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Abstract: Software architecture descriptions are high-level models of software systems. 
Most existing special-purpose architectural notations have a great deal of 
expressive power but are not well integrated with common development 
methods. Conversely, mainstream development methods are accessible to 
developers, but lack the semantics needed for extensive analysis. In our 
previous work, we described an approach to combining the advantages of 
these two ways of modeling architectures. While this approach suggested a 
practical strategy for bringing architectural modeling into wider use, it 
introduced specialized extensions to a standard modeling notation, which 
could also hamper wide adoption of the approach. This paper attempts to 
assess the suitability of a standard design method “as is” for modeling 
software architectures. 

1. INTRODUCTION 

Software architecture is an aspect of software engineering directed at 
reducing the costs of developing applications and increasing the potential for 
commonality among different members of a closely related product family 
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[6, 19]. Software development based on common architectural idioms has its 
focus shifted from lines-of-code to coarser-grained architectural elements 
and their overall interconnection structure. This enables developers to 
abstract away the unnecessary details and focus on the “big picture:” system 
structure, high level communication protocols, assignment of software 
components and connectors to hardware components, development process, 
and so on [6, 7, 9, 19, 28, 29]. The basic promise of software architecture 
research is that better software systems can result from modeling their 
important aspects during, and especially early in the development. Choosing 
which aspects to model and how to evaluate them are two decisions that 
frame software architecture research [13]. 

Part of the software architecture research community has focused on 
analytic evaluation of architecture descriptions. Many researchers have come 
to believe that, to obtain the benefits of an architectural focus, software 
architecture must be provided with its own body of specification languages 
and analysis techniques [3, 5, 32]. Such languages are needed to demonstrate 
properties of a system upstream, thus minimizing the costs of errors. They 
are also needed to provide abstractions that are adequate for modeling a 
large system, while ensuring sufficient detail for establishing properties of 
interest. A large number of architecture description languages (ADLs) has 
been proposed [2, 4, 9, 10, 12, 17, 25, 31]. 

Each ADL embodies a particular approach to the specification and 
evolution of an architecture. Answering specific evaluation questions 
demands powerful, specialized modeling and analysis techniques that 
address specific aspects in depth. However, the emphasis on depth over 
breadth of the model can make it difficult to integrate these models with 
other development artifacts, because the rigor of formal methods draws the 
modeler’s attention away from day-to-day development concerns. The use of 
special-purpose modeling languages has made this part of the architecture 
community fairly fragmented, as revealed by a recent survey of architecture 
description languages [14]. 

Another part of the community has focused on modeling a wide range of 
issues that arise in software development, perhaps with a family of models 
that span and relate the issues of concern. By paying the cost of making such 
models, developers gain the benefit of clarifying and communicating their 
understanding of the system. However, emphasizing breadth over depth 
potentially allows many problems and errors to go undetected, because lack 
of rigor allows developers to ignore certain details. Several competing 
notations have been used in this part of the community, but there now exists 
a concerted effort to standardize methods for object-oriented analysis and 
design [18]. 
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In our previous work, we described an approach to combining the 
advantages of specialized, highly formal methods of modeling architectures 
with general, less formal design methods [24]. This approach suggested a 
practical strategy for bringing architectural modeling into wider use, namely 
by incorporating substantial elements of architectural models into a standard 
design method, the Unified Modeling Language (UML) [20]. However, our 
technique is not without drawbacks: for each architectural approach and 
ADL, we introduced a somewhat specialized extension to UML. In 
particular, we relied heavily on UML’s Object Constraint Language (OCL) 
[23] to specify architecture- and ADL-specific concepts.  

OCL constraints are highly formal. Their formality may hamper wide 
adoption of our technique, although end users of the enhanced UML meta-
model typically will not need to write OCL constraints. Furthermore, OCL is 
a part of the standard UML definition and it is expected that standardized 
UML tools will be able to process it. However, OCL is considered an 
uninterpreted part of UML and UML tools may not support it to the extent 
needed for creating, manipulating, analyzing, and evolving designs. For this 
reason, in this paper we attempt to assess the suitability of UML “as is” for 
modeling software architectures. In particular, we focus on one of the 
architectural approaches we addressed previously [24], the C2 architectural 
style [29]. We use a simple meeting scheduler application to highlight the 
issues. In the process, we attempt to shed light on the relationship between 
architecture and design. 

The paper is organized as follows. The next section briefly describes 
UML. Section 3 briefly describes the example application, a meeting 
scheduler, used to illustrate our arguments throughout the paper. In 
Section 4, we introduce the C2 style and discuss a possible C2 architecture 
for the meeting scheduler application. Section 5 provides a “C2 style” UML 
design of the meeting scheduler. We discuss the results and key lessons 
learned in Section 6. Our conclusions round out the paper. 

