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Abstract. In this paper we analyze k-complex contagions (sometimes
called bootstrap percolation) on configuration model graphs with a
power-law distribution. Our main result is that if the power-law expo-
nent α ∈ (2, 3), then with high probability, the single seed of the high-
est degree node will infect a constant fraction of the graph within time

O
(
log

α−2
3−α (n)

)
. This complements the prior work which shows that for

α > 3 boot strap percolation does not spread to a constant fraction of
the graph unless a constant fraction of nodes are initially infected. This
also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures
the exponent parameters often observed in social networks (with approx-
imate power-law degree distribution). Thus, such networks will spread
complex contagions even lacking any other structures.

We additionally show that our theorem implies that ω(
(
n

α−2
α−1

)
ran-

dom seeds will infect a constant fraction of the graph within time

O
(
log

α−2
3−α (n)

)
with high probability. This complements prior work

which shows that o
(
n

α−2
α−1

)
random seeds will have no effect with high

probability, and this also establishes a threshold at n
α−2
α−1 .

1 Introduction

Social behavior is one of the defining characteristics of us as a species. Social
acts are influenced by the behavior of others while influencing them at the same
time. These interactions have been observed in a wide array of activities including
financial practices [8,14], healthy/unhealthy habits [23], and voting practices [1].
Some of these are beneficial (e.g., adopting a healthy lifestyle) or profitable (e.g.,
viral marketing), while others are destructive and undesirable (e.g., teenager
smoking, drug abuse).

To effectively promote desirable contagions and discourage undesirable ones,
the first step is to understand how these contagions spread in networks and what
are the important parameters that lead to fast spreading.
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The high level objective is to understand how these behaviors spread in a
social network. Two key factors determine the scope and rate of such diffusion:
the model of contagions, i.e., how a node is influenced by its neighbors; and the
network topology.

The copying of behaviors leading to a social cascade of behavioral changes
is attributed to two effects: the informational benefit (inferring hidden, private
information others may know) and direct benefit effects (resulting from coor-
dinated actions or social pressure). In the threshold model [19], introduced by
Granovetter, each agent has a threshold and when an agent’s number of infected
neighbors reaches her threshold, then she adopts the cascade.

We deal with a simplified version of this model where all agents have the
same threshold. This is called k-complex contagion [18] or bootstrap percolation –
the latter is generally used in the physics community where it was originally
studied in the context of magnetic disordered systems [2,13], but has since been
applied to describe several complex phenomena including neuronal activity and
the dynamics of the Ising model at zero temperature. In the context of social
networks, bootstrap percolation provides a model of complex contagions [12]
which model for the spread of ideas, beliefs, and behaviors.

A k-complex contagion is a deterministic process on a graph G that evolves
in rounds. In each round every node has two possible states: it is either infected
or uninfected. The network begins with a seed set I of infected nodes. In each
subsequent round every uninfected node become infected if it has at least k edges
incident on infected neighbors, otherwise it remains uninfected. Once a node has
become infected, it remains infected forever.

A key trait of k-complex contagions is that they are not “submodular”. This
implies that the marginal influence of an additional neighbor is not decreasing.
While many cascade models, such as the Independent Cascade model and the
Linear Threshold model have the submodularity property [21], many real-world
cascades seem not to. Non-submodular contagions are observed by sociologists
in the case of the adoption of pricey technology innovations, the change of social
behaviors, and the decision to participate in a migration, etc [15,22], and by
data scientists on LiveJournal [6], DBLP [6], Twitter [26], and Facebook [28].
An additional confirmation is crucial, suggesting the model of complex contagion.

Janson et al. [20] show that k-complex contagions do not spread on sparse
G(n, p) random graphs. Such cascades require Ω(n) seeds to infect a constant
fraction of vertices. [7] extended these results to configuration model graphs with
regular degree distributions.

