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ABSTRACT

In this work we look at opinion formation and the effects of two
phenomena both of which promote consensus between agents con-
nected by ties: influence, agents changing their opinions to match
their neighbors; and selection, agents re-wiring to connect to new
agents when the existing neighbor has a different opinion. In our
agent-based model, we assume that only weak ties can be rewired
and strong ties do not change. The network structure as well as
the opinion landscape thus co-evolve with two important parame-
ters: the probability of influence versus selection; and the fraction
of strong ties versus weak ties. Using empirical and theoretical
methodologies we discovered that on a two-dimensional spatial
network:

e With no/low selection the presence of weak ties enables fast
consensus. This conforms with the classical theory that weak
ties are helpful for quickly mixing and spreading information,
and strong ties alone act much more slowly.

e With high selection, too many weak ties inhibit any con-
sensus at all—the graph partitions. The weak ties reinforce
the differing opinions rather than mixing them. However,
sufficiently many strong ties promote convergence, though
at a slower pace.

We additionally test the aforementioned results using a real network.
Our study relates two theoretical ideas: the strength of weak ties—
that weak ties are useful for spreading information; and the idea of
echo chambers or filter bubbles, that people are typically bombarded
by the opinions of like-minded individuals. The difference is in how
(much) selection operates.
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1 INTRODUCTION

Social ties are not static, they evolve over time and the evolution is
driven by two processes. One is selection where an individual may
seek out and form new ties; often with others that have similar
attributes [31]. The other social process is influence in which two
individuals already connected by a social tie may influence one
another and converge on their personal attributes (interest, tastes,
etc) [28, 32]. Both of them result in neighboring nodes being more
similar than two random nodes.

The sociology literature has, for a long time, acknowledged and
studied the difference of social ties [10, 11, 18]. Strong ties refer
to the ties that people regularly spend effort to maintain, such
as family members, close friends, and colleagues. Weak ties, on
the other hand, are relatively effortless to keep and typically are
much more numerous than strong ties. The difference in the type
of ties is also reflected structurally. Strong ties tend to be clustered
with a high clustering coefficient, while weak ties are important
bridges that connect remote communities. In the seminal paper
“The Strength of the Weak Ties” Granovetter [11] showed how
information spreads through weak ties. While strong ties connect
people who are more similar to each other (due to homophily),
weak ties tend to bring fresh information to a social group, which
can be extremely valuable, for example, in the case of looking for
new jobs.

One of the interesting aspects of this paper is to examine the
evolution of strong ties and weak ties, with selection and influence
considered. By definition, strong ties and weak ties also differ in
their stability or fragility. The physical constraints that form a
strong tie are often stable in time and are hard to change. Many
of the strong ties are not formed by selection. We are born with
family ties and they stay with us for a lifetime except in extreme
cases. Neighbors and colleagues are also relatively hard to change
without some serious effort or cost. But weak ties, especially those
discovered on a social platform, are a lot easier to form or break,
making it convenient to block opinions that one does not like and
stay in a comfortable “echo chamber” [2, 34].

The political science literature has confirmed the observation
of geographical segregation and partisan alignment [9, 22] and of
‘ideology sorting’, that people tend to “segregate themselves into
their own political worlds, blocking out discordant voices and sur-
rounding themselves with reassuring news and companions" [4].
In the on-line setting, the sorting process can possibly happen at a
much faster rate and a larger scale [2, 5, 14, 20, 23]. Online forums



allow people to seek out like-minded individuals, including those
holding unpopular views that have been shunned elsewhere [7].
Moreover, social media research clearly shows that unfriending on
Facebook [30] and unfollowing on Twitter [17, 35] disproportion-
ately affect weak ties as compared to strong ties. Between 16% and
26% of American SNS users have disconnected a tie for reasons to
do with politics [14, 27, 30]. While such selection processes indeed
limits the information input to certain users, it was also observed
that the disconnections helped to sustain user participation in the
social network [20].

Our Approach. In this work we develop a model of opinion for-
mation and changes with two competing opinions/behaviors. Exam-
ples include political views (liberal v.s. conservative) or behaviors
(smoking/non-smoking, drug use/no drug use). The opinions are
influenced by one’s friends which could be connected by strong
ties or weak ties. Generally speaking, one’s opinion is going to
move toward the majority opinion in his/her friend circle over time.
Meanwhile, selection may also happen such that a node re-wires
ties when he/she has different opinion from his/her friends. In our
model, we assume that only the weak ties can be rewired and strong
ties do not change. The network structure as well as the opinion
landscape thus co-evolve with two important parameters: pgejects
the probability of a selection as the next action as opposed to in-
fluence; and gstrong, the fraction of strong ties in the network. The
objective of this paper is to answer the following question: does the
opinion distribution converge and if so how fast does it converge
with respect to the two parameters?

