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Abstract. Peer prediction mechanisms incentivize self-interested agents
to truthfully report their signals even in the absence of verification, by
comparing agents’ reports with their peers. We propose two new mech-
anisms, Source and Target Differential Peer Prediction, and prove very
strong guarantees for a very general setting.
Our Differential Peer Prediction mechanisms are strongly truthful:
Truth-telling a strict Bayesian Nash Equilibrium. Also, truth-telling pays
strictly higher than any other equilibria, excluding permutation equilib-
ria, which pays the same amount as truth-telling.
The guarantees hold for asymmetric priors which the mechanisms
need not know (prior-free) in the signal question setting. Moreover,
they only require three agents, each of which submits a signal item
report: one reports her forecast and the others their signals.
Our proof technique is straightforward, conceptually motivated, and turns
on the special properties of the logarithmic scoring rule.
Moreover, we can recast the Bayesian Truth Serum mechanism [13] into
our framework. We can also extend our results to the setting of contin-
uous signals with a slightly weaker guarantee on the optimality of the
truthful equilibrium.

Keywords: Peer prediction · Log scoring rule · Prediction Market.

1 Introduction

Crowd-sourcing relies on eliciting truthful information from agents. Peer predic-
tion is the problem of information elicitation without verification. Incentivizing
agents is important so that they not only participate, but provide thoughtful
and accurate information. This has a multitude of applications including peer-
grading, reviews, and labeling data (for machine learning or research). In the
single-question setting agents are only asked one question. Our goal is to elicit
truthful information from agents with minimal requirements.

For example, say three friends watch a political debate on television. We
would like to ask each of them who won the debate and pay them to incentivize
truthful answers. This situation will be modeled as each agent receiving some
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information from the debate about which candidate won. Moreover, prior to the
debate, there is a joint prior distribution over the signals of the different agents
which is common knowledge among the agents. Thus, one friend’s belief on who
won yields some insights about the perceived winners of the other friends.

We will design mechanisms to compensate the agents for their information.
We would like our mechanisms to have the following desirable properties:

Strongly Truthful [8] Providing truthful answers is a Bayesian Nash Equi-
librium (BNE) and also guarantees the maximum agent welfare among any
equilibrium. This maximum is “strict” with the exception of a few unnat-
ural permutation equilibria where agents report according to a relabeling
of the signals (defined more formally in Sect. 2).3 This will incentivize the
agents to tell the truth–even if they believe the other agents will disagree
with them. Moreover, they have no incentive to coordinate on an equilib-
rium where they do not report truthfully. In particular, note that playing
a permutation equilibrium still requires as much effort from the agents as
playing truth-telling.

General Signals The mechanism should work for heterogeneous agents who
may even have continuous signals (with a weaker truthfulness guarantee).
In our above example, the friends may not have the same political leanings,
and the mechanism should be robust to that. Furthermore, instead of a single
winner, we may want to elicit the magnitude of their (perceived) victory.

Detail-Free The mechanism is not required to know the specifics about the
different agents (e.g. the aforementioned joint prior). In the above example,
the mechanism should not be required to know the a priori political leanings
of the different agents.

On Few Agents We would like our mechanisms to work using as few agents
as possible, in our case, three.

Single-Item Reports We would like to make it easy for agents so that they
provide very little information: only one item, either their signal or a pre-
diction. In our case, two agents will need to provide their signals (e.g. whom
they believe won the debate). The remaining agent will need to provide a
prediction on one outcome—a single real value. (e.g. their forecast for how
likely a particular other agent was to choose a particular candidate as the
victor).

1.1 Related Work

# Strongly General
Truthful agents Truthful Signals

BTS [13] X ∞ X
Robust BTS [19] X 3
Disagreement [9] X 6 X
Knowledge-Free Peer Prediction[21] X 3 X
Differential Peer Prediction X 3 X X

3 Kong and Schoenebeck [8] show that it is not possible for truth-telling to pay strictly
more than permutation equilibrium in detail-free mechanisms.
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Single Task Setting In this setting, each agent receives a single signal from
a common prior. Miller et al. [10] introduce the first mechanism for single task
signal elicitation that has truth-telling as a strict Bayesian Nash equilibrium and
does not need verification. However, their mechanism requires full knowledge of
the common prior and there exist some equilibria that agents get paid more
than truth-telling. At a high level, the agents can all simply submit the reports
with the highest expected payment and this will typically yield a payment much
higher than that of truth-telling. Note that this is both natural to coordinate
on (in fact, Gao et al. [3] found that in an online experiment, agents did exactly
this) and does not require any effort toward the task from the agents. Kong et al.
[5] modify the above mechanism such that truth-telling pays strictly better than
any other equilibrium but still requires the full knowledge of the common prior.

Prelec [13] designs the first detail-free peer prediction mechanism—Bayesian
truth serum (BTS). Moreover, BTS is strongly truthful and can easily be made to
have one-item reports. However, BTS requires an infinite number of participants,
does not work for heterogeneous agents, and requires the signal space to be finite.
The analysis, while rather short, is equally opaque. A key insight of this work is
to ask agents not only about their own signals, but forecasts (prediction) of the
other agents’ reports.

A series of works [14, 15, 19–21] relax the large population requirement of
BTS but lose the strongly truthful property. Zhang and Chen [21] is unique
among prior work in the single question setting in that it works for hetero-
geneous agents whereas other previous detail-free mechanisms require homoge-
neous agents with conditionally independent signals.

Kong and Schoenebeck [6] introduce the Disagreement Mechanism which
is detail-free, strongly truthful (for symmetric equilibrium), and works for six
agents. Thus it generalizes BTS to the finite agent setting while retaining strong
truthfulness. However, it requires symmetric agents, cannot handle continuous
signals, and fundamentally requires that each agent reports both a signal and
a prediction. Moreover, its analysis is quite involved. However, it is within the
BTS framework, in that it only asks for agents’ signals and predictions, whereas
our mechanism typically asks at least one agent for a prediction after seeing the
signal of another agent.

Continuous Single Task Setting Kong et al. [9] shows how to generalize both
BTS and the Disagreement Mechanism (with similar properties including homo-
geneous agents), into a restricted continuous setting where signals are Gaussians
related in a simple manner. The generalization of the Disagreement Mechanism
requires the number of agents to increase with the dimension of the continuous
space.

The aforementioned Radanovic and Faltings [15] considers continuous singles.
However, it uses a discretization approach which yields exceedingly complex
reports. Additionally, it requires homogeneous agents.

In a slightly different setting, Kong and Schoenebeck [7] study eliciting agents’
forecasts for some (possibly unverifiable) event, which are continuous values be-
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tween 0 and 1. However, here we are concerned with eliciting signals which can
be from a much richer space.

While the truthful equilibrium in Kong et al. [9] maximizes welfare, it is not
known to be strongly truthful. In the other continuous mechanisms, truthfulness
does not even welfare maximize.

Multi-task Setting In the multitask setting, introduced in Dasgupta and Ghosh
[2], agents are assigned a batch of a priori similar tasks. Dasgupta and Ghosh
[2] requires each agent’s private information to be a binary signal. Kong and
Schoenebeck [8], Shnayder et al. [16] independently extend Dasgupta and Ghosh
[2]’s work to multiple-choice questions. Kong and Schoenebeck [8] obtains an
especially strong guarantee for agent welfare maximization of the truth-telling
equilibrium. The multi-task setting is easier to work in than the single-task set-
ting because the mechanism can better deduce the strategy of any particular
agent by comparing reports across questions. However, this setting is substan-
tially more restrictive than the single-question setting of the present paper in
that it is important the questions are all similar. So this would work well when
asking agents to label images as “cat” or “no cat”, but gives no guarantees when
questions have different priors.

1.2 Our Contributions

– We define two Differential Peer Prediction mechanisms (Mechanism 1 and
2) which are strongly-truthful and detail-free for the single question setting
and only require a single item report from three agents. Moreover, the agents
need not be homogeneous and their signals may be continuous.