However, many networks do not have regular degree distributions. In a graph
with power law degree distribution, the number of nodes having degree d is pro-
portional to 1/dα, for a positive constant α. In 1965, Price [25] showed that the
number of citations to papers follows a power law distribution. Later, studies of
the World Wide Web reported that the network of webpages also has a power
law degree distribution [9,11]. Observations of many different types of social net-
works also found power law degree distributions, as well as biological, economic
and semantic networks [3,24,27].
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Additional work by [4] studies the configuration model with power-law degree
distribution for α > 3 and showed and shows theorem which implies (see Sect. 7)
that, with high probability, infecting a constant fraction of the nodes requires
an initial seed that comprises a constant fraction of the graph.

Intuitively complex contagions spread well in the presence of additional com-
munity structure, and several networks with such structure have been analyzed
including the Watts-Strogatz model [18], the Kleinberg Small World graph [17],
and the preferential attachment graph [16].

Amini and Fountoulakis [5] also have examined the Chung-Lu model with
power-law exponent 2 < α < 3. They show that there exists a function a(n) =
o(n) such that if the number of initial seeds is �a(n), the process does not evolve
w.h.p.; and if the number of initial seeds is �a(n), then a constant fraction of
the graph is infected with high probability. However, this function is still super-
constant—nΩ(1).

The question remained open, can non-submodular cascades spread and
spread quickly from a constant-sized seed set on sparse graphs with no other
structure imposed besides a skewed degree distribution.

1.1 Our Contributions

Our main result is that for a configuration model graph with power-law expo-
nent α ∈ (2, 3), with high probability, the single seed of the highest degree node
will infect a constant fraction of the graph within time O(log

α−2
3−α (n)). This com-

plements the prior work which showed that for α > 3 boot strap percolation
does not spread to a constant fraction of the graph unless a constant fraction of
nodes are initially infected. This also establishes a threshold at α = 3.

The case where α ∈ (2, 3) is especially interesting because it captures the
exponent parameters often observed in social networks (with approximate power-
law degree distribution). Thus, such networks will spread complex contagions
even lacking any other structure.

We additionally show that our main theorem implies that ω(n
α−2
α−1 ) random

seeds will infect a constant fraction of the graph within time O(log
α−2
3−α (n)). This

complements the prior work which shows that o(n
α−2
α−1 ) random seeds will have

no effect with high probability. This also establishes a threshold at n
α−2
α−1 .

To prove these results, we provide new analysis that circumvents previous
difficulties. While our results are similar to those of [16] (they study the preferen-
tial attachment model, while we study the configuration model), the techniques
required are completely different. For example, it is an easy observation that
k-complex contagions spread on the configuration model (if k is greater than the
minimum degree), but much more difficult to show it spreads quickly.

The previous analyses on the configuration model required that the graph
was locally tree-like, an assumption that fails in our case, and then were able to
approximate the process using differential equations and obtain rigorous results
by applying Wormald’s Theorem [30]. However, their analysis fails when the
degree distribution is power-law with exponent between 2 and 3.
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2 Preliminaries

Let [m] := {1, 2, ...,m}. We say an event would be true with high probability if
its probability of being true is 1 − o(1). When we use Θ(1), the constant may
depend on various constant parameters, but should not depend on n.

Definition 1. A k-complex contagion CC(G, k, I) is a contagion that initially
infects vertices of I ⊆ V (G) and spreads over the graph G. The contagion pro-
ceeds in rounds. At each round, each vertex with at least k edges incident on
infected neighbors becomes infected. The vertices of I are called the initial seeds.
Let |CC(G, k, I)| denote the random variable of the final size of such a cascade.

We use the configuration model introduced by [10] to define a distributions
over multigraphs.

Definition 2. Let d = (d1, ..., dn) be a decreasing degree sequence where the sum
of the terms is even. Define V = [n] (Here we use integers {1, 2, ..., n} to denote
the vertices, and call nodes with lower indexes “earlier”. Because the degrees
decrease, earlier nodes have higher degrees). Let m be such that 2m =

∑
i di. To

create the m (multi-)edges, we first assign each node i di stubs. Next we choose a
perfect matching of the stubs uniformly at random and for each pair of matched
stubs construct an edge connecting the corresponding nodes.