Related Work. There has been work on co-evolution of social
ties and opinions without separating strong/weak ties. Holme and
Newman [13]

show a phase transition from a segregated network to a homo-
geneous network, controlled by peeject. Durrett et al. [8] built on
top of the Holme-Newman model and considered two models of
selection: rewire-to-random, and rewire-to-same. Cohen et al. [6]
study a problem of opinion formation with continuous values with
influence and selection. Kempe et al. [16] considered agents with
multiple dimensions/attribute types and only agents who are similar
in many dimensions can influence each other. They characterized
the equilibrium outcome and proved convergence.

An expansive literature attempted to validate selection and in-
fluence models using real-world data, although some of them are
limited as they assume independent observations and no external
factors [31]. Lewis et al. [19] considered Facebook data and discov-
ered that there could be a large variation of whether selection or
influence is more prominent, depending on the studied attributes.
Further, selection and influence can be heavily entangled. For ex-
ample, in a static network (when selection does not exist), both
cooperative and selfish behaviors are contagious. But in a dynamic
network, selfish behavior is still contagious, but cooperative behav-
ior is not [15]. Thus selection and influence in network co-evolution
definitely deserve further study in different social settings.

2 MODEL
2.1 Model of Agent Network

To encode the interaction among people, we use a directed graph
G = (V,Es, Ew) with V as the set of nodes and two types of edges—
strong ties, Es, and weak ties, Eyy. For v € V let ds(v) be the out-
degree of strong ties of node v and the i-th strong out-neighbor of
node v is denoted by 8s(v);. We define dyy (v) and Sy (v); analo-
gously. We allow multi-edges and self loops in both Eg and Eyy.

2.2 Dynamics of Influence and Selection

Each agent v € V has an opinion y(v) € {0,1}. We call y =
{x(@) : v € V} the opinion vector. For o € {0,1}, let x(c) = {v €
V : x(v) = o} € V denote the set of nodes with opinion o. Let

ng( (v) = %&31):1}' be the fraction of strong ties which have

an endpoint with opinion 1, and similarly define R{f\,(v).

The process Sel-Inf (GO, finf> Pselect> Gstrong) is a discrete time
Markov chain over state space {(y,G)} where GO is the initial
network of agents, fi,r : [0,1] — [0,1] is an influence function,
parameter pgelect € [0, 1) denotes the amount of selection (versus
influence), and gstrong € [0, 1] denotes the influence of the strong
ties (versus weak ties). To this end we define RX (v) = qstmngRg( (v)+
(1- qstrong)R‘)fV(v) to be the weighted fraction of ©’s neighbors that
are 1.

The dynamics Sel-Inf(G(®, finf> Pselect> Gstrong) start with the graph
G and initial opinions that are uniformly and independently ran-
domly selected.

Given state Y(t) = ( )((t), GW) at time ¢, the dynamics updates
to Y(*1) as follows: initially set Y(!*1) = y() choose an agent v
uniformly at random and update Y(t*1) with one of the following
two operations:

Selection. With probability pseject, agent v randomly chooses
a weak tie and rewires if they disagree: select a random number k
between 1,...,dy(v), and let u = 53,)(11)1(. Then

50y, = | @) = D)
w k arandomnode in V |, otherwise.

Influence.[29] Otherwise (with probability 1 — pgeject), agent u
updates its opinion,

. s (£)
X(Hl) _ { 1 with probability fi,¢ (RX ! (v)) @

v .
0 , otherwise.

recall that RX m(v) is the gstrong Weighted fraction of v’s neighbors
with opinion 1 at time ¢.

We say the process reaches consensus if all agents have the same
opinion, and we use the number of influence steps as the consensus
time.

Remark 2.1. Our model is similar to the Holme-Newman model [13].
In the selection phase of our model, the chosen node picks a random
edge, and when the endpoint has a different opinion rewires the
edge to a random node (rewired when disagreeing). In their model,
a random edge is rewired to a random node with the same opinion
(rewired to the same). For the influence phase, their model uses the
voter model to update opinions.