– We provide a simple, conceptually motivated proof for the guarantees of
Differential Peer Prediction mechanisms. Especially in contrast to the most
closely related work([6]) our proof is very simple.

– We show special properties of the logarithmic scoring rules (see Techniques
below for details). This allows the construction of target incentives where an
agent is rewarded when is signal is predicted well, and we believe will also
be of independent interest.

– We recast the Bayesian Truth Serum mechanism into our framework, show-
ing that it is a target incentive mechanism. (Sect. 4) This gives added intu-
ition for its guarantees.

1.3 Summary of Our Techniques

Target Incentive Mechanisms Many of the mechanisms for the single question
use what we call source incentives: they pay agents for reporting a signal that
improves the prediction of another agent’s signal. The original peer prediction
mechanism [10] does exactly this. To apply this idea to the detail-free set-
ting [19, 21], mechanisms take a two-step approach: they first elicit an agent’s
prediction of some target agent’s report, and then measure how much that pre-
diction improves given a report from a source agent.
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In Section 3.2, we explicitly develop a technique, which we call target incen-
tives, for rewarding certain agents for signal reports that agree with a prediction
about them. In particular, we show that log scoring rules can elicit signals as
well as forecasts. This may be of independent interest, and is also the foundation
for the results in Sections 3.2 and 4.

Information Monotonicity We use information monotonicity, a tool from infor-
mation theory, to obtain strong truthfulness. Like the present paper, the core
of the argument that the Disagreement Mechanism [6] is strongly truthful (for
symmetric equilibrium) is based on information monotonicity. However, because
it is hard to characterize the equilibrium in the Disagreement Mechanism, the
analysis ends up being quite complex. A framework for deriving strongly truth-
ful mechanisms from information monotonicity, which we implicitly employ, is
distilled in Kong and Schoenebeck [8].

In Section 3, we use the above techniques to develop strongly truthful mech-
anisms, source-Differential Peer Prediction and target-Differential Peer Predic-
tion, for the single question setting. Source-Differential Peer Prediction is quite
similar to the Knowledge-Free Peer Prediction Mechanism[21], however, it is
strongly truthful. Target-Differential Peer Prediction also uses the target incen-
tive techniques above.

2 Preliminaries

2.1 Peer Prediction Mechanism

There are three characters, Alice , Bob and Chloe in our mechanisms. Alice (and
respectively Bob, Chloe) has a privately observed signal a (respectively b, c) from
a set A (respectively B, C). They all share a common belief that their signals
(a, b, c) are generated from random variables (A,B,C) which takes values from
A×B × C with a probability measure P called common prior. P describes how
agents’ private signals relate to each other.

Agents are Bayesian. For instance, after Alice receives A = a, she updates
her belief to the posterior P ((B,C) = (·, ·) | A = a) which is a distribution over
the remaining signals. We will use PB,C|A(· | a) instead to simplify the notion.
Similarly Alice’s posterior of Bob’s signal is denoted by PB|A(· | a), which is a
distribution on B.

A peer prediction mechanism on Alice, Bob, and Chloe has three payment
functions (UA, UB , UC). The mechanism first collects reports r := (rA, rB , rC)
from agents. We pay Alice with UA(r) (and Bob and Chloe analogously). Alice’s
strategy θA is a (random) function from her signal to a report. All agents are
rational and risk-neutral that are only interested in maximizing their (expected)
payment. Thus, given a strategy profile θ := (θA, θB , θC), Alice, for example,
wants to maximize her expected ex ante payment under common prior P which
is uA(θ;P ) := EP,θ [UA(r)]. Let ex ante agent welfare denote the sum of ex ante
payment for all agents, uA(θ;P ) + uB(θ;P ) + uC(θ;P ). A strategy profile θ is
a Bayesian Nash equilibrium under common prior P if by changing the strategy
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unilaterally, an agent’s payment can only weakly decrease. It is a strict Bayesian
Nash equilibrium if an agent’s payment strictly decreases as her strategy changes.

We want design peer prediction mechanisms to “elicit” all agents to report
their information truthfully without verification. We say Alice’s strategy τA is
truthful for a mechanismM if Alice truthfully reports the information requested
by the mechanism.4 We call the strategy profile τ truth-telling if each agent re-
ports truthfully. Moreover, we want to design detail-free mechanisms which have
no knowledge about the common prior P except agents’ (possible non-truthful)
reports. However, agents can always relabel their signals and detail-free mecha-
nisms cannot distinguish such a strategy profile from the truth-telling strategy
profile. We call these strategy profiles permutation strategy profiles. They can be
translated back to truth-telling reports by some permutations applied to each
component of A×B×C—that is, the agents report according to a relabeling of
the signals.

We now define some goals for our mechanism that differ in how unique the
high payoff of truth-telling is. We call a mechanism truthful if the truth-telling
strategy profile τ is a strict Bayesian Nash Equilibrium. However, in a truthful
mechanism, often non-truth-telling equilibria may yield a higher ex ante payment
for each agent. In this paper, we aim for strongly truthful [8] mechanisms which
are not only truthful but also ensure the ex ante agent welfare in truth-telling
strategy profile τ is strictly better than all non-permutation equilibria. Note
that in a symmetric game, this ensures that each agent’s individual expected ex
ante payment is maximized by truth-telling compared to any other symmetric
equilibrium.

Now, we define the set of common priors that our detail-free mechanisms
can work on. Note peer’s reports are not useful when every agent’s signal are
independent of each other. And a peer prediction mechanism needs to exploit
some interdependence between agents’ signals.

Definition 1 (Zhang and Chen [21]). A common prior P is 〈A,B,C〉-
second order stochastic relevant if for any distinct signals b, b′ ∈ B, there is
a ∈ A, such that

PC|A,B(· | a, b) 6= PC|A,B(· | a, b′).

Thus, when Alice with a is making a prediction to Chloe’s signal, Bob’s signal is
relevant so that his signal induces different predictions when B = b or B = b′.

We call P second order stochastic relevant if the above statement holds
for any permutation of {A,B,C}.5

4 Here we do not define the notion of truthful reports formally, because it is intuitive
in our mechanisms. For general setting, we can use query model to formalize the
notion [17].

5 Our definition has some minor differences from Zhang and Chen [21]’s, for ease of
exposition. For instance, they only require the statement holds for one permutation
of {A,B,C} instead of all the permutations.
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To avoid measure theoretic concerns, we initially require that P has full
support, and the joint signal space A × B × C to be finite. In supplementary
material we will show how to extend our results to general measurable spaces.

2.2 Proper Scoring Rules

Scoring rules are powerful tools to design mechanisms for eliciting predictions.
Consider a finite set of possible outcomes Ω, e.g., Ω = {sunny, rainy}. An expert,
Alice, first reports a distribution P̂ ∈ P(Ω) as her prediction of the outcome,
where P(Ω) denotes the set of all probability measures on Ω. Then, the mech-
anism and Alice observe the outcome ω. The mechanism gives Alice a score
PS[ω, P̂ ]. To the end, if Alice believes the distribution of ω to be P , she maxi-
mize her expected score by reporting P truthfully. We call such scoring function
proper defined as follow:

Definition 2. A scoring rule PS : Ω × P(Ω) 7→ R is proper if for any dis-

tributions P, P̂ ∈ P(Ω) we have Eω∼P [PS[ω, P ]] ≥ Eω∼P
[
PS[ω, P̂ ]

]
. A scoring

rule PS is strictly proper if the equality holds only if P̂ = P .

Given any convex function f , one can define a new proper scoring rule PSf [8].
In this paper, we consider a special scoring rule called the logarithmic scoring
rule [18], defined as

LSR[ω, P ] := log (p(ω)) , (1)

where p : Ω → R is the probability density of P .