We use CM(d) to denote the Configuration Model with respect to the degree
distribution d.

2.1 Power-Law Degree Distributions

For any decreasing degree sequence d = (d1, ..., dn) where the sum of the terms
is even, we define

– the empirical distribution function of the degree distribution Fd

Fd(x) =
1
n

n∑

i=1

I[di ≤ x] ∀x ∈ [1,∞)

—the fraction of nodes that have degree less than x.
– Let Nd(x) = n(1 − Fd(x)) be the number of nodes with degree at least x.
– Let Sd(x) be the number of stubs from nodes with degree at least x.
– Let sd(x) be the number of stubs from nodes with index less than x.

We will omit the index d when there is no ambiguity.

Definition 3 (Power-Law Degree Distributions). Adopting the notation of
[29], we say a series d has power-law distribution with exponent α if there exists
0 < C1 < C2 and 0 < x0 such that (1) Fd(x) = 0 for x < x0; (2) Fd = 1 for
x > d1 = n2/(α+1), and (3) for all x0 ≤ x ≤ d1 then

C1x
−α+1 ≤ 1 − Fd(x) ≤ C2x

−α+1
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Let d have power-law distribution of power law with exponent α then it is
easy to check that:

1. N(x) = Θ(nx−α+1)
2. S(x) = Θ(nx−α+2).
3. d(i) = Θ

(
(n

i

)1/(α−1)
)

4. s(i) = Θ(n1/(α−1)i
α−2
α−1 )

3 Main Theorem

In this section, we state and prove our main theorem: in a configuration model
graph with the power-law exponent α ∈ (2, 3), with high probability, the single
seed of the highest degree node will infect a constant fraction of the graph within
time O(log

α−2
3−α (n)).

Theorem 1. Given a power law distribution d = (d1, ..., dn) with exponent α ∈
(2, 3) and d1 > n

3−α
α+1 , with probability 1 − O

(
log

α−1
3−α n
n

)
, the k-complex contagion

on configuration model CM(d) with constant k and initial infection being the
highest degree node I = {1}, CC(CM(d), k, I), infects Ω(n) vertices within time
O(log

α−2
3−α n).

3.1 Proof Setup

We consider a restricted form of contagion where nodes can only be infected
by those proceeding them in the ordering. Formally, recall the nodes {di} are
ordered in terms of their degree. Node di will only be infected if |{j : j <
i and dj is infected}| ≥ k neighbors are infected. Hence, the total number of
infected nodes in this process will be fewer than the number of infected nodes in
original complex contagions, and it is sufficient to prove that a constant fraction
of nodes become infected in this restricted contagion with high probability.

Buckets We first partition the nodes V = [n] into buckets. We design the
buckets to have at least (and about the same number of) stubs b = Θ( n

log
α−2
3−α n

).

We can define N� as follows

N1 =
n

log
α−1
3−α n

, and N�+1 = arg min
i>N�

{s(i) − s(N�) ≥ b}

Since d(N1) = Θ(log1/(3−α) n) = o(b) and ∀i > N1, d(i) ≤ d(N1),

b < s(N�+1) − s(N�) ≤ b + o(b) < 2b.

Therefore, we have �b ≤ s(N�) ≤ 2�b and N� = Θ
(

n

log
α−1
3−α n

�
α−1
α−2

)
by (4), and so

the total number of buckets is L ≤ s(n)
b = O(log

α−2
3−α n).

We define our buckets to be B1 = {1, .., N1}, B2 = {N1 +1, .., N2}, .., B�+1 =
{N� + 1, .., N�+1}, ..., BL = {NL−1 + 1, .., NL}.
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Filtration. We now state our filtration.

F0: The node i starts with di stubs of edges without revealing any edges.
F1: In the first stage we reveal all edges within the first bucket B1,
F�, 1 ≤ � ≤ L: In the stage � > 1, we reveal/match all the edges from B� to

early nodes in B<�.