Remark 2.2. We will describe our simulation results using pgeject

dpselect
1+(d_l)pselect
degree of the graph. Here pgeject just rescales pgeject to correctly

normalize for the degree. This way, if v is a node of degree d, the
rate that the opinion of §y/(v); is updated via selection versus
influence is pgelect Versus 1 — pgelect and does not depend on d.

instead of pgeject Where pgelect = and d is the average
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Figure 1: The function f; ¢ for different influence dynamics.

The k-majority model, with an increasing k, changes from
the voter model to the majority model.

2.3 Choices of Influence dynamics

We consider k-majority dynamics (choose k neighbors according
to their edge weights independently with replacement and change
the opinion to the majority opinion of these k neighbors),

k

fat@) = (';)x’f(l—xﬂ‘—". 3)

£=Tk/2]
This generalizes several previously studied models:

e Voter Model (k = 1): agent u chooses a neighbor v with
probability proportional to the weight and updates to v’s
opinion, fi,r (x) = x [12].

e Majority (k — o0): agent u updates to the opinion with
maximum weight, when there is a tie, the opinion is chosen
at random [24].

e 3-majority dynamics (k = 3): agent u polls the opinion from
three random neighbors and takes the majority as the new
opinion [3].

For k > 1 this family of influence dynamics can be seen as
the smooth version of majority dynamic with “the rich get richer
property”— if R, > 1/2, more than half of u’s neighbors are 1 then
the probability that agent u updates to 1 is greater than R, the
fraction of u’s 1 neighbors; moreover on a complete graph if the
number of agents with opinion 1 is greater than the number of
agents with opinion 0 there is a “drift” for opinion 1 such that the
number of agents with opinion 1 tends to increase. We are primarily
interested in the case where k > 1, but include the k = 1 case for
contrast.

2.4 Our Problem

In this paper we try to understand the role of weak ties in promoting
consensus with two main parameters: pgcject, the probability of
selection as the next action as opposed to influence; and gstrong, the
fractional influence of the strong ties in the network. We consider
the entire parameter space: pgelect € [0, 1) and gstrong € [0, 1]. For
shorthand, we refer to this as Sel-Inf( finf, pselect» Gstrong), When the
graph is clear.

In this paper we consider a number of graph topologies, net-
works generated by the Newman-Watts model and a real-world
ego-network from Facebook [21].

3 SPATIAL NETWORKS

3.1 Simulation setting

In this section, the initial graph we study is based on the Newman-
Watts model [25]. The nodes form a two dimensional lattice wrapped
into a torus. Each node has 12 strong ties connecting it to nodes
with Hamming distance less than 2, and 10 weak ties to random
nodes drawn uniformly and independently with replacement.

We run simulations on networks of size ranging from 16 x 16
to 64 X 64 (256 to 4096 nodes). A representative figure on the num-
ber of influence steps until consensus is shown in Figure 2. The
color at each point (pgelect> gstrong) represents the number of influ-
ence steps before consensus (or timeout) normalized by the the
size of the graph and averaged among the trials of the dynamics
Sel-Inf( finf, Pselect> Gstrong)- We stop the dynamics if the total num-
ber of influence steps is more than twice the square of the size
of the graph. In the larger graph, this corresponds to 33,554,432
influence steps and, for some parameter settings, over 10 billion
total steps. For the 256 node graph, we run 10 trials for each of
100 X 101 parameter settings. For the 4096 node graph, we run 5
trials for each of 50 X 51 parameter settings.

3.2 Simulation Results Overview

To better understand Figure 2, we first consider what happens with
different selection rates. When pgeject < 0.5, which is the upper part
of the plots, the majority-like processes (3-majority, 13-majority,
and majority) reach consensus faster if the weight of weak ties
is larger (gstrong being smaller). This is natural because the graph
topology is more stable when pgeject is small. Once the number
of nodes with different opinions become imbalanced the weak ties
act like sampling a complete graph and help the opinions to mix,
strengthening the imbalance. If gstrong is close to 1, the network
has mostly only the strong ties that connect local neighbors. Even
though there may exist a global imbalance of opinions, it still takes
a long time to spread this imbalance through strong ties.
However, when selection rate is high (pgeect > 0.5, the lower part
of the plots), the majority-like processes (3-majority, 13-majority,
and majority) reach consensus slower or even get stuck if there are
a large fraction of weak ties (when gstrong is small). In contrast to
the low selection setting, here the weak tie weights are frequently
updated and form stronger connections among the agents with the
same opinion. Informally, the weak ties form community structures
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Figure 2: Consensus time on spatial network. The color at each point (pgeject: Gstrong) in this bit map represents the average
number of influence steps before consensus (or timeout). The size of graph in the top row is 256 and the bottom row is 4096.

which hinder the agents from communicating between different opin-

ions and prevent the opinions from mixing. As a result, the higher

the selection rate is, the harder for the agents to reach consensus.
We hypothesize that there are three distinct theoretical cases:

Fast Consensus Consensus takes a logarithmic number of
steps (per node).