2.3 Information Theory

Peer prediction mechanisms and prediction markets incentivize agents to truth-
fully report their signals even in the absence of verification . One key idea these
mechanisms use is that agents’ signals are interdependent and strategic manipu-
lation can only dismantle this structure. Here we introduce several basic notions
from information theory. [1]

The KL-divergence is a measure of the dissimilarity between two distribu-
tions: Let P and Q be probability measures on a finite set Ω with density func-
tions p and q respectively. The KL divergence (also called relative entropy)
from Q to P is DKL(P‖Q) :=

∑
ω∈Ω −q(ω) log (p(ω)/q(ω)).

We now introduce mutual information, which measures the amount of in-
formation between two random variables: Given a random variable (X,Y ) on a
finite set X ×Y , let pX,Y (x, y) be the probability density of the random variable
(X,Y ), and let pX(x) and pY (y) be the marginal probability density of X and
Y respectively. The mutual information I(X;Y ) is the KL-divergence from
the joint distribution to the product of marginals:

I(X;Y ) :=
∑

x∈X ,y∈Y
pX,Y (x, y) log

pX,Y (x, y)

pX(x)pY (y)
= DKL(PX,Y ‖PX ⊗ PY )
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where ⊗ denotes products between distributions. Moreover, if (X,Y, Z) is a
random variable, the mutual information between X and Y conditional on Z is

I(X;Y | Z) := EZ [DKL(P(X,Y )|Z‖PX|Z ⊗ PY |Z)].

The data-processing inequality shows no manipulation of the signals can im-
prove mutual information between two random variables. The following theorem
is of fundamental importance in information theory.

Theorem 1 (Data processing inequality). If X → Y → Z form a Markov
chain,6

I(X;Y ) ≥ I(X;Z).

By basic algebraic manipulations, Kong and Schoenebeck [8] relate proper
scoring rules to mutual information as follows: For two random variables X and
Y ,

Ex,y [LSR[y, P (Y | x)]− LSR[y, P (Y )]] = I(X;Y ). (2)

We can generalize mutual information in two ways [8]. The first is to define f−
MI using the f -divergence, where f is a convex function, to measure the distance
between the joint distribution and the product of the marginal distributions.
The KL-divergence is just a special case of the f -divergence. This retains the
symmetry between the inputs.

The second way is to us a different proper scoring rule. As mentioned, any
convex function f gives rise to a proper scoring rule PSf . Then the Bregman Mu-
tual information can be defined as in Eq (2):BMIf (X,Y ) := Ex,y[PSf (y, PY |X(· |
x)] − PSf (y, PY (·)]. Note that by the properties of proper scoring rules BMI
is information monotone in the first coordinate; however, in general it is not
information monotone in the second.

Thus, by Eq (2), mutual information is the unique measure that is both
a Bregman mutual information and an f -MI. This observation is one key for
designing strongly truthful mechanisms.

3 Experts, Targets and Sources: Strongly Truthful Peer
Prediction Mechanisms

In this section, we show how to design strongly truthful mechanisms to elicit
agents’ signals by implicitly running a prediction market.

Our mechanisms have three characters, Alice, Bob, and Chloe, and there are
three roles: expert, target, and source:

– An expert makes predictions on a target’s report,
– a target is asked to report his signal, and
– a source provides her information to an expert to improve the expert’s pre-

diction.

6 Random variables X,Y and Z form a Markov chain if the conditional distribution
of Z depends only on Y and is conditionally independent of X.
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By asking agents to play these three roles, we design two strongly truthful mech-
anisms based on two different ideas.

The first mechanism is source differential peer prediction (S-DPP). This
mechanism is based on the knowledge-free peer prediction mechanism by Zhang
and Chen [21], which rewards a source by how useful her signal is for an expert
to predict a target’s report. Their mechanism is only truthful but not strongly
truthful. We carefully shift the payment functions and employ Eq. (2) and the
data-processing inequality on log scoring rule to achieve the strongly truthful
guarantee.

We further propose a second mechanism, target differential peer prediction
(T-DPP). Instead of rewarding a source, the T-DPP mechanism rewards a target
by the difference of the logarithmic scoring rule on her signal between an initial
prediction and an improved prediction. Later in Sect. 4 we show Bayesian truth
serum can be seen as a special case of our T-DPP mechanism.

Then we remove the temporal separation between agents making reports.
In Section 3.3, we simplify our mechanisms and provide single-round strongly
truthful mechanisms. In these mechanisms, agents only need to report once, and
their reports do not depend on other agents’ reports.

3.1 The Source Differential Peer Prediction Mechanism

The main idea of the S-DPP mechanism is that it rewards a source by the
usefulness of her signal for predictions. Specifically, suppose Alice acts as an
expert, Bob as the target, and Chloe as the source. Our mechanism first asks
Alice to make an initial prediction Q̂ on Bob’s report. Then after Chloe’s
reporting her signal, we collect Alice’s improved prediction Q̂+ after seeing
Chloe’s additional information.

The payments for Alice and Bob are simple. S-DPP pays Alice by the sum
of the logarithmic scoring rule on those two predictions. And S-DPP pays Bob
0. Chloe’s payment consists of two parts: First, we pay her the prediction score
of the improved prediction Q̂+. By the definition of proper scoring rule (Defi-
nition 2), Chloe will report truthfully to maximize it. For the second part, we
subtract Chloe’s payment by three times the score of the initial prediction Q̂.
This ensures the ex ante agent welfare equals the mutual information, which is
maximized at the truth-telling strategy profile. To ensure Bob also reports his
signal truthfully, we randomly permute Bob and Chloe’s roles in the mechanism.

Theorem 2. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 1 is strongly truthful:

1. The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.
2. The ex ante agent welfare in the truth-telling strategy profile τ is strictly

better than all non-permutation strategy profiles.

We defer the proof to Appendix C. Intuitively, because the logarithmic scor-
ing rule is proper, Alice (the expert) will make the truthful predictions when
Bob and Chloe report their signals truthfully. Similarly, the source is willing
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Mechanism 1 Two-round Source Differential Peer Prediction
Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn

from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂. .
initial prediction

4: Given the source’s report s, the expert makes another prediction Q̂+. . improved
prediction

5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is 0.
7: The payment to the source is LSR[t, Q̂+]− 3 LSR[t, Q̂].

to report her signal truthfully to maximize the improved prediction score. This
shows Mechanism 1 is truthful.

Note that if the agents’ common prior P is symmetric, we can random-
ize the roles among Alice, Bob, and Chloe to create a symmetric game where
each agent’s expected payment at the truth-telling strategy profile is both non-
negative and maximized among all symmetric equilibria.

3.2 Target Differential Peer Prediction Mechanism

The target differential peer prediction mechanism (T-DPP) is identical to the
S-DPP except for the payment functions. In contrast to the S-DPP mechanism,
T-DPP rewards a target. We show that paying the difference between initial
prediction and an improved prediction on a target’s signal can incentivize the
target to report truthfully. (Lemma 1)

Our mechanism pays Alice by the sum of log scoring on those two predictions.
And the mechanism pays Bob by the improvement from the initial prediction Q̂
to the improved prediction Q̂+. Finally, Chloe’s payment depends on Alice’s first
initial prediction Q̂, which is independent of Chloe’s action. To ensure Chloe also
reports her signal truthfully, we permute the roles of Bob and Chloe randomly
in the mechanism as well.

Theorem 3. If the common prior P is second order stochastic relevant on a
finite set with full support, Mechanism 2 is strongly truthful:

1. The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.
2. The ex ante agent welfare in the truth-telling strategy profile τ is strictly

better than all non-permutation strategy profiles.

We first show Mechanism 2 is truthful. Because the log scoring rule is proper,
Alice (the expert) will make the truthful predictions when Bob and Chloe report
their signals truthfully. Thus, the difficult part is to show the target is willing
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Mechanism 2 Two-round Target Differential Peer Prediction

Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn
from second order stochastic relevant common prior P known to all three agents.
LSR is the logarithmic scoring rule (1).