3.2 Proof Summary

There are two parts of the proof.

1. All of the nodes in the first bucket would be infected with high probability.
2. For some constant ρ > 0, in the first L′ = ρL buckets B1, .., BL′ a constant

fraction ε of nodes will be infected. Because NL′ = Ω(n) nodes, the total
number of infection also constant fraction.

In the first part of the proof is capture by the following lemma:

Lemma 1 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be

infected within O(log log(n)) steps with probability greater than 1 − O( 1
n ).

To prove this lemma we further decompose the first bucket into O(log log(n))
finer intervals, which we call bins. We first argue that every node in the first bin
will have at least k multi-edges to the first node, and we inductively show the
nodes in following bin will have at least k edges to the previous bins. The analysis
is by straight-forward probabilistic techniques.

The time for the first bucket’s infection is at most the number of the bins
because inclusion of each bin only costs 1 step.

We need some additional notation to state the lemma which will imply the
second part. Let X� be the number of stubs from buckets B<� to B≥�. Let Y�

be the number of uninfect stubs from B<� to B≥� before stage �, of which Y
(1)
�

issue from B<�−1 and the remaining Y
(2)
� issue from B�−1. We use Ii as the

indicator variable that node i ∈ B� is not infected after stage �. Let ε > 0 be
some constant we define later. Let δn = Θ( 1

log
α−2
3−α n

).

Now we can formally define A� as the intersection of the following three
events:

1. connection: (1 − δn)E[X�] ≤ X� ≤ (1 + δn)E[X�];

2. number of uninfected nodes:
∑

i∈B�−1
Ii ≤ 2μH where μH = K |B�|�

3−α
α−2

log n for
some constant K independent of � and n;

3. number of uninfected stubs: Y� ≤ εX�.

Lemma 2 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let � < ρL, and
suppose Pr[A�] > 0.5, then we have

Pr[A�+1|A�] = 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)
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This lemma will be proved by showing that each of three events happens
with high probability conditioned on A�. The most technically challenging of
these is the second event, where we need to apply Chebychev’s Inequality twice.
One challenging is that the edges from B<� to B� are not independent. Another
challenge is that if the buckets are to small, we fail to have concentration prop-
erties, but if they are too large, then the fraction of infected nodes at each stage
will drop too quickly.

3.3 Proof of Theorem1

Proof. If
⋂L′

�=1 A� happens, then the total fraction of infected nodes is Ω(n).
Using Lemma 1 as the base case and Lemma 2 as the induction steps we see

that

Pr

⎡

⎣
L′
⋂

�=1

A�

⎤

⎦ ≥ 1 −
L′
∑

�=1

O(1)
(log n)

α−1
3−α

n�1/(α−2)
− O

(
1
n

)

= 1 − O

(
log

α−1
3−α n

n

)

which is arbitrarily close to 1.
Moreover, the total time spent is the time in first bucket plus the number

of buckets (because the infection spreads from bucket to bucket in only 1 step).
Therefore the total time spent is

O(log log n) + O(log
α−2
3−α n) = O(log

α−2
3−α n)

which completes our proof.

4 Proof of Lemma1: Contagion in the First Bucket

In this section, we will show that with high probability, the contagion process
infects all nodes within the first bucket. Recall that N1 = n

log
α−1
3−α n

and the

number of stubs within the first bucket is S(N1) = b.
We partition the first bucket into finer bins such that B1 =

⋃T
t=1 Vt and

Vt = {vt−1 + 1, ..., vt}, t = 1, ..., T with ascending order and v0 = 1. The vt

will be specified in Lemma 4. We define the event that every nodes in bin Vt is
infected as Et, then the event that all the nodes in B1 are infected is equal to⋂T

t=1 Et.
We recall Lemma 1:

Lemma 1 (Base). Given at F0 d1 > n
3−α
α+1 , at F1 all the nodes in B1 will be

infected within O(log log(n)) steps with probability greater than 1 − O( 1
n ).

