another. In particular, every C2 architecture designed in the
manner we described in this paper adheres to the UML meta-model and, as
such, can be understood by a typical UML user and manipulated with
standardized UML tools. On the other hand, the process of modeling a C2
architecture in UML is heuristic- rather than constraint-driven. Therefore,
there is no guarantee that the designer will always adhere to the rules of C2.
For this reason, it may also be more difficult to provide support for
automated translation of “C2-style” UML designs irt@sADEL for C2-
specific manipulations.
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7. CONCLUSIONS

We found this initial attempt at modeling a C2-style architecture in UML
useful. It highlighted those UML characteristics that show potential for
aiding architectural modeling, but also pointed out some of UML's
shortcomings in this regard. This experience can also serve as a solid basis
for further study, both with other C2 architectures, as well as with other
ADLs (e.g., Wright [2]) and architectural styles (e.g., client-server).

Before we can draw definitive conclusions about the relative merits of
this approach and the approach described in our previous work [24], further
research into the techniques described in the two papers is needed. One
necessary step to integrate UML with other ADLs discussed in [24]: Wright
[2], Darwin [10], and Rapide [9]. Each of these ADLs has certain aspects in
common with UML; these were expressed with UML's extension
mechanisms. We intend to investigate whether they can also be expressed in
UML without extensions.

Our experience to date indicates that adapting UML to address
architectural concerns requires reasonable effort, has the potential to be a
useful complement to ADLs and their analysis tools, and may be a practical
step toward mainstream architectural modeling. Using UML has the benefits
of leveraging mainstream tools, skills, and processes. It may also aid in the
comparison of ADLs because it forces some implicit assumptions to be
explicitly stated in common terms.
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