2. OVERVIEW OF UML 

2.1 UML Background 

A UML model of a software system consists of several partial models, 
each of which addresses a certain set of issues at a certain level of fidelity. 
There are eight issues addressed by UML models: 
1. classes and their declared attributes, operations, and relationships; 
2. the possible states and behavior of individual classes;  
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3. packages of classes and their dependencies;  
4. example scenarios of system usage including kinds of users and 

relationships between user tasks;   
5. the behavior of the overall system in the context of a usage scenario;  
6. examples of object instances with actual attributes and relationships in 

the context of a scenario 
7. examples of the actual behavior of interacting instances in the context of 

a scenario; and  
8. the deployment and communication of software components on 

distributed hosts. 
Fidelity refers to how close the model will be to the eventual implementation 
of the system: low-fidelity models tend to be used early in the life-cycle and 
are more problem-oriented and generic, whereas high-fidelity models tend to 
be used later and are more solution-oriented and specific. Increasing fidelity 
demands effort and knowledge to build more detailed models, but results in 
more properties of the model holding true in the system. 

UML is a graphical language with fairly well-defined syntax and 
semantics. The syntax of the graphical presentation is specified by examples 
and a mapping from graphical elements to elements of the underlying 
semantic model [22]. The syntax and semantics of the underlying model are 
specified semi-formally via a meta-model, descriptive text, and constraints 
[21]. The meta-model is itself a UML model that specifies the abstract 
syntax of UML models. This is much like using a BNF grammar to specify 
the syntax of a programming language. For example, the UML meta-model 
states that a Class is one kind of model element with certain attributes, and 
that a Feature is another kind of model element with its own attributes, and 
that there is a one-to-many composition relationship between them. 

UML is an extensible language in that new constructs may be added to 
address new issues in software development. Three mechanisms are 
provided to allow limited extension to new issues without changing the 
existing syntax or semantics of the language. (1) Constraints place semantic 
restrictions on particular design elements. (2) Tagged values allow new 
attributes to be added to particular elements of the model. (3) Stereotypes 
allow groups of constraints and tagged values to be given descriptive names 
and applied to other model elements; the semantic effect is as if the 
constraints and tagged values were applied directly to those elements. 
Another possible extension mechanism is to modify the meta-model, but this 
approach results in a completely new notation to which standard UML tools 
cannot be applied. We discuss this approach in more detail in Section 2.2. 

Figure 1 shows the parts of the UML meta-model used in this paper. We 
have simplified the meta-model for purposes of illustration. 
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Figure 1. Simplified UML meta-model (adapted from [21]). 

 

2.2 Our Strategy for Adapting UML for Architecture 
Modeling 

In [24] we studied two possible approaches to using UML to model 
architectures. One approach is to define an ADL-specific meta-model. This 
approach has been used in more comprehensive formalizations of 
architectural styles [1, 12]. Defining a new meta-model helps to formalize 
the ADL, but does not aid integration with standard design methods. By 
defining our new meta-classes as subclasses of existing meta-classes we 
would achieve some integration. For example, defining Component as a 
subclass of meta-class Class would give it the ability to participate in any 
relationship in which Class can participate. This is basically the integration 
that we desire. However, this integration approach requires modifications to 
the meta-model that would not conform to the UML standard; therefore, we 
cannot expect UML-compliant tools to support it. 

The approach for which we opted instead was to restrict ourselves to 
using UML’s built-in extension mechanisms on existing meta-classes [24]. 
This allows the use of existing and future UML-compliant tools to represent 
the desired architectural models, and to support architectural style 
conformance checking when OCL-compliant tools become available. Our 
basic strategy was to first choose an existing meta-class from the UML 
meta-model that is semantically close to an ADL construct, and then define a 
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stereotype that can be applied to instances of that meta-class to constrain its 
semantics to that of the ADL.  

Neither of the two approaches answers the deeper question of UML’s 
suitability for modeling software architectures “as is,” i.e., without defining 
meta-models specific to a particular architectural approach or extending the 
existing UML meta-model. Such an exercise would highlight the respective 
advantages of special- and general-purpose design notations in modeling 
architectures. It also has the potential to further clarify the relationship 
between software architecture and design. Therefore, in this paper we study 
the characteristics of using the existing UML features to model architectures 
in a particular style, C2. 

3. EXAMPLE APPLICATION 

The example we selected to motivate the discussion in this paper is a 
simplified version of the meeting scheduler problem, initially proposed by 
van Lamsweerde and colleagues [8] and recently considered as a candidate 
model problem in software architectures [27]. We have chosen this problem 
partly because of our prior experience with designing and implementing a 
distributed meeting scheduler in the C2 architectural style, described in [29]. 

Meetings are typically arranged in the following way. A meeting initiator 
asks all potential meeting attendees for a set of dates on which they cannot 
attend the meeting (their “exclusion” set) and a set of dates on which they 
would prefer the meeting to take place (their “preference” set). The 
exclusion and preference sets are contained in some time interval prescribed 
by the meeting initiator (the “date range”).  

The initiator also asks active participants to provide any special 
equipment requirements on the meeting location (e.g., overhead-projector, 
workstation, network connection, telephones); the initiator may also ask 
important participants to state preferences for the meeting location.  