Slow Consensus Consensus is reached in polynomial time.

No Consensus Consensus is either never reached or takes
exponential time.

Roughly speaking: we expect fast consensus is represented by
the deep blue region; no consensus by the deep red region; and
slow consensus by the other colors. Notice that when there are no
strong ties (gstrong = 0) the transition from fast consensus to no
consensus is rapid. We hypothesize that the there is a threshold
here. Moreover, that there is a “triple point" incident on each of
these three regions.

In the remainder of our analysis we focus on the three “edges":
either gstrong = 0 OF pPgelect € {0, 1}, and we change the other
parameters. Note that when gstrong = 1 selection cannot operate
and the value of pgeleet € {0, 1} is immaterial. So this case is omitted.

3.3 Weak Ties Only (gstrong = 0)

In this section we study the effects of the relative frequency be-
tween selection and influence (pgeject) On the consensus time of
Sel-Inf(finf Pselects Istrong) When the strong ties are absent, gstrong =
0. This corresponds to the left edge of the plots in Figure 2.

We can see that if pgeject = 0, then the dynamics quickly con-
verge in all but the voter model, where it slowly converges. On the
other hand if pgeject — 1, then it nearly always times out before
converging. We hypothesize that in this case there is no consensus.
One way we can see this is in Figure 3, which plots the number of
times nodes switch opinions, normalized by the size of the graph,
before the processes reach consensus. A switch is an influence step
when the chosen agent changes its opinion. The total number of
switches is quite small in this region. This indicates that no real
progress is being made.

k > 1. First we consider k > 1—recall fi,s is k-majority. We
see that on the left side of the plots in Figure 2 the time quickly
transitions from fast to very slow. Again the data in Figure 3 backs
up the story that the process transitions from making quick progress
(with few switches) to making no progress (with a lot of switches).
In the following section we use theoretical analysis to show that
in the mean field approximation the k-majority dynamics (for odd
k) converges to segregation if the relative frequency of selection
is high enough. We present theoretical results on the mean field
approximation of this setting in Section 4.

k = 1. Turning toward the case k = 1, we notice a large differ-
ence. Here the dynamics appear to converge slowly at pgeject = 0.
The time to consensus is intermediate (Figure 2), and requires many
switches (Figure 3). However, as pgject increases, the process tran-
sitions to fast consensus (fast time and few switches). Finally, as
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Pselect continues to increase we transition to increasingly timing
out (slow time and few switches). The slow consensus at pgeject = 0
is expected, because the voter model has no drift. However, the
fast consensus time for intermediate values of pgeject is surprising.
We hypothesize that it is due to the details of the selection process
which induces a rich-get-richer drift. When updating, if a node is in
the minority, then its selections acts slower (because the updates are
additive, but the total mass of its weak ties is smaller). This means
that minority nodes are more likely to be connected to majority
nodes than vice versa.

3.4 No Selection, Only Influence (pseject = 0)

In this section, we consider the setting when there is no selection.
Therefore the process boils down to influence in a static network
with strong and weak ties. The results are at the top edge of the
plots in Figure 2.

For k-majority models for k > 1, we hypothesize that any non-
zero fraction of weak ties leads to fast consensus, which is supported
in the simulation results. The reason is that as soon as an opinion
is a global leader, the weak ties introduce a global drift. Since there
is no selection, each node connects uniformly to all nodes via weak
ties. The strong ties can make local imbalances, but these cancel
each other out as the size of the “boundary” for each opinion is
necessarily the same. In Figure 3, the number of switches increases
when there are more strong ties (with gstrong increasing). When

gstrong is small, on average each node switches fewer than 4 times
before consensus is reached — weak ties help to spread the im-
balance of opinion quickly and in most of the influence steps the
chosen agent updates to the global majority correctly.