We will use two Lemmas in the proof of Lemma 1, which will be a proof by
induction. The first lemma will form the base case of the induction. It states
the high degree nodes will all be infected by the first node by showing any high
degree node forms k multi-edges to the first node.
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Lemma 3. Given d1 > n
3−α
α+1 we define node v1 = max{v : d(v) ≥ n

3−α
α+1 }.

(Recall nodes are ordered by degree.) Then all the nodes in V1 = {1, ..., v1} will
be infected in one step with probability

Pr[E1] = 1 − n
3−α
α+1 exp

( − Θ(1)n
3−α
α+1 )

)
.

The second Lemma will form the inductive step in the proof of Lemma 1. It
can be proved by induction itself.

Lemma 4. Let v ∈ Vt = {vt−1 + 1, ..., vt} and vt = max{v : d(vt) ≥
n

log
α−1
3−α n(α−2)t

}, then

Pr

[

u is not infected |
t−1⋂

s=1

Es

]

≤ 1
n2

Moreover, T = O(log log n).

The proofs for Lemmas 3 and 4 are the simple application of a Chernoff bound
and a union bound which is in the full version.

Proof (Lemma 1). The proof is by induction. For the base case, Lemma 3 ensures
every node in the first bin will be infected. Suppose all nodes before vt−1 are
infected. We can use a union bound to show every node in Vt will be also infected.
Moreover, in each bin the contagion only takes one time step which implies that
the infection time for the first bucket is at most O(log log n).

For the probability that all these events hold, we apply a union bound.

Pr[all the nodes in B1 are infected]

= Pr

[
T⋂

t=1

Et

]

≥1 − Pr[¬E1] −
T∑

t=2

Pr

[

¬Et |
t−1⋂

s=1

Es

]

(union bound)

≥1 − n
3−α
α+1 exp

( − Θ(1)n
3−α
α+1 )

) − 1
n2

|B1| by Lemmas 3 and 4

5 Proof of Lemma2: Contagion from Buckets to Bucket

In this section we prove Lemma 2.

Lemma 2 (Induction). Fix sufficiently small ε > 0, ρ > 0. Let � < ρL, and
suppose Pr[A�] > 0.5, then we have

Pr[A�+1|A�] = 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)

Recall that A� is the intersection of the three events, we will show that at
stage � if these three events happen, then the requirements in Lemma 2 will be
met, and those events would be proven in Lemmas 5, 6 and 8 respectively.
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5.1 First Event: Connection

We first note that the first event holds with high probability. This follows almost
immediately from a standard Chernoff bound application, and the proof is in
the full version.

Lemma 5. Let δn = Θ

(
1

log
α−2
3−α n

)

, if Pr[A�] ≥ 0.5

Pr
[|X�+1 − E[X�+1]| ≤ δnE[X�+1]|A�

] ≥ 1 − 4 exp

(

−Θ(
n

log6· α−2
3−α n

)

)

.

Here the constant only depends on the product of δn and L.

5.2 Second Event: Number of Infected Nodes

Now we will prove the second events holds with high probability.

Lemma 6 (Number of Uninfected Nodes in a Single Bucket). For suf-
ficiently small ε > 0, conditioned on A�

Pr

[
∑

i∈B�

Ii ≥ 2μH | A�

]

≤ O(1)
(log n)

α−1
3−α

n�1/(α−2)

where µH = K |B�|�
3−α
α−2

log n and K is independent of � and n.

The proof relies on an application of Chebyshev’s inequality and the following
Lemma, which is in turn proved using Chebyshev’s inequality. The full proof is
in the full version.

Lemma 7 (Infection of a single node). If F� ⊆ A� for some constant 0 <
ε < 1/2 and δn = Θ( 1

log
α−2
3−α n

) < 1/2, then the probability any node i ∈ B� is not

infected is

Pr[Ii|A�] ≤ O(1)
�

3−α
α−2

log n

where the constant O(1) only depends on α, k, ρ if δn, ε is small enough, and
ρ ≤ 0.3α−1

α−2k
α−2
3−α .