The proposed meeting date should belong to the stated date range and to 
none of the exclusion sets. It should also ideally belong to as many 
preference sets as possible. A date conflict occurs when no such date can be 
found. A conflict is strong when no date can be found within the date range 
and outside all exclusion sets; it is weak when dates can be found within the 
date range and outside all exclusion sets, but no date can be found at the 
intersection of all preference sets. Conflicts can be resolved in several ways:  
– the initiator extends the date range;  
– some participants expand their preference set or narrow down their 

exclusion set; or 
– some participants withdraw from the meeting. 
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4. MODELING THE EXAMPLE APPLICATION IN 

C2 

4.1 Overview of C2 

C2 is a software architectural style for user interface intensive systems 
[29]. C2SADEL is an ADL for describing C2-style architectures [12, 15]; 
henceforth, in the interest of clarity, we use “C2” to refer to the combination 
C2 and C2SADEL. In a C2-style architecture, connectors transmit messages 
between components, while components maintain state, perform operations, 
and exchange messages with other components via two interfaces (named 
“top” and “bottom”). Each interface consists of a set of messages that may 
be sent and a set of messages that may be received. Inter-component 
messages are either requests for a component to perform an operation, or 
notifications that a given component has performed an operation or changed 
state. 

In the C2 style, components may not directly exchange messages; they 
may only do so via connectors. Each component interface may be attached to 
at most one connector. A connector may be attached to any number of other 
components and connectors. Request messages may only be sent “upward” 
through the architecture, and notification messages may only be sent 
“downward.” 

The C2 style further demands that components communicate with each 
other only through message-passing, never through shared memory. Also, 
C2 requires that notifications sent from a component correspond to the 
operations of its internal object, rather than the needs of any components that 
receive those notifications. This constraint on notifications helps to ensure 
substrate independence, which is the ability to reuse a C2 component in 
architectures with differing substrate components (e.g., different window 
systems). The C2 style explicitly does not make any assumptions about the 
language(s) in which the components or connectors are implemented, 
whether or not components execute in their own threads of control, the 
deployment of components to hosts, or the communication protocol(s) used 
by connectors. 

4.2 Modeling the Meeting Scheduler in C2 

Figure 2 shows a graphical depiction of a possible C2-style architecture 
for a simple meeting scheduler system. This system consists of components 
supporting the functionality of a MeetingInitiator and several potential 
meeting Attendees and ImportantAttendees. Three C2 connectors are used to 



168 Nenad Medvidovic and David Rosenblum
 
route messages among the components. Certain messages from the Initiator 
are sent both to Attendees and ImportantAttendees, while others (e.g., to 
obtain meeting location preferences) are only routed to ImportantAttendees. 
Since a C2 component has only one communication port on its top and one 
on its bottom, and all message routing functionality is relegated to 
connectors, it is the responsibility of MainConn to ensure that AttConn and 
ImportantAttConn above it receive only those message relevant to their 
respective attached components.  

 

 

Figure 2. A C2-style architecture for a meeting scheduler system. 

 
The Initiator component sends requests for meeting information to 

Attendees and ImportantAttendees. The two sets of components notify the 
Initiator component, which attempts to schedule a meeting and either 
requests that each potential attendee mark it in his/her calendar (if the 
meeting can be scheduled), or it sends other requests to attendees to extend 
the date range, remove a set of excluded dates, add preferred dates, or 
withdraw from the meeting. Each Attendee and ImportantAttendee 
component, in turn, notifies the Initiator of its date, equipment, and location 
preferences, as well as excluded dates. Attendee and ImportantAttendee 
components cannot make requests of the MeetingInitiator component, since 
they are above it in the architecture. 

Most of this information is implicit in the graphical view of the 
architecture shown in Figure 2. For this reason, we specify the architecture 
in C2SADEL, a textual language for modeling C2-style architectures [11, 12, 
15]. For simplicity, we assume that all attendees’ equipment needs will be 
met, and that a meeting location will be available on the given date and that 
it will be satisfactory for all (or most) of the important attendees.  