However, with just strong ties (gstrong = 1, the top right corner),
the process predominantly changes only at the boundary of regions
of different opinions. Since the boundary of each opinion is the same,
the process takes an unbiased walk (without drift) and converges
slowly.

For k = 1, we have the voter model, which has no drift regardless
of gstrong. However, as there are more weak ties, the graph mixes
better and convergence speeds increase slightly. Indeed, as the
fraction of strong ties increases, the number of switches in Figure 3
increases. However, compared to majority-like dynamics the voter
model has a much larger number of switches regardless of the value
of gstrong-

3.5 Lots of Selection (pselect — 1)

In this section, we want to understand when pgeect is nearly 1,
which is near the bottom edge of the plots in Figure 2. When
Pselect = 1, i.e., no influence, the opinions do not change. Thus
the network does not reach consensus.

When gstrong and pgelect is nearly 1 (near the right bottom corner),
there are no weak ties. Although almost all actions are selections,
there are simply no weak ties to work on, and so the selection steps



do not affect. (Note that Figure 2 only counts influence steps.) Thus,
as discussed in the earlier section it converges but slowly.

When pgeject — 1 and gstrong is increasing, the strong ties in-
creasingly help with consensus, but the weak ties are almost surely
connecting nodes of the same opinion. Conversely, as the number
of weak ties increases, they increasingly promote segregation.

For the majority model, it is abruptly not stuck when gstrong =
1. Here it is, in theory, possible that the dynamics get stuck (for
example if an 8 X 16 region of nodes in the torus have opinion 0 and
the other 8 X 16 region have opinion 1. All agents will have three
neighbors of their type. However, in our empirical results, these
trials never do become stuck. Since there are only strong ties, we
hypothesize, that in the case the dynamics do converge it cannot
be done quickly (in logarithmic time per node) but must take a
polynomial time per node to converge.

4 THEORETICAL RESULTS

In this section, we analyze the process Sel-Inf when the d-regular
random graph which only has weak ties, and we show the mean
field approximation process converges to segregation when the
selection rate is higher than a certain threshold which depends on
the influence function fj,¢ and the degree d.

Formally, we consider Sel-Inf(G®, finf» Pselect» dstrong) Where the

initial weak graph Ei/?,) is a directed d-regular random graph (i.e.,
each node has d out neighbors selected at random), gstrong = 0,
and fi,r is the k-majority influence dynamics with k > 3. We note
that the nodes with the same initial state will have the same ex-
pected behavior. Specifically we can partition the nodes by their
initial opinions into Uy = x(o)(O) and Uy = x(o)(l) and can assume
[Uol| = |U1] = n/2.

For o € {0,1} we callv € xV(c) a type o node, and similarly
define type 7 € {0, 1} nodes. We set X (t) to be the average proba-
bility of type o nodes having opinion 1 at time ¢, and Cy, /(¢), the
expected cut of the weak ties between a type o node and a type ¢
node at time ¢. Formally,

Xo () £ 17y S, B[]

Co.e(®) £ 1ok Zoev, Tr®|

4
{i:6V); € UT}] @

THEOREM 4.1. Given constants k > 1 odd and d, let GO pe g
directed d-regular random graph with n nodes, and gstrong = 0, there
exists Pselect” € (0, 1) such that for all peelect > Pselect for sufficiently

largen, the mean field approximation of Sel-Inf (GO, finf> Pselect> Gstrong)

defined in Equation (4), the system converges to segregation:

thm Xo(t) =0, thm Xi(t)=1 (5)
thm Co,1(t) = thm Cy,0(t) = 0. 6)

Intuitively, this theorem shows in the mean field approximation,
the cut between two sets x(O)(O) and x(o)(l) converges to zero, the
agents in x(©(0) converge to opinion 0, and the agents in x©(1)
converge to opinion 1.

Now we give some intuitions of the proof. We first show that as n
increases the recurrence relation can be (rigorously) quantitatively
approximated by a system of ordinary differential equation (ODE)
(c.f. Figure 4). We analyze the corresponding system of ODE us-
ing tools from dynamical systems theory. One major challenge of
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Figure 4: The vector field for dynamical system of (4) with
initial condition (Xo(t), Co,1(0)) = (0,0.5) for 3-majority under
different pgjo.;. The green lines represent the zeros of the
system of differential equations, and the red path is the nu-
merical solution of the dynamical system. On the left-hand
side (small pgeject), the dynamical system mixes and the prob-
ability of having opinion 1 and the connection between two
types of nodes converges to (0.5,0.5). On the right-hand side
(large pselect), the system segregates— the connection/cut be-
tween two types of nodes converges from 0.5 to 0 which is
characterized in the Theorem 4.1.