The main proof idea of Lemma 7 is that because the events that a infected
stub from B<� to a node i in B� are negative dependent, the variance of the
number of infected stubs from B<� to node i is small, and we can use Chebyshev’s
inequality to show each node has a high chance of being infected when fraction
of uninfected stubs from B<�, ε, is small. The full proof is in the full version.
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5.3 Third Event: Number of Uninfected Stubs

Lemma 8. Suppose A�, the first event, (1 − δn)E[X�+1] ≤ X�+1 ≤ (1 +
δn)E[X�+1] and the second event,

∑
i∈B�

Ii ≤ 2μH is true (this is the conclu-
sion of Lemma 6), then

Pr

[

Y�+1 ≤ εX�+1

∣
∣
∣
∣|X�+1 − E[X�+1]| ≤ δnE[X�+1] ∧

∑

i∈B�

Ii ≤ 2μH ∧ A�

]

is greater than 1 − exp
(

−Θ( n

log
5· α−2

3−α

)
)

when ρ > 0 is small enough and δn > 0

is smaller than some constant.

For the third event, in Lemma8 we want to argue the fraction of uninfected
stubs is smaller then ε after stage �. That requires both that X�+1 is large and
that Y�+1—which is the summation of Y

(1)
�+1 and Y

(2)
�+1—is small. Upper bounds

on Y
(1)
�+1 and Y

(2)
�+1 will be proven by Lemmas 9 and 10 respectively. The full proof

for Lemma 8 is in the full version.

Lemma 9. Let Y
(1)
� be the number of free uninfected stubs from B<� to B>�

over the probability space F�+1|F�, then

Pr
[
Y

(1)
�+1 ≥ (1 + δn)εX�|A�

]
≤ exp

(

−Θ(
n

log5· α−2
3−α

)

)

Here the constant only depends on δn · L, ε and ρ.

Lemma 10. Suppose A� and the
∑

i∈B�
Ii ≤ 2μH is true (this is the conclusion

of Lemma 6), then Y
(2)
�+1, the total number of uninfected stubs from B� to B>� is

Y
(2)
�+1 = O(1)

(log n)
α

3−α

n�2/(α−2)

The full proofs for Lemmas 9 and 10 are in the full version.

5.4 Proof of Lemma 2

Proof. Recall the the event A�+1 is the intersection of the three events, so

Pr[A�+1|A�] ≥ 1 − Pr[¬(|X� − E[X�]| ≤ δnE[X�])|A�] (1)

−Pr

⎡

⎣
∑

i∈B�−1

Ii ≥ 2μH |A�

⎤

⎦ (2)

−Pr

⎡

⎣Y� ≤ εX�|(|X� − E[X�]| ≤ δnE[X�]) ∧
∑

i∈B�−1

Ii ≤ 2μH ∧ A�

⎤

⎦ (3)
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Applying Lemma 5 to Eq. 1, Lemma 6 to Eq. 2, and Lemma 8 to Eq. 3, and
we have

Pr[A�+1|A�] ≥ 1 − 4 exp

(

−Θ(
n

log6· α−2
3−α n

)

)

− O(1)
(log n)

α−1
3−α

n�1/(α−2)

− exp

(

−Θ(
n

log5· α−2
3−α

)

)

Therefore

Pr[A�+1|A�] ≥ 1 − O(1)
(log n)

α−1
3−α

n�1/(α−2)

6 Infection with Random Seeds

Theorem 1 together with prior results in Ebrahimi et al. [16] immediately implies
the following corollary:

Corollary 1. For a configuration model graph with power-law exponent α, if
Ω(n

α−2
α−1 ) initially random seeds are chosen, then with probability 1 − o(1) k-

complex contagion infects a constant fraction of nodes.

We first restate two results from [16].

Proposition 2 [16]. For any graph, let u be a node with degree d. If Ω(d/n)
initial random seeds are chosen, then with probability 1 − o(1) u is infected after
one round.