The MeetingInitiator component is specified below. The component only 
communicates with other parts of the architecture through its top port. 
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component  MeetingInitiator is  
 interface 
  top_domain is 
   out  
    GetPrefSet (); 
    GetExclSet (); 
    GetEquipReqts (); 
    GetLocPrefs (); 
    RemoveExclSet (); 
    RequestWithdrawal (to  Attendee); 
    RequestWithdrawal (to  ImportantAttendee); 
    AddPrefDates (); 
    MarkMtg (d : date; l : loc_type); 
   in 
    PrefSet (p : date_rng); 
    ExclSet (e : date_rng); 
    EquipReqts (eq : equip_type); 
    LocPref (l : loc_type); 
  bottom_domain is 
   out null; 
   in null; 
 parameters null; 
 methods 
  procedure  Start (); 
  procedure  Finish (); 
  procedure  SchedMtg (p : set  date_rng; e : set  date_rng); 
  procedure  AddPrefSet (pref : date_rng); 
  procedure  AddExclSet (exc : date_rng); 
  procedure  AddEquipReqts (eq : equip_type); 
  procedure  AddLocPref (l : loc_type); 
  function  AttendInfoCompl () return  boolean; 
  procedure  IncNumAttends (n : integer); 
  function  GetNumAttends () : return  integer; 
 behavior 
  startup 
   invoke_methods  Start; 
   always_generate  GetPrefSet, GetExclSet, GetEquipReqts, 
GetLocPrefs; 
  cleanup 
   invoke_methods  Finish; 
   always_generate  null ; 
  received_messages  PrefSet; 
   invoke_methods  AddPrefSet, IncNumAttends, AttendInfoCompl, 
GetNumAttends, SchedMtg; 
   may_generate  RemoveExclSet xor  RequestWithdrawal xor  
MarkMtg; 
  received_messages  ExclSet; 
   invoke_methods  AddExclSet, AttendInfoCompl, GetNumAttends, 
SchedMtg; 
   may_generate  AddPrefDates xor  RemoveExclSet xor  
RequestWithdrawal xor  MarkMtg; 
  received_messages  EquipReqts; 
   invoke_methods  AddEquipReqts, AttendInfoCompl, 
GetNumAttends, SchedMtg; 
   may_generate  AddPrefDates xor RemoveExclSet xor  
RequestWithdrawal xor  MarkMtg; 
  received_messages  LocPref; 
   invoke_methods  AddLocPref; 
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   always_generate  null ; 
 context 
  bottom_most computational_unit ; 
end  MeetingInitiator; 

The Attendee and ImportantAttendee components receive meeting 
scheduling requests from the Initiator and notify it of the appropriate 
information. The two types of components only communicate with other 
parts of the architecture through their bottom ports.  

component  Attendee is  
 interface 
  top_domain is 
   out null; 
   in null; 
  bottom_domain is 
   out  
    PrefSet (p : date_rng); 
    ExclSet (e : date_rng); 
    EquipReqts (eq : equip_type); 
    Witdrawn (); 
   in 
    GetPrefSet (); 
    GetExclSet (); 
    GetEquipReqts (); 
    RemoveExclSet (); 
    RequestWithdrawal (); 
    AddPrefDates (); 
    MarkMtg (d : date; l : loc_type); 
 parameters null; 
 methods 
  procedure  Start (); 
  procedure  Finish (); 
  procedure  NoteMtg (d : date; l : loc_type); 
  function  DeterminePrefSet () return  date_rng; 
  function  DetermineExclSet () return  date_rng; 
  function  AddPrefDates () return  date_rng; 
  function  RemoveExclSet () return  date_rng; 
  procedure  DetermineEquipReqts (eq : equip_type); 
 behavior 
  startup 
   invoke_methods  Start; 
   always_generate null ; 
  cleanup 
   invoke_methods  Finish; 
   always_generate null ; 
  received_messages GetPrefSet; 
   invoke_methods DeterminePrefSet; 
   always_generate PrefSet; 
  received_messages  AddPrefDates; 
   invoke_methods  AddPrefDates; 
   always_generate  PrefSet; 
  received_messages  GetExclSet; 
   invoke_methods  DetermineExclSet; 
   always_generate ExclSet; 
  received_messages  GetEquipReqts; 
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   invoke_methods  DetermineEquipReqts; 
   always_generate  EquipReqts; 
  received_messages  RemoveExclSet; 
   invoke_methods  RemoveExclSet; 
   always_generate  ExclSet; 
  received_messages  RequestWithdrawal; 
   invoke_methods  Finish; 
   always_generate  Withdrawn; 
  received_messages  MarkMtg; 
   invoke_methods  NoteMtg; 
   always_generate null ; 
 context 
  top_most computational_unit ; 
end  Attendee; 

ImportantAttendee is a specialization of the Attendee component: it 
duplicates all of Attendee’s functionality and adds specification of meeting 
location preferences. ImportantAttendee is thus specified as a subtype of 
Attendee that preserves its interface and behavior, but can implement that 
behavior in a new manner. 

component  ImportantAttendee is  subtype  Attendee (int and beh ) 
 interface 
  bottom_domain is 
   out  
    LocPrefs (l : loc_type); 
   in 
    GetLocPrefs (); 
 methods 
  function  DetermineLocPrefs () return  loc_type; 
 behavior 
  received_messages  GetLocPrefs; 
   invoke_methods  DetermineLocPrefs; 
   always_generate  LocPrefs; 
end  ImportantAttendee; 

The MeetingScheduler architecture depicted in Figure 2 is shown below. 
The architecture is specified with conceptual components (i.e., component 
types). Each conceptual component (e.g., Attendee) can be instantiated 
multiple times in a system. 