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Alice is informed who is the target and predicts the target’s report t with Q̂. .
initial prediction

4: Given the source’s report s, the expert makes another prediction Q̂+. . improved
prediction

5: The payment to the expert is LSR[t, Q̂] + LSR[t, Q̂+].
6: The payment to the target is LSR[t, Q̂+]− LSR[t, Q̂].
7: The payment to the source is −2 LSR[t, Q̂].

to report his signal truthfully, if the expert and the source are truthful. Because
the roles of Bob and Chloe are symmetric in the mechanism, we can assume Bob
is the target and Chloe is the source from now on.

Lemma 1 (Logarithmic proper scoring rule reversed). Suppose Alice
and Chloe are truthful, and the common prior is 〈A,B,C〉-second order stochas-
tic relevant. As the target, Bob’s best response is to report his signal truthfully.

This is a generalization of a lemma in Prelec [13] and Kong and Schoenebeck
[8], and extends to non-symmetric prior and finite agent setting. The main idea
is that to maximize Bob’s expected payment, we show that equivalently Bob
wants to maximize a proper scoring rule with prediction P (C | θ(b)) on predict-
ing Chloe’s report. Therefore, by the property of proper scoring rules, Bob is
incentivized to tell the truth. We defer the proof to Appendix D.

With Lemma 1, the rest of the proof is very similar to the proof of Theorem 2
which is deferred the proof to Appendix D.

In Appendix G we show how to extend our techniques beyond finite signal
sets to any space with a general measure.

3.3 Single-round DPP Mechanism for Finite Signal Spaces

When the signal spaces are finite, the above two-round mechanisms (Mecha-
nisms 1 and 2) can be reduced to single-round mechanisms by using virtual
signal w. That is for Alice’s improved prediction we provide Alice with a ran-
dom virtual signal w instead of the actual report from the source, and pay her
the prediction score when the source’s report is equal to the virtual signal s = w.
Here we state only the single-round target-DPP; the single-round source-DPP
can be defined analogously.

Mechanism 3 has the same truthfulness guarantees as Mechanism 2. The
proof is the same which is presented in Appendix E.
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Mechanism 3 Single Round T-DPP

Require: Alice, Bob, and Chloe have private signals a ∈ A, b ∈ B, and c ∈ C drawn
from second order stochastic relevant common prior P known to all three agents.
The empty set ∅ is neither in B nor C.

1: Bob and Chloe report their signals, b̂ and ĉ.
2: Set Alice as the expert. Randomly set Bob or Chloe as the target and the other as

the source. We use t to denote the target’s report, and use s to denote the source’s
report.

3: Sample w uniformly from Xs ∪ {∅} where Xs is the signal space of the source, and
tell the expert w and who is the target.

4: if w = ∅ then . initial prediction
5: The expert makes a prediction Q̂ of t.
6: else . improved prediction
7: The expert makes prediction Q̂ of t pretending the source’s report s = w.
8: end if
9: The payment to the expert is 1[w = s] · LSR[t, Q̂] + 1[w = ∅] · LSR[t, Q̂].

10: The target’s payment has three cases: 1[w = s] · LSR[t, Q̂]− 1[w = ∅] · LSR[t, Q̂].
11: The payment to the source is −2 · 1[w = ∅] LSR[t, Q̂].

Theorem 4. If agents’ common beliefs are stochastic relevant and the set B and
C are finite, Mechanism 3 is strongly truthful.

Remark 1. Mechanism 3 uses the virtual signal trick to decouple the dependency
between the expert’s (Alice’s) prediction and the source’s (Chloe’s) signal, w ∈
Xs. Furthermore, the logarithmic scoring rule is a local proper scoring rule [12]
such that the score LSR[w,P ] = log p(w) only depends on the probability at
w. Hence we can further simplify Alice’s report by asking her to predict the
probability density ∈ [0, 1] of a single virtual signal z ∈ Xt in the target’s (e.g.
Bob’s) signal space.

This trick can be extended to settings with a countably infinite set of signals.
For example, for signals in N we can generate the virtual signal from a Poisson
distribution (which dominates the counting measure) and normalize payments
correspondingly. However, this trick cannot apply to more general measurable
spaces, e.g. real numbers, because the probability of the virtual signal hit the
source’s report can be zero.

4 Bayesian Truth Serum as a Prediction Market

In this section, we revisit the original Bayesian Truth Serum (BTS) by Prelec
[13] from the perspective of prediction markets. We first define the setting, which
is a special case of ours (Mechanism 2), and use the idea of prediction markets
to understand BTS.

4.1 Setting of BTS

There are n agents. They all share a common prior P . We call P is admissible
if it consists of two main elements: states and signals. The state T is a random
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variable in {1, . . . ,m}, m ≥ 2 which represents the true state of the world. Each
agent i observes a signal Xi from a finite set Ω. The agents have a common
prior consisting of PT (t) and PX|T (· | t) such that the prior joint distribution of
x1, . . . , xn is

Pr(X1 = x1, . . . , Xn = xn) =
∏
t∈[m]

PT (t)
∏
i∈[n]

PX|T (xi | t).

Mechanism 4 The original BTS

Require: α > 1
Ensure: The common prior is admissible
1: Agent i reports x̂i ∈ Ω and Q̂i ∈ P(Ω).
2: For each agent i, choose a reference agent j 6= i uniformly at random. Compute
Q

(n)
−ij ∈ P(Ω) such that for all x ∈ Ω

Q
(n)
−ij(x) =

1

n− 2

∑
k 6=i,j

1[x̂k = x] (3)

which is the empirical distribution of the other n− 2 agent’s reports.
3: The prediction score and information score of i are

scorePre = LSR
[
x̂j , Q̂i

]
−LSR

[
x̂j , Q

(n)
−ij

]
and scoreIm = LSR

[
x̂i, Q

(n)
−ij

]
−LSR

[
x̂i, Q̂j

]
.

And the payment to i is
scorePre + α scoreIm

Now we restate the main theorem concerning Bayesian Truth Serum:

Theorem 5 ([13]). For all α > 1, if the common prior P is admissible and
n→∞, Mechanism 4 is strongly truthful.

4.2 Information Score and Prediction Market

Prelec [13] uses clever algebraic calculation to prove this main results. Kong and
Schoenebeck [8] use information theory to show that for BTS the ex ante agent
welfare for the truth-telling strategy profile is strictly better than for all other
non-permutation equilibria. Here we use prediction markets to show BTS is a
truthful mechanism, and use Mechanism 2 to reproduce BTS.

The payment from BTS consists of two parts, the information score, scoreIm,
and the prediction score, scorePre. The prediction score is exactly the log scoring
rule and is well-studied in the previous literature. However, the role of infor-
mation score is more complicated. Here we provide an interpretation based on
Mechanism 2.

We consider i = 2 and j = 1 in BTS and call them Bob and Alice respectively.
We let Chloe be the collection of other agent {3, 4, . . . , n}. Let’s run Mechanism 2
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on this information structure. Bob is the target. Alice’s initial prediction is Q =
PX2|X1

(· | x1). When Chloe’s signal is x3, x4, . . . , xn, Alice’s improved prediction
is Q+ = PX2|X−2

(· | x−2) where x−2 = (x1, x3, . . . , xn) is the collection of all
agents’ reports expect Bob’s. By Lemma 1, Bob is still incentivized to report his
private signal x2 which maximizes the expectation, LSR[x̂2, Q

+] − LSR[x̂2, Q]
that equals to

LSR[x̂2, PX2|X−2
(· | x−2)]− LSR[x̂2, PX2|X1

(· | x1)]. (4)

For the BTS (Mechanism 4), the information score in BTS at truth-telling strat-

egy profile is LSR[x̂i, Q
(n)
−ij ]− LSR[x̂i, Q̂j ] which equals to

LSR
[
x̂2, Q

(n)
−ij

]
− LSR

[
x̂2, PX2|X1

(· | x1)
]
. (5)

The only difference between (4) and (5) is the first term: PX2|X−2
(· | x1, x3, . . . , xn)

and Q
(n)
−ij . Therefore, the original BTS reduces to a special case of Mechanism 2

as n → ∞, if we can show limn→∞ P (X2 | x1, x3, . . . , xn) = limn→∞Q
(n)
−ij .