Proof. The initial node has Θ(n
1

α−1 ) neighbors. If there are Ω(n
α−2
α−1 ) initial seeds

then by Proposition 2 the first seed is infected with probability 1−o(1). However,
then by Theorem 1 a constant fraction of the remaining nodes are infected in
logO(α)(1) rounds.

This is tight as in Ebrahimi et al. [16] the following was proven:

Proposition 3 [16]. For any graph, with power law distribution α, if o(n
α−2
α−1 )

initially random seeds are chosen, then with probability 1 − o(1), no additional
nodes are infected.

7 α > 3

For the case of power-law degree distribution with α > 3, Amini [4] shows how
to analyze k-complex contagions using a differential equation method [30]. This
approach heavily depends on the variance of the degree distribution and fails
when α < 3. For the case where the seed set contains all nodes with degree
greater than ρ > 0 we can state their theorem as follows:
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Theorem 4 [4]. Given a power law distribution d with exponent α > 3 and
d1 < n1/α−1, the k-complex contagion on configuration CM(d) with constant k
and seed set Iρ = {i|di ≥ ρ} where 0 ≤ ρ ≤ n. Then with high probability

|CC(CM(d), k, Iρ)| = n

⎛

⎜
⎜
⎝1 −

∑

1≤d<ρ,
0≤j<k

pd(d)
(

d

j

)

(y∗)d−j(1 − y∗)j + o(1)

⎞

⎟
⎟
⎠ (4)

where pd(d) = (Fd(d + 1) − Fd(d)) and 0 < y∗ ≤ 1 is the largest root such that
f(y) = 0 and

f(y) = y2

⎛

⎝
∑

1≤d

d pd(d)

⎞

⎠ − y

⎛

⎜
⎜
⎝

∑

1≤d<ρ,
0≤j<k

d pd(d)
(

d − 1
j

)

yd−1−j(1 − y)j

⎞

⎟
⎟
⎠ (5)

Before stating our corollary, we wish to give a brief idea of the proof of
Theorem 4. They consider a Markov chain which results in the same number
infected nodes as a k-complex contagion, but proceeds using the randomness
of the configuration model. The Markov chain starts with the initially infected
nodes and at each step the process reveals one of the unmatched edges from the
set of infected nodes. This process needs only track: the number of unmatched
edges, and the number of d-degree uninfected nodes with j infected neighbors,
for each j < k. The Markov chain stops when all the agent are infected, or there
are no unmatched edges from already infected nodes. It turns out, that if α > 3,
the process is smooth and we can use the corresponding differential equations
to approximate this Markov chain and derive the fraction of infections.

With their results we can prove that to infect a constant fraction of nodes
requires the initial seed need to also be a constant fraction of nodes. Note that
if our initial seed set infects the highest degree nodes, but does not infect a
constant fraction of the nodes, then the greatest degree node not in the initially
infected set has degree ω(1).

Corollary 2. Given a power law distribution d with exponent α > 3 and d1 <
n1/α−1, the k-complex contagion on configuration CM(d) with constant k and
seed set Iρ = {i|di ≥ ρ} where ρ = ω(1), the |CC(CM(d), k, Iρ)| = o(n) with
high probability.

The proof of the corollary requires some delicate calculations and is in the
full version.

References

1. Adamic, L.A., Glance, N.: The political blogosphere, the: divided they blog. In:
Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43. ACM
(2005)



Complex Contagions on Configuration Model Graphs 471

2. Adler, J.: Bootstrap percolation. Phys. A: Stat. Theor. Phys. 171(3), 453–470
(1991)

3. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks.
Rev. Mod. Phys. 74, 47–97 (2002). doi:10.1103/RevModPhys.74.47.
http://link.aps.org/doi/10.1103/RevModPhys.74.47

4. Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex
degrees. Electron. J. Comb. 17(1), 1–20 (2010)

5. Amini, H., Fountoulakis, N.: What I tell you three times is true: bootstrap perco-
lation in small worlds. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp.
462–474. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35311-6 34

6. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 44–54 (2006)

7. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random
Struct. Algorithms 30, 257–286 (2007)