architecture  MeetingScheduler is  
 conceptual_components 
  top_most 
   Attendee; 
   ImportantAttendee; 
  internal null 
  bottom_most  
   MeetingInitiator; 
 connectors 
  connector  MainConn is  
   message_filter no_filtering ; 
  end  MainConn; 
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  connector  AttConn is  
   message_filter no_filtering ; 
  end  AttConn; 
  connector  ImportantAttConn is  
   message_filter no_filtering ; 
  end  ImportantAttConn; 
 architectural_topology 
  connector  AttConn connections  
   top_ports 
    Attendee; 
   bottom_ports 
    MainConn; 
  connector  ImportantAttConn connections  
   top_ports 
    ImportantAttendee; 
   bottom_ports 
    MainConn; 
  connector  MainConn connections  
   top_ports 
    AttConn; 
    ImportantAttConn; 
   bottom_ports 
    MeetingInitiator; 
end  MeetingScheduler; 

An instance of the architecture (a system) is specified by instantiating the 
components. For example, an instance of the meeting scheduler application 
with three participants and two important participants is specified as follows. 

system  MeetingScheduler_1 is  
 architecture  MeetingScheduler with  
   Attendee instance  Att_1, Att_2, Att_3; 
   ImportantAttendee instance  ImpAtt_1, ImpAtt_2; 
   MeetingInitiator instance  MtgInit_1; 
end  MeetingScheduler_1; 

5. MODELING THE C2-STYLE MEETING 
SCHEDULER APPLICATION IN UML 

The process of designing a C2-style application in UML should be driven 
and constrained both by the rules of C2 and the modeling features available 
in UML. The two must be considered simultaneously. For this reason, the 
initial steps in this process are to develop a domain model for a given 
application in UML and an informal C2 architectural diagram, such as the 
one from Figure 2. Such an architectural diagram is key to making the 
appropriate mappings between classes in the domain and architectural 
components. Furthermore, it points to the need to explicitly model 
connectors in any C2-style architecture. Another important aspect of C2 
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architectures is the prominence of components’ message interfaces. This is 
reflected in a UML design by modeling interfaces explicitly and 
independently of the classes that will implement those interfaces. 

 

 

Figure 3. UML class diagram for the meeting scheduler application.  Details (attributes and 
methods) of each individual class have been suppressed for clarity. 

 
Our initial attempt at a UML class diagram for the meeting scheduler 

application is shown in Figure 3. The diagram shows the domain model for 
the meeting scheduler application consisting of the domain classes, their 
inheritance relationships, and their associations. The diagram abstracts away 
many architectural details, such as the mapping of classes in the domain to 
implementation components, the order of interactions among the different 
classes, and so forth. Furthermore, much of the semantics of class interaction 
is missing from the diagram. For example, the Invites association associates 
two Meetings with one or more Attendees and one MeetingInitiator. 
However, the association does not make clear the fact that the two Meetings 
are intended to represent a range of possible meeting dates, rather than a pair 
of related meetings.  

Each class exports one or more interfaces, shown in Figure 4. The 
ImportantMtgInit and ImportantMtgAttend interfaces inherit from the 
MtgInit and MtgAttend interfaces, respectively. The only difference is the 
added operation to request and notify of location preferences. 
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Note that every interface element corresponds to a C2 message in the 
architecture specified in Section 4.2. All methods in the UML design will be 
implemented as asynchronous message passes, as they would in C2. Since 
C2 components communicate via implicit invocation, C2 messages do not 
have return values; this is also reflected in Figure 4.  

 

 

Figure 4. Meeting scheduler class interfaces. 

 
In order to model a C2 architecture in UML, connectors must be defined. 

Although connectors fulfill a role different from components, they can also 
be modeled with UML classes. However a C2 connector is by definition 
generic and can accommodate any number ant type of C2 components; 
informally, the interface of a C2 connector is a union of the interfaces of its 
attached components. UML does not support this form of genericity, so that 
the connectors specified in UML have to be application-specific. For that 
purpose, the connectors for the meeting scheduler application share the 
components’ interfaces. Each connector can be thought of as a simple class 
that forwards each message it receives to the appropriate components. 
Therefore, while the component class interface specifications, shown in 
Figure 4, correspond to the different C2 components’ outgoing messages 
(i.e., their provided functionality), the connector interfaces are routers of 
both the incoming and outgoing messages, as depicted in Figure 5. 
Connectors do not add any functionality at the domain model level; we have 
thus chosen to omit them from the class diagram in Figure 3.  
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Figure 5. Application-specific UML classes representing C2 connectors. 

 
A refined class diagram for the meeting scheduler application is shown in 

Figure 6. The Attendee and ImportantAttendee classes are related by 
interface inheritance, which is depicted in Figure 4, but is only implicit in 
Figure 6 (and altogether omitted from Figure 3). We have omitted from 
Figure 6 the Location, Meeting, and Date classes shown in Figure 3, since 
they have not been impacted. We have also omitted the two superclasses for 
the components and connectors (Person and Conn, respectively).  

Note that the class diagram in Figure 6 is similar in its structure to the C2 
architecture depicted in Figure 2. The only difference is that the diagram in 
Figure 2 depicts instances of the different components and connectors, while 
a UML class diagram depicts classes and their associations. UML provides 
several types of diagrams that depict class instances (objects). One candidate 
is UML’s object diagrams; however, we choose to depict a collaboration 
diagram to further draw the contrast between UML and C2.  
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Figure 6. UML class diagram for the meeting scheduler application designed in the C2 
architectural style. 