Formally,

Proposition 1. For all t = 1, . . . ,m and w ∈ Ω,

Q
(n)
−ij(w)− PX2|X−2

(w | x1, x3, . . . , xn)
PX|T (·|t)
−−−−−−→ 0 as n→∞.

That is the difference between these estimators converges to zero in probability
as n goes to infinity.

5 Conclusion

We define two Differential Peer Prediction mechanisms for the single question
setting which are strongly-truthful, detail-free, and only requires a single item
report from three agents. Moreover, the agents need not to be homogeneous and
their signals may be continuous.

We also show a new property of logarithmic scoring rules and the apply
to make target incentive mechanism and show the BTS can be seen as such a
mechanism. One future direction is to use this machinery to analyse when BTS
retains its strongly truthful guarantee, e.g. for what parameters of finite and/or
heterogeneous agents.
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A Additional Background Material: Prediction Markets

Now we want to get the collective prediction from a large group of experts. If
we ask them all to report the prediction simultaneously and pay each of them
by the log scoring rule, we only receive many different predictions and it is not
clear how to aggregate those predictions into a single prediction.

Hanson’s [4] idea is to approach the experts sequentially. The mechanism
asks experts to predict, given predictions that previous experts have made, and
pays the experts by the difference of score between their prediction minus the
score of the previous one. Formally,

1. The designer chooses an initial prediction ŷ0, e.g., the uniform distribution
on Ω.

2. The experts i = 1, 2, . . . , n arrive in order. Each expert i changes the predic-
tion from ŷi−1 to ŷi

3. The market ends and the event’s outcome w ∈ Ω is observed.
4. Expert i receives a payoff PS[w, ŷi]− PS[w, ŷi−1].

Therefore, each expert (strictly) maximizes his expected score by reporting his
truth belief given his own knowledge and the prediction of the previous experts.

Suppose instead of multiple expert arriving in order we have one expert
(Alice) but multiple signals arrive in order. For example, Alice is asked to predict
the champion of a tennis tournament where w ∈ Ω is the set of players. As the
tournaments proceeds, Alice collects additional signals (xi)i=1,...,n which inform
the outcome. Formally,

1. The designer chooses an initial prediction ŷ0.
2. In round i = 1, 2, . . . , n, a signal xi arrives, and Alice changes the prediction

from ŷi−1 to ŷi
3. At the end, the outcome w ∈ Ω is observed.
4. Alice receives a payoff

∑n
i=1 (PS[w, ŷi]− PS[w, ŷi−1]).

With belief P if Alice reports truthfully in each round, she will report P (W |
y1, y2, . . . , yi) at round i. Her payment at round i will beBMI(Yi;W |Y1, . . . , Yi−1).
Her overall payment will be BMI(Y1, . . . , Yn;W ), which maximizes her payment.

This is an illustration of the chain rule for Bregman Mutual Information:
BMI(X,Y ;Z) = BMI(Y ;ZY |X) +BMI(X;Z).

B Strict Data Processing Inequality

There are several proofs for the data processing inequality (Theorem 1). However,
for information elicitation, we often aim for a strict data processing inequality
such that given a pair of random variable (X,Y ) if a random function θ : Y → Y
is not a invertible function, I(X;Y ) > I(X; θ(Y )). In this section, we will show
if X and Y are stochastic relevant (defined later).

We say a pair of random variable X,Y on a finite space X ×Y is stochastic
relevant if for any distinct x and x′ in X , PY |X(· | x) 6= PY |X(· | x). And the
above condition also holds when we exchange X and Y .
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Theorem 6. If (X,Y ) on a finite space X × Y is stochastic relevant and has
full support. For all random function θ from Y to Y where the randomness of θ
is independent of (X,Y ),

I(X;Y ) = I(X; θ(Y ))

if and only if θ is a deterministic invertible function. Otherwise, I(X;Y ) >
I(X; θ(Y )).

Moreover, we can extend this to conditional mutual information when the ran-
dom variable is second order stochastic relevant (Definition 1).

Proposition 2. If (W,X, Y ) on a finite spaceW×X×Y is second order stochas-
tic relevant and has full support. For any random function θ from Y to Y, if the
randomness of θ is independent of random variable (W,X, Y ),

I(X;Y |W ) = I(X; θ(Y ) |W )

if and only if θ is an one-to-one function. Otherwise, I(X;Y |W ) > I(X; θ(Y ) |
W ).

B.1 Proof of Theorem 6

Theorem 7 (Jensen’s inequality). Let X be a random variable on a proba-
bility space (X ,F , µ) and let f : R → R be a convex function. Then f(E[X]) ≤
E[f(X)]. The equality holds if and only if f agree almost everywhere on the range
of X with a linear function.

Given a random function θ : Y → Y, we use q : Y × Y → R to denote it’s
transition matrix where q(y, ŷ) = Pr[θ(y) = ŷ] for all y, ŷ ∈ Y. Let Ŷ be the
random variable θ(Y ).

Variational representation By the variational representation of mutual informa-
tion [11], let Φ(a) = a log a, Φ∗(b) = exp(b− 1) and Φ′(a) = 1 + log a the mutual
information between X and Y is

I(X;Y ) = sup
k:X×Y→R

{
EPX,Y

[k(X,Y )]− EPX⊗PY
[Φ∗ (k(X,Y ))]

}
and the maximum happens when

K(x, y) := Φ′
(
PX,Y (x, y)

PX(x)PY (y)

)
. (6)

We define K̂ for X and Ŷ similarly. With these notions, the mutual information
between X and Ŷ is

I(X; Ŷ ) =EPX,Ŷ
[K̂(X, Ŷ )]− EPX⊗PŶ

[
Φ∗
(
K̂(X, Ŷ )

)]
=EPX,Y

[∫
K̂(x, ŷ)q(y, ŷ)dŷ

]
− EPX⊗PY

[∫
Φ∗
(
K̂(x, ŷ)

)
q(y, ŷ)dŷ

]
≤EPX,Y

[∫
K̂(x, ŷ)q(y, ŷ)dŷ

]
− EPX⊗PY

[
Φ∗
(∫

K̂(x, ŷ)q(y, ŷ)dŷ

)]
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The last inequality holds because Φ∗ is convex. Let L(x, y) :=
∫
K̂(x, ŷ)q(y, ŷ)dŷ

for all x, y. We have

I(X; Ŷ ) ≤EPX,Y
[L(x, y)]− EPX⊗PY

[Φ∗ (L(x, y))] (7)

≤ sup
k:X×Y→R

{
EPX,Y

[k(X,Y )]− EPX⊗PY
[Φ∗ (k(X,Y ))]

}
(8)

=I(X;Y ).

Sufficient condition We first show the equality holds if θ is an invertible function.
Hence, we need to show (7) and (8) are equalities. Because θ is an invertible

function, q is a permutation matrix. Thus, for all x, y
∫
Φ∗
(
K̂(x, ŷ)

)
q(y, ŷ)dŷ =

Φ∗
(∫

K̂(x, ŷ)q(y, ŷ)dŷ
)

, and (7) is equality. For (8), for all x and y,

L(x, y) =

∫
K̂(x, ŷ)q(y, ŷ)dŷ

=K̂(x, θ(y)) (deterministic function)

=Φ′

(
PX,Ŷ (x, θ(y))

PX(x)PŶ (θ(y))

)
(by (6))

=Φ′
(
PX,Y (x, y)

PX(x)PY (y)

)
(invertible)

=K(x, y)

Therefore, (8) is an equality. This complete the proof.

Necessary condition Now we show the equality holds only if θ is an invertible
function, i.e. q is a permutation matrix. We first show a weaker statement, q is
injective. Formally, let Rq(y) := {ŷ : (y, ŷ) ∈ Rq} is the support of q on input y.
We say q is injective if for all distinct y, y′ the support of q(y, ·) and q(y′, ·) are
disjoint, Rq(y) ∩Rq(y′) = ∅.