8. Banerjee, A., Chandrasekhar, A.G., Duflo, E., Jackson, M.O.: The diffusion of
microfinance. Science 341(6144), 1236498 (2013)

9. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

10. Bollobás, B., McKay, B.D.: The number of matchings in random regular graphs
and bipartite graphs. J. Comb. Theory, Series B 41(1), 80–91 (1986)

11. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., Wiener, J.: Graph structure in the web. In: Proceedings of the 9th
International World Wide Web Conference on Computer Networks, pp. 309–320
(2000)

12. Centola, D., Macy, M.: Complex contagions and the weakness of long ties1. Am.
J. Sociol. 113(3), 702–734 (2007)

13. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a bethe lattice. J.
Phys. C: Solid State Phys. 12(1), L31 (1979)

14. Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians.
Sociometry 20(4), 253–270 (1957)

15. Coleman, J.S., Katz, E., Menzel, H.: Medical Innovation: A Diffusion Study. Bobbs-
Merrill Co., Indianapolis (1966)

16. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: How complex conta-
gions spread quickly in the preferential attachment model, other time-evolving
networks. arXiv preprint arXiv:1404.2668 (2014)

17. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: Complex contagions in
Kleinberg’s small world model. In: Proceedings of the Conference on Innovations
in Theoretical Computer Science, pp. 63–72. ACM (2015)

18. Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion, the weakness of
long ties in social networks: revisited. In: Proceedings of the Fourteenth ACM
Conference on Electronic Commerce, pp. 507–524, June 2013

19. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6),
1420–1443 (1978)

20. Janson, S., �Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random
graph Gn,p. Ann. Appl. Prob. 22(5), 1989–2047 (2012)

21. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

http://dx.doi.org/10.1103/RevModPhys.74.47
http://link.aps.org/doi/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1007/978-3-642-35311-6_34
http://arxiv.org/abs/1404.2668


472 G. Schoenebeck and F.-Y. Yu

22. Macdonald, J.S., Macdonald, L.D.: Chain migration, ethnic neighborhood forma-
tion and social networks. Milbank Meml. Fund Q. 42(1), 82–97 (1964)

23. Mermelstein, R., Cohen, S., Lichtenstein, E., Baer, J.S., Kamarck, T.: Social sup-
port and smoking cessation and maintenance. J. Consult. Clin. Psychol. 54(4), 447
(1986)

24. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45,
167–256 (2003)

25. De Solla Price, D.: Networks of scientific papers. Science 149(3683), 510–515
(1965). doi:10.1126/science.149.3683.510

26. Romero, D.M., Meeder, B., Kleinberg, J.: Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags, and complex contagion on
twitter. In: Proceedings of the 20th International Conference on World Wide Web,
pp. 695–704 (2011)

27. Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks:
statistical analyses and a model of semantic growth. Cogn. Sci. 29, 41–78 (2005)

28. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural diversity in social
contagion. Proc. Natl. Acad. Sci. 109(16), 5962–5966 (2012)

29. Van Der Hofstad, R.: Random graphs and complex networks, p. 11 (2009). http://
www.win.tue.nl/rhofstad/NotesRGCN.pdf

30. Wormald, N.C.: Differential equations for random processes and random graphs.
Ann. Appl. Prob. 5(4), 1217–1235 (1995)

http://dx.doi.org/10.1126/science.149.3683.510
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf

	Complex Contagions on Configuration Model Graphs with a Power-Law Degree Distribution
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Power-Law Degree Distributions

	3 Main Theorem
	3.1 Proof Setup
	3.2 Proof Summary
	3.3 Proof of Theorem1

	4 Proof of Lemma1: Contagion in the First Bucket
	5 Proof of Lemma2: Contagion from Buckets to Bucket
	5.1 First Event: Connection
	5.2 Second Event: Number of Infected Nodes
	5.3 Third Event: Number of Uninfected Stubs
	5.4 Proof of Lemma2

	6 Infection with Random Seeds
	7 >3
	References