 
Figure 7 shows the collaboration between an instance of the 

MeetingInitiator class (MI) and any instances of Attendee and 
ImportantAttendee classes: MI issues a request for a set of preferred meeting 
dates; MC, an instance of the MainConn class routes the request to instances 
of both connectors above it, AC and IAC, which, in turn, route the requests to 
all components attached on their top sides; each participant component 
chooses a preferred date and notifies any components below it of that choice; 
these notification messages will eventually be routed to MI via the 
connectors.  Note that, if MI had sent the request to get meeting location 
preferences (GetLocPrefs in the ImportantMtgInit interface in Figure 4), MC 
would have routed them only to IAC and none of the instances of the 
Attendee class would have received that request 
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Figure 7. Collaboration diagram for the meeting scheduler application showing a response to 
a request issued by the MeetingInitiator to both Attendees and ImportantAttendees. 

 
 
The above diagrams, and particularly Figure 6, differ from a C2 

architecture in that they explicitly specify only the messages a component 
receives (via interface attachments to a component rectangle).  UML also 
allows specification of messages a component sends; we believe those 
messages to be obvious from the diagram and have thus chosen to omit them 
to simplify the diagrams. 

6. DISCUSSION 

The exercise of modeling a C2-style architecture in UML has been fairly 
successful. Part of the success can be attributed to the fact that many 
architectural concepts are found in UML (e.g., interfaces, component 
associations, behavioral modeling, and so forth). On the other hand, the 
modeling capabilities provided by UML do not always fully satisfy the needs 
of architectural description. We discuss several major similarities and 
differences in this section. 

6.1 Software Modeling Philosophies 

Neither C2 nor UML constrain the choice of implementation language or 
require that any two components be implemented in the same language or 
thread of control. C2 limits communication to asynchronous message 
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passing and UML supports this restriction. Both C2 and UML include 
specifications of messages that may be sent and received.  

Although we did not model details of the internal parts of a C2 
component or the behavior of any C2 constructs (components, connectors, 
communication ports, and so forth) in our UML specification, we believe 
that many of those aspects could be modeled with UML’s sequence, 
collaboration, statechart, and activity diagrams. Existing ADLs, including 
C2SADEL, are often not able to support all of these kinds of semantic models 
[14]. 

6.2 Assumptions 

Like any notation, UML embodies its developers’ assumptions about its 
intended usage. “Architecting” a system was not an intended use of UML. 
While one can indeed focus on the different perspectives when modeling a 
system (discussed above), a software architect may find that the support for 
those perspectives found in UML only partially satisfies his/her needs. 

For example, in modeling the collaboration among C2 components 
shown in Figure 7, we were forced to assign a relative ordering to messages 
in the architecture. In effect, since all C2 components and connectors can 
execute in their own thread(s) of control, such an ordering cannot always be 
determined. Indeed, it is possible that message 4 would be sent before 
message 3. 

6.3 Problem Domain Modeling 

UML supports modeling a problem domain, as we have briefly shown in 
this paper. A C2 architectural model, however, often hides some of the 
information present in a domain model. For example, meeting, equipment, 
and location information is present in Figure 3, but is missing from the C2 
architecture specified in Section 4 and its corresponding UML diagram in 
Figure 6. Modeling all the relevant information early in the development 
lifecycle is crucial to the success of a software project. Therefore, a domain 
model should be considered a separate and useful architectural perspective 
[13, 30]. 

6.4 Architectural Abstractions 

Some concepts of C2, and software architectures in general, are very 
different from those of UML and object-oriented design in general. 
Connectors are first-class entities in C2. While the functionality of a 
connector can typically be abstracted by a class/component [9, 10], C2 
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connectors have the added property that their interfaces are context 
reflective. This property is designed into C2SADEL and C2’s implementation 
infrastructure [16] for all connectors, whereas the approach described in this 
paper requires specialized modeling of application-specific connector classes 
in UML. 

The underlying problem is even deeper. Although UML may provide 
modeling power equivalent to or surpassing that of an ADL, the abstractions 
it provides may not match an architect’s mental model of the system as 
faithfully as the architect’s ADL of choice. If the primary purpose of a 
language is to provide a vehicle of expression that matches the intuitions and 
practices of users, then that language should aspire to reflect those intentions 
and practices [26]. We believe this to be a key issue and one that argues 
against considering a notation like UML to be a “mainstream” ADL: a given 
language (e.g., UML) offers a set of abstractions that an architect uses as 
design tools; if certain abstractions (e.g., components and connectors) are 
buried in others (e.g., classes), the architect’s job is made more (and 
unnecessarily) difficult; separating components from connectors, raising 
them both to visibility as top-level abstractions, and endowing them with 
certain features and limitations also raises them in the consciousness of the 
designer. 