We prove this by contradiction: if q is not injective and I(X;Y ) = I(X; Ŷ ),
(X,Y ) is not stochastic relevant. Suppose I(X;Y ) = I(X; Ŷ ), (7). Then (8) are
equalities. Because (7) is an equality, given x and y for all ŷ ∈ Rq(y),

L(x, y) = K̂(x, ŷ) (9)

Because (8) is an equality, for all x and y,

L(x, y) = K(x, y). (10)

Suppose q is not injective. There exists y1, y2 and y∗ in Y such that y1 6= y2 and
y∗ ∈ Rq(y1) ∩Rq(y2). For all x,

K(x, y1) =L(x, y1) (by (10))

=K̂(x, y∗) (by (9) and ŷ∗ ∈ Rq(y1))

=L(x, y2) (by (9) and ŷ∗ ∈ Rq(y2))

=K(x, y2) (by (10))
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Since Φ′ is invertible, for all x

PX,Y (x, y1)

PX(x)PY (y1)
=

PX,Y (x, y2)

PX(x)PY (y2)

Therefore, PX|Y (· | y1) = PX|Y (· | y2), and (X,Y ) is not stochastic relevant.
This shows the Markov kernel q is injective and have a deterministic inverse
function.

Now we show if q is injective, q is a permutation when Y is a finite space.
Because q is a Markov kernel |Rq(y)| ≥ 1 for all y. Moreover, because q is
injective, | ∪y Rq(y)| =

∑
y |Rq(y)| ≥ |Y|. On the other hand, ∪yRq(y) = {ŷ :

∃y, (y, ŷ) ∈ Rq} ⊆ Y, | ∪y Rq(y)| ≤ |Y|. Therefore, by pigeonhole principle,
|Rq(y)| = 1 for all y, which is one-to-one.7

B.2 Proof of Proposition 2

Proof (Proposition 2). Given random variable (W,X, Y ) define pointwise condi-
tional mutual information between X and Y given W = w as

I(X;Y |W = w) := DKL

(
PX|W (· | w)⊗ PY |W (· | w) ‖ P(X,Y )|W (· | w)

)
which is the mutual information between X|W = w and Y |W = w.

First observe that conditional mutual information I(X;Y |W ) is the average
pointwise conditional mutual information between X and Y across different W ,

I(X;Y |W ) =

∫
I(X;Y |W = w) pW (w)dw.

Thus, we can apply Theorem 6 to each pointwise conditional mutual information.
The sufficient condition is straightforward. For the necessary condition we

can reuse the argument in the proof of Theorem 6. Let Φ(a) = a log a and

K(x, y | w) := Φ′
(

PX,Y |W (x, y | w)

PX|W (x | w)PY |W (y | w)

)
.

We define K̂(x, y | w) for X, Ŷ , and W similarly, and we let L(x, y | w) :=∫
K̂(x, ŷ | w)q(y, ŷ)dŷ. By similar derivation, we have analogy of (9) and (10):

For all x, y, w and ŷ ∈ Rq(y)

L(x, y | w) = K̂(x, ŷ | w) (11)

and

L(x, y | w) = K(x, y | w) (12)

7 Note that the proof implicitly use the property that the distribution of (X,Y, Ŷ )
has a full support. In particular, (9) and (10) only holds on the support of the
distribution.
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Suppose q is not injective. There exists y1, y2 and y∗ such that y1 6= y2 and
y∗ ∈ Rq(y1) ∩Rq(y2). For all x and w

K(x, y1 | w) =L(x, y1 | w) (by (12))

=K̂(x, y∗ | w) (by (11) and y∗ ∈ Rq(y1))

=L(x, y2 | w) (by (11) and y∗ ∈ Rq(y2))

=K(x, y2 | w)

Since Φ′ is injective, for all x and w

PX,Y |W (x, y1 | w)

PX|W (x | w)PY |W (y1 | w)
=

PX,Y |W (x, y2 | w)

PX|W (x | w)PY |W (y2 | w)

Therefore, there exists distinct y1 and y2 such that for all w

PX|Y,W (· | y1, w) = PX|Y,W (· | y2, w).

This contradict the condition that (X,Y,W ) is second order stochastic relevant.

C Proofs in Sect. 3.1

C.1 Proof of Theorem 2

We first state a lemma.

Lemma 2. Let random variable (X,Y, Z) be 〈X,Y, Z〉-stochastic relevant on a
finite space X ×Y ×Z with full support. Given a deterministic function θ : Y →
Y,

Ex,y,z
[
log

(
PZ|XY (z | x, y)

PZ|X(z | x)

)]
− Ex,y,z

[
log

(
PZ|XY (z | x, θ(y))

PZ|X(z | x)

)]
≥ 0.

Moreover, the equality holds only if θ is an identity function, θ(y) = y.

Proof (Lemma 2).

Ex,y,z
[
log

(
PZ|X,Y (z | x, y)

PZ|X(z | x)

)]
− Ex,y,z

[
log

(
PZ|X,Y (z | x, θ(y))

PZ|X(z | x)

)]
=Ex,y,z

[
log

(
PZ|X,Y (z | x, y)

PZ|X,Y (z | x, θ(y))

)]
=Ex,y

[
Ez
[
log

(
PZ|X,Y (z | x, y)

PZ|X,Y (z | x, θ(y))

)
| X = x, Y = y

]]
=Ex,y

[
DKL(PZ|X,Y (· | x, θ(y))‖PZ|X,Y (· | x, y))

]
.

Let d(x, y, y′) := DKL(PZ|X,Y (· | x, y′)‖PZ|X,Y (· | x, y)) which is the KL-
divergence from random variable Z conditional on X = x and Y = y to Z
conditional on X = x and Y = y′. Thus, we have

Ex,y
[
DKL(PZ|X,Y (· | x, θ(y))‖PZ|X,Y (· | x, y))

]
= Ex,y [d(x, y, θ(y))] . (13)
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First note that by Jensen’s inequality (Theorem 7) d(x, y, θ(y)) ≥ 0 for all x and
y, so (13) is non-negative. This shows the first part.

Let Eθ = {y : θ(y) 6= y} ⊆ Y which is the event such that θ disagree with the
identity mapping. Because P is 〈X,Y, Z〉-second order stochastic relevant, for
all y ∈ Eθ there is x, PZ|X,Y (· | x, y) 6= PZ|X,Y (· | x, θ(y)), so d(x, y, θ(y)) > 0 by
Jensen’s inequality (Theorem 7). Therefore, when equality holds, the probability
of event Eθ is zero, and θ is an identity because X × Y × Z is a finite space.

Proof (Theorem 2). The proof has two parts: Mechanism 1 is truthful and the
truth-telling strategy profile maximizes the ex ante agent welfare.

Truthfulness. We first show Mechanism 1 is truthful. For the expert Alice,
suppose Bob and Chloe provide their signals truthfully. Her expected payment
consists of two prediction scores LSR[b, Q̂] and LSR[b, Q̂+] where Q̂ is her first
prediction and Q̂+ is the second. The expected first prediction score (under the
randomness of Bob’s signal B conditional on Alice’s signal being a) is

Eb∼PB|A(·|a)[LSR[b, Q̂]] ≤ Eb∼PB|A(·|a)[LSR[b, PB|A(· | a)]]

which is less than reporting truthful prediction PB|A(· | a) since log scoring rule
is proper (Definition 2). Similarly, her expected payment is maximized when her
improved prediction Q̂+ is PB|A,C(· | a, c).

If Chloe is the source, she will tell the truth given Alice and Bob report
truthfully by Lemma 2. Formally, let Alice’s ,Bob’s and Chloe’s signal is a, b,
and c respectively. Let θ : C → C denote a Chloe’s (deterministic) best response.
Alice’s initial prediction and Bob’s signal is PB|A(· | a). Because Chloe unilater-
ally deviate, Alice’s improved prediction is PB|A,C(· | a, θ(c)). Therefore, Chloe’s
payment is LSR[b, PB|A,C(· | a, θ(c))]− 3 LSR[b, PB|A(· | a)].