6.5 Architectural Styles 

Architecture is the appropriate level of abstraction at which rules of a 
compositional style (i.e., an architectural style) can be exploited and should 
be elaborated. Doing so results in a set of heuristics that, if followed, will 
guarantee a resulting system certain desirable properties.  

Standard UML provides no support for architectural styles. The rules of 
different styles have to be built into UML by constraining its meta-model, as 
we have done previously [24]. Therefore, in choosing to use UML “as is”, 
we have removed one shortcoming of our previous approach, only to 
introduce another. In particular, every C2 architecture designed in the 
manner we described in this paper adheres to the UML meta-model and, as 
such, can be understood by a typical UML user and manipulated with 
standardized UML tools. On the other hand, the process of modeling a C2 
architecture in UML is heuristic- rather than constraint-driven. Therefore, 
there is no guarantee that the designer will always adhere to the rules of C2. 
For this reason, it may also be more difficult to provide support for 
automated translation of “C2-style” UML designs into C2SADEL for C2-
specific manipulations. 
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7. CONCLUSIONS 

We found this initial attempt at modeling a C2-style architecture in UML 
useful. It highlighted those UML characteristics that show potential for 
aiding architectural modeling, but also pointed out some of UML’s 
shortcomings in this regard. This experience can also serve as a solid basis 
for further study, both with other C2 architectures, as well as with other 
ADLs (e.g., Wright [2]) and architectural styles (e.g., client-server). 

Before we can draw definitive conclusions about the relative merits of 
this approach and the approach described in our previous work [24], further 
research into the techniques described in the two papers is needed. One 
necessary step to integrate UML with other ADLs discussed in [24]: Wright 
[2], Darwin [10], and Rapide [9]. Each of these ADLs has certain aspects in 
common with UML; these were expressed with UML’s extension 
mechanisms. We intend to investigate whether they can also be expressed in 
UML without extensions. 

Our experience to date indicates that adapting UML to address 
architectural concerns requires reasonable effort, has the potential to be a 
useful complement to ADLs and their analysis tools, and may be a practical 
step toward mainstream architectural modeling. Using UML has the benefits 
of leveraging mainstream tools, skills, and processes. It may also aid in the 
comparison of ADLs because it forces some implicit assumptions to be 
explicitly stated in common terms. 

ACKNOWLEDGEMENTS 

We wish to thank J. Robbins and D. Redmiles for their insights into the 
issues in integrating UML with architectures and their collaboration on other 
aspects of this work. 

Effort sponsored by the Defense Advanced Research Projects Agency, 
and Air Force Research Laboratory, Air Force Materiel Command, USAF, 
under agreement number F30602-97-2-0021 and by the Air Force Office of 
Scientific Research, Air Force Materiel Command, USAF, under grant 
number F49620-98-1-0061. This material is also partially based on work 
supported by the National Science Foundation under Grant No. CCR-
9701973. The U.S. Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any copyright 
annotation thereon. 

The views and conclusions contained herein are those of the authors and 
should not be interpreted as necessarily representing the official policies or 
endorsements, either expressed or implied, of the Defense Advanced 



Assessing the Suitability of a Standard Design Method 181 
 
Research Projects Agency, Air Force Research Laboratory, Air Force Office 
of Scientific Research or the U.S. Government. 

REFERENCES 

1. G. Abowd, R. Allen, and D. Garlan. Formalizing style to understand descriptions of 
software architecture. ACM Transactions on Software Engineering and Methodology, pp. 
319-364, October 1995. 

2. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM Transactions 
on Software Engineering and Methodology, pp. 213-249, July 1997. 

3. D. Garlan, editor. Proceedings of the First International Workshop on Architectures for 
Software Systems, Seattle, WA, April 1995. 

4. D. Garlan, R. Allen, and J. Ockerbloom. Exploiting Style in Architectural Design 
Environments. In Proceedings of SIGSOFT’94: Foundations of Software Engineering, pp. 
175-188, New Orleans, Louisiana, USA, December 1994. 

5. D. Garlan, F. N. Paulisch, and W. F. Tichy, editors. Summary of the Dagstuhl Workshop 
on Software Architecture, February 1995. Reprinted in ACM Software Engineering Notes, 
pp. 63-83, July 1995. 

6. D. Garlan and M. Shaw. An introduction to software architecture: Advances in software 
engineering and knowledge engineering, volume I. World Scientific Publishing, 1993. 

7. P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, pp. 42-50, November 
1995. 

8. A. van Lamsweerde, R. Darimont and P. Massonet. The Meeting Scheduler System: 
Preliminary Definition. University of Louvain, Unite d’informatique, B-1348 Louvain-la-
Neuve (Belgium), October 1992. 

9. D. C. Luckham and J. Vera. An event-based architecture definition language. IEEE 
Transactions on Software Engineering, pp. 717-734, September 1995. 

10. J. Magee and J. Kramer. Dynamic structures in software architecture. In Proceedings of 
ACM SIGSOFT’96: Fourth Symposium on the Foundations of Software Engineering 
(FSE4), pp. 3-14, San Francisco, CA, October 1996. 