Note that regardless Chloe’s report the initial prediction is Q̂ = PB|A(· |
a). Hence equivalently Chloe’s best response also maximizes LSR[b, PB|A,Ĉ(· |
a, ĉ)]− LSR[b, PB|A(· | a)]. Taking expectation over signal A,B,C and strategy
θ we have

v(θ) :=
∑
a,b,c

PA,B,C(a, b, c)
(
LSR[b, PB|A,C(· | a, θ(c))]− LSR[b, PB|A(· | a)]

)
=Ea,b,c

[
log(PB|A,C(b | a, θ(c)))− log(PB|A(b | a))

]
(by (1))

=Ea,b,ĉ
[
log

(
PB|A,C(b | a, θ(c))

PB|A(b | a)

)]
Similarly, the ex ante payment of Chloe when her strategy is truth-telling τ is

v(τ) = Ea,b,c
[
log

(
PB|A,C(b | a, c)
PB|A(b | a)

)]
.

The difference between v(τ) and v(θ) is

v(τ)−v(θ) = Ea,b,c
[
log

(
PB|A,C(b | a, c)
PB|A(b | a)

)]
−Ea,b,c

[
log

(
PB|A,C(b | a, θ(c))

PB|A(b | a)

)]
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First, by Lemma 2, we know v(τ) ≥ v(θ). However, because θ is a best response,
the inequality is in fact equality, v(τ) ≥ v(θ). By the second part of Lemma 2,
this shows θ is an identity and θ = τ .

If Chloe is the target, her action does not affect her expect payment, so
reporting her signal truthfully is a best response strategy. By randomizing the
role of source and target, both Bob and Chloe will report their signals truthfully.

Strongly truthful. Now we show the truth-telling strategy profile τ maxi-
mizes the ex ante agent welfare under P . If Bob is the target, the ex ante agent
welfare (before anyone receives signals) in truth-telling strategy profile τ is∑

i

ui(τ ;P ) =E(a,b,c)∼P
[
2
(
LSR[b, PB|A,C(· | a, c)]− LSR[b, PB|A(· | a)]

)]
=2E(a,b,c)∼P

[
log

(
PB|A,C(b | a, c)
PB|A(b | a)

)]
=2I(B;C | A)

which is the conditional information between Bob’s and Chloe’s signals given
Alice’s signal.

On the other hand, let θ = (θA, θB , θC) be an equilibrium strategy profile
where Bob and Chloe report signals θB(B) and θC(C) respectively. Since θ is an
equilibrium, if Bob is the target, Alice with signal a will predict truthfully, and
report Q̂ = PθB(B)|A(· | a) and Q̂+ = PθB(B)|A,θC(C)(· | a, θC(c)). By a similar
computation, the ex ante agent welfare is∑

i

ui(θ;P ) = 2I(θB(B); θC(C) | A) ≤ 2I(B;C | A) =
∑
i

ui(P, τ ).

The inequality is based on the data processing inequality (Theorem 1). Moreover,
by Proposition 2, the equality holds only if θ is a permutation strategy profile.

D Proof in Sect. 3.2

D.1 Proof of Lemma 1

Given Alice and Chloe are truthful, let θ : B → B be a Bob’s (deterministic) best
response. First suppose Alice, Bob and Chloe’s signals are a, b and c respectively.
When Alice and Chloe both report truthfully, Chloe’s report is s = c. Alice’s
initial prediction is Q = PB|A(· | a), and her improved prediction is Q+ =
PB|A,C(· | a, c). Hence, Bob with strategy θ gets payment

LSR[θ(b), PB|AC(· | a, c)]− LSR[θ(b), PB|A(· | a)]

Because θ is a best response, for all b ∈ B, reporting θ(b) maximizes Bob’s
expected payment conditional on B = b,

E(α,γ)∼A,C|B=b

[
LSR[θ(b), PB|A,C(· | α, γ)]− LSR[θ(b), PB|A(· | α)]

]
. (14)
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The ex ante payment of Bob is computed by summing over (14) with weight PB ,
as:

u(θ) := E(α,β,γ)∼P
[
LSR[θ(β), PB|A,C(· | α, γ)]− LSR[θ(β), PB|A(· | α)]

]
which is maximized on θ. Now, we exchange the role of B and C.

u(θ) =E(a,b,c)∼P
[
LSR[θ(b), PB|A,C(· | a, c)]− LSR[θ(b), PB|A(· | a)]

]
=Ea,b,c

[
log(PB|A,C(θ(b) | a, c))− log(PB|A(θ(b) | a)

]
(by the definition of the log scoring rule (1))

=Ea,b,c
[
log

(
PB|A,C(θ(b) | a, c)
PB|A(θ(b) | a)

)]
=Ea,b,c

[
log

(
PB,C|A(θ(b), c | a)

PB|A(θ(b) | a)PC|A(c | a)

)]
=Ea,b,c

[
log

(
PC|A,B(c | a, θ(b))

PC|A(c | a)

)]
The above value can be seen as an ex ante prediction score of Bob’s prediction
PC|A,C(· | a, θ(b)) on Chloe’s signal. Similarly, the ex ante payment of Bob when
his strategy is truth-telling τ is

u(τ) = Ea,b,c
[
log

(
PC|A,B(c | a, b)
PC|A(c | a)

)]
.

The difference between u(τ) and u(θ) is

u(τ)− u(θ) =Ea,b,c
[
log

(
PC|A,B(c | a, b)
PC|A(c | a)

)]
− Ea,b,c

[
log

(
PC|A,B(c | a, θ(b))

PC|A(c | a)

)]
.

First, by Lemma 2, we know u(τ) ≥ u(θ). However, because θ is a best response,
the inequality is in fact equality, u(τ) ≥ u(θ). By the second part of Lemma 2,
this shows θ is an identity and θ = τ .

D.2 Proof of Theorem 3

Proof (Theorem 3). The proof has two parts: Mechanism 2 is truthful and the
truth-telling strategy profile maximizes the ex ante agent welfare.

Truthfulness. We first show Mechanism 2 is truthful. For the expert Alice,
suppose Bob and Chloe provide their signals truthfully. Her expected payment
consists of two prediction scores LSR[b, Q̂] and LSR[b, Q̂+] where Q̂ is her first
prediction and Q̂+ is the second. The expected first prediction score (under the
randomness of Bob’s signal B conditional on Alice’s signal being a) is

Eb∼PB|A(·|a)[LSR[b, Q̂]] ≤ Eb∼PB|A(·|a)[LSR[b, PB|A(· | a)]]
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which is less than reporting truthful prediction PB|A(· | a) since log scoring rule
is proper (Definition 2). Similarly, her expected payment is maximized when her
improved prediction Q̂+ is PB|A,C(· | a, c).

By Lemma 1, if Bob is the target, he will tell the truth given Alice and
Chloe report truthfully. If Bob is the source, his action does not affect his ex-
pect payment, so reporting his signal truthfully is a best response strategy. By
randomizing the role of source and target, both Bob and Chloe will report their
signals truthfully.

Strongly truthful. Now we show the truth-telling strategy profile τ maxi-
mizes the ex ante agent welfare under P . For Alice, if Bob is the target, the sum
of the ex ante payment (before anyone receives signals) in truth-telling strategy
profile is∑

i

ui(τ ;P ) =E(a,b,c)∼P
[
2
(
LSR[b, PB|A,C(· | a, c)]− LSR[b, PB|A(· | a)]

)]
=2E(a,b,c)∼P

[
log

(
PB|A,C(b | a, c)
PB|A(b | a)

)]
=2I(B;C | A)

which is the conditional information between Bob’s and Chloe’s signals given
Alice’s signal.