11. N. Medvidovic. ADLs and Dynamic Architecture Changes. In A. L. Wolf, ed., 
Proceedings of the Second International Software Architecture Workshop (ISAW-2), pp. 
24-27, San Francisco, CA, October 1996. 

12. N. Medvidovic, R. N. Taylor, and E. J. Whitehead, Jr. Formal Modeling of Software 
Architectures at Multiple Levels of Abstraction. In Proceedings of the California Software 
Symposium 1996, pp. 28-40, Los Angeles, CA, April 1996. 

13. N. Medvidovic and D. S. Rosenblum. Domains of Concern in Software Architectures and 
Architecture Description Languages. In Proceedings of the USENIX Conference on 
Domain Specific Languages, pp. 199-212, Santa Barbara, CA, October. 1997. 

14. N. Medvidovic and R. N. Taylor. A Framework for Classifying and Comparing 
Architecture Description Languages. In Proceedings of the Sixth European Software 
Engineering Conference together with Fifth ACM SIGSOFT Symposium on the Foundations of 
Software Engineering, pp. 60-76, Zurich, Switzerland, September 22-25, 1997. 

15. N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using object-oriented typing to 
support architectural design in the C2 style. In Proceedings of ACM SIGSOFT’96: Fourth 
Symposium on the Foundations of Software Engineering (FSE4), pp. 24-32, San Francisco, 
CA, October 1996. 



182 Nenad Medvidovic and David Rosenblum
 
16. N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of Off-the-Shelf Components in C2-

Style Architectures. In Proceedings of the 1997 Symposium on Software Reusability 
(SSR’97), pp. 190-198, Boston, MA, May 1997. Also in Proceedings of the 1997 
International Conference on Software Engineering (ICSE’97), pp. 692-700, Boston, MA, 
May 1997. 

17. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architecture Refinement. 
IEEE Transactions on Software Engineering, pp. 356-372, April 1995. 

18. Object Management Group. Object analysis and design RFP-1. Object Management Group 
document ad/96-05-01. June 1996. Available from http://www.omg.org/docs/ad/96-05-
01.pdf. 

19. D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architectures. ACM 
SIGSOFT Software Engineering Notes, pp. 40-52, October 1992. 

20. Rational Partners (Rational, IBM, HP, Unisys, MCI, Microsoft, ObjecTime, Oracle, i-
Logix, etc.). Proposal to the OMG in response to OA&D RFP-1. Object Management 
Group document ad/97-07-03. July 1997. Available from http://www.omg.org/docs/ad/. 

21. Rational Partners. UML Semantics. Object Management Group document ad/97-08-04. 
Sept. 1997. Available from http://www.omg.org/docs/ad/97-08-04.pdf. 

22. Rational Partners. UML Notation Guide. Object Management Group document ad/97-08-
05. Sept. 1997. Available from http://www.omg.org/docs/ad/97-08-05.pdf. 

23. Rational Software Corporation and IBM. Object constraint language specification. Object 
Management Group document ad/97-08-08. September 1997. Available from 
http://www.omg.org/docs/ad/. 

24. J. E. Robbins, N. Medvidovic, D. F. Redmiles, and D. S. Rosenblum. Integrating 
Architecture Description Languages with a Standard Design Method. In Proceedings of 
the 20th International Conference on Software Engineering (ICSE’98), pp. 209-218, 
Kyoto, Japan, April 19-25, 1998.  

25. M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. Abstractions 
for Software Architecture and Tools to Support Them. IEEE Transactions on Software 
Engineering, pp. 314-335, April 1995. 

26. M. Shaw and D. Garlan. Formulations and Formalisms in Software Architecture. Jan van 
Leeuwen, editor, Computer Science Today: Recent Trends and Developments, Springer-
Verlag Lecture Notes in Computer Science, Volume 1000, 1995. 

27. M. Shaw, D. Garlan, R. Allen, D. Klein, J. Ockerbloom, C. Scott, M. Schumacher. 
Candidate Model Problems in Software Architecture. Unpublished manuscript, November 
1995. Available from 
http://www.cs.cmu.edu/afs/cs/project/compose/www/html/ModProb/. 

28. D. Soni, R. Nord, and C. Hofmeister. Software Architecture in Industrial Applications. In 
Proceedings of the 17th International Conference on Software Engineering, pp. 196-207, 
Seattle, WA, April 1995. 

29. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, Jr., J. E. Robbins, K. A. 
Nies, P. Oreizy, and D. L. Dubrow. A Component- and Message-Based Architectural Style 
for GUI Software. IEEE Transactions on Software Engineering, pp. 390-406, June 1996. 

30. W. Tracz. DSSA (Domain-Specific Software Architecture) Pedagogical Example. ACM 
SIGSOFT Software Engineering Notes, July 1995. 

31. S. Vestal. MetaH Programmer’s Manual, Version 1.09. Technical Report, Honeywell 
Technology Center, April 1996. 

32. A. L. Wolf, editor. Proceedings of the Second International Software Architecture 
Workshop (ISAW-2), San Francisco, CA, October 1996. 