On the other hand, let θ = (θA, θB , θC) be an equilibrium strategy profile
where Bob and Chloe report signals θB(B) and θC(C) respectively. Since θ is
an equilibrium, if Bob is the target, Alice with signal a will truthful predict by
reporting Q̂ = PθB(B)|A(· | a) and Q̂+ = PθB(B)|A,θC(C)(· | a, θC(c)). By a similar
computation, the ex ante agent welfare is∑

i

ui(θ;P ) = 2I(θB(B); θC(C) | A) ≤ 2I(B;C | A) =
∑
i

ui(P, τ ).

The inequality is based on the data processing inequality (Theorem 1). More-
over, by Proposition 2, when X is finite the equality holds only if θ is a non-
permutation strategy profile.

Note that if we randomize the roles amount Alice, Bob, and Chloe, each agent
has a non-negative expected payment at the truth-telling equilibrium.

E Proof of Theorem 4

Proof. For the expert Alice, suppose Bob and Chloe provide their signals truth-
fully. Her payment consists of two prediction scores: When the random variable
w = ∅, the prediction score (under the randomness of Bob’s signal B conditional
on Alice’s signal being a) is

Eb∼PB|A(·|a)[LSR[b, Q̂]] ≤ Eb∼PB|A(·|a)[LSR[b, PB|A(· | a)]]
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Since log scoring rule is proper (Definition 2), reporting truthful prediction
PB|A(· | a) maximizes it. Similarly, when w 6= ∅, her (conditional) expected
payment is maximized when her improved prediction is PB|A,C(· | a,w). For the
target Bob, suppose Alice and Chloe report truthfully. We will follow the proof
of Lemma 1 to show Bob’s best response is truth-telling. Let θ : B → B be a
Bob’s (deterministic) best response. Bob’s expected payment depends on four
values: signals a, b, c, and virtual signal w:

UB = 1[w = c] LSR[θ(b), PB|A,C(· | a,w)]− 1[w = ∅] LSR[θ(b), PB|A(· | a)].

And Bob’s expected payment is

uB(θ) =
1

|C|+ 1
Ea,b,c

[
LSR[θ(b), PB|A,C(· | a, c)]− LSR[θ(b), PB|A(· | a)]

]
.

Thus, by the same argument in Lemma 1 Bob’s best response is truth-telling. If
Bob is the source, his action does not affect his expect payment, so reporting his
signal truthfully is a best response strategy. By randomizing the role of source
and target, both Bob and Chloe will report their signals truthfully.

The proof of strongly truthful is identical to the proof of Theorem 3.

F Sketch Proof for Proposition 1

Proof. When we fix w and t, we can think of both processes as predictors for
PX2|T (w | t).

A consistent predictor f of a value Y given evidence X1, X2, . . . is one where
more information leads to a better prediction. That is

lim
n→∞

Pr[|f(x1, x2, . . . , xn)− Y | ≥ ε]→ 0.

The lemma follows by seeing that, fixing t and w, bothQ
(n)
−ij(w) and PX2|X−2

(w |
x1, x3, . . . , xn) are two different consistent predictors for PX2|T (w | t).

Q
(n)
−ij(w) uses the empirical distribution of n − 2 independent samples from

PX|T (· | t∗) to estimate PX|T (w | t∗) and is therefore a consistent estimator.

On the other hand, because X2 and X1, X3, . . . , Xn are independent condi-
tional on t = t∗, the posterior distribution PT |X−2

(t | x1, x3, . . . , xn) is consistent.
That is for all t∗ ∈ [m], Pr[|P (T = t∗ | x1, x3, . . . , xn) − 1| ≥ ε | T = t∗] → 0.
Thus

PX2|X−2
(· | x1, x3, . . . , xn) =

∑
t

PX2|T (· | t)PT |X−2
(t | x1, x3, . . . , xn)

is also a consistent predictor of PX2|T (w | t) which completes the proof.
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G General measure spaces

G.1 Settings

There are three characters, Alice , Bob and Chloe. Consider three measure spaces
(A,SA, µA), (B,SB , µB), and (C,SC , µC). Let X := A×B×C, S := SA×SB×SC ,
and µX = µA ⊗ µB ⊗ µC where ⊗ denotes the product between distributions.
Let P(X ) be the set of probability density function on X with respect to µX .8

Alice (and respectively Bob, Chloe) has a privately observed signal a (respec-
tively b, c) from set A (respectively B C). They all share a common prior belief
that their signals (a, b, c) is generated from a random variable X := (A,B,C)
on (X ,S) with a probability measure P ∈ P(X ), and a positive density func-
tion p > 0. We consider a uniform second order stochastic relevant for general
measure space as follow:9

Definition 3. A random variable (A,B,C) in A × B × C with a probability
measure P is not 〈A,B,C〉-uniform stochastic relevant if there exist a signal
a ∈ A and two distinct signals b, b′ ∈ B such that the posterior on C is identical
whether B = b with A = a or B = b′ with A = a,

PC|A,B(· | a, b) = PC|A,B(· | a, b′) almost surely on µC .

Otherwise we call P 〈A,B,C〉-uniform stochastic relevant. Thus, when Alice
is making a prediction to Chloe’s signal, Bob’s signal is always relevant and
induces different predictions when B = b or B = b′.

We call P uniform second order stochastic relevant if it is 〈X,Y, Z〉-uniform
stochastic relevant where 〈X,Y, Z〉 is any permutation of {A,B,C}.

G.2 Theorem 2 and 3 on general measure spaces

Here, we state analogous results to Theorem 2 and 3. The proofs are mostly
identical.

Theorem 8. Given a measure space (X ,S, µX) if the common prior P is uni-
form second order stochastic relevant on the measurable space (X ,S), and P is
absolutely continuous with respect to µX , Mechanism 1 has the following prop-
erties:
8 Formally, P(X ) is the set of all distributions on X that are absolutely continuous

with respect to measure µX . For P ∈ P(X ), we denote the density of P with respect
to µ by p(·). For example, if X is a discrete space, we can set µ as the counting
measure. If X is an Euclidean space Rd, we can use the Lebesgue measure.

9 One major difference between 〈A,B,C〉-stochastic relevant (Definition 1) and
〈A,B,C〉-uniform second order stochastic relevant (Definition 3) is the quanti-
fier of A: Given all distinct pair b, b′, it is sufficient to have one a∗ such that
PC|AB(·|a∗, b) 6= PC|AB(·|a∗, b′). However, for uniform stochastic relevant, it requires
for all a, PC|AB(·|a, b) 6= PC|AB(·|a, b′). One issue for second order stochastic rele-
vant in general measure space is that we can change measure zero point to make
such distribution stochastic irrelevant, and the probability to derive a∗ such that
PC|AB(·|a∗, b) 6= PC|AB(·|a∗, b′) may be zero.
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1. The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.
2. The ex ante agent welfare in the truth-telling strategy profile τ is strictly

better than all non-invertible strategy profiles.

Here the maximum agent welfare happens not only at permutation strategy pro-
files, but also invertible strategy profile. This limitation is due to the strictness
of data processing inequality (Theorem 6). For example, consider a pair of ran-
dom variables (X,Y ) on Z>0 × Z>0. Let θ be a Markov operator such that for
x ∈ Z>0, θ(x) = x with probability 1/2 and θ(x) = −x otherwise. Although θ
is not an one-to-one function, I(X;Y ) = I(θ(X);Y ). On the other hand, follow
the proof of Theorem 6, we can say the equality holds when θ is injective.

The guarantee of Mechanism 2 is the same.

Theorem 9. Given a measure space (X ,S, µX) if the common prior P is uni-
form second order stochastic relevant on the measurable space (X ,S), and P is
absolutely continuous with respect to µX , Mechanism 2 has the following prop-
erties:

1. The truth-telling strategy profile τ is a strict Bayesian Nash Equilibrium.
2. The ex ante agent welfare in the truth-telling strategy profile τ is strictly

better than all non-invertible strategy profiles.

However, we cannot use the virtual signal trick in Mechanism 3 when the
signals are in general measurable space, because the probability for the virtual
value matches with the source’s report can be always zero.
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