Theorem 4.1 is to argue the limits of system (4) converges to (0, 0)
without knowing their analytic solutions. We achieve this by using
tools in the qualitative analysis of dynamical systems which is of
independent interest.

4.1 Preliminaries

For our theoretical result, we need to introduce several results in
dynamical systems. Given f = (fi,..., fy) : D € R? > R? where
D is an open set with z(0) = 7 we define the following two
processes:

d 1
Z = (k+1) _ (k) _ = (k)
dtz f(z),and Z Z nf (Z ) . (7)

THEOREM 4.2 (CONVERGENCE OF EULAR FORWARD METHOD [1]).
Let f : D — R? € C! such that the derivative f’ exists and is
continuous with || f(x)|| < M, and || f(x,t) — f(z,t)|| < L||x — z||.
Then in Equation (7), for all t > 0 the FAQ) differs from the true
solution z by at most

1200 — 2ol < Mt - 1),
n

To capture the long term behaviour of (7), we introduce a notion
of stability: an equilibrium z* € D is asymptotically stable if there
exists § > 0 such that ||z(0) — z*|| < § = lim;—e0 ||2(¢) — 2¥|| = 0.
The stability of the system can be determined by the linearization
of the system which is stated below.

THEOREM 4.3 (LYAPUNOV’S INDIRECT METHOD [33]). Let D C RY,
z* € RY, f:Dm— RY, and A € R4 where D is a neighborhood
of the z*, f is a continuously differentiable function C', z* is an
equilibrium point such that f(z*) = 0, and A = %Lzzz* is the
derivative of f at z*. Then z* is asymptotically stable if A is Hurwitz,
so that all eigenvalue of A, A, the real part of A is negative, R(1) < 0.



Moreover, there exists a closed set N C D and z* € N and a
potential function V. : N — R such that V(z*) = 0, and V(z) >

0, dt(V(Z)) <0forzeN\z"

However the above theorem only captures the behaviour of
z when it is close enough to the stable fixed point z*. To show
our process converges to a neighborhood of the stable fixed point,
Theorems 4.4 is useful as long as the system (7) is in the plane.

To state the theorem we need to introduce more terminologies: A
set is bounded if it is contained in some sphere {z € R? : ||z — a]| <
C} for some a € R? and C > 0. A point p € R is called an w-limit
point of the trajectory yz, = {z(t) : t > 0,2(0) = 2o} of the system
(7) if there is a sequence t;, — oo such that limp, e z(t,) = p.

THEOREM 4.4 (POINCARE-BENDIXON THEOREM [33]). Let %z =
f(z) be a system of differential equations defined on D an open subset
in R? where f is differentiable. Suppose a forward orbit with initial
condition zg, yz, = {z(t) : t > 0,2(0) = 2} is bounded. Then w(zp)
either contains a fixed point or is a periodic orbit.

The following theorem gives us a sufficient condition for the
nonexistence of a periodic orbit. Note that the theorem only holds
for two dimensions systems.

THEOREM 4.5 (BENDIXSON’s CRITERIA [33]). Let f be differen-
tiable in D where D is a simply connected region in R?. If the diver-
gence of the vectorﬁeld f is not identically zero and does not change
sign in D then —z = f(2) has no closed periodic orbit in D.

4.2 Symmetry in Equation (4)

Note that by the definition Co o(t) + Co’l(t) = Cl’()(t) + Cl’l(t) =
1. For all o € {0, 1}, denote the difference of a sequence (a;) as
Alar) = are1 — ar

Ao () =52 (£ (R (1) - Xo)

A(Co, (1) = 2506 [Co 0 2Xo (1= X))

- Co‘,o"(XJ + Xor — ZXO'XO")]

where Rs(t) = Co,6(t)Xo(t) + Co, 6 ()Xo (t) and o’ is the com-
plement of ¢ such that o,6” € {0,1} and ¢’ # 0.

For the initial conditions, by definition, Xo(0) = 0, X7(0) = 1, and
the initial weak graph E is a directed d-regular random graph,
so Cpo(0) = Cp1(0) = C19(0) = C11(0) = 0.5. Thus, for all ¢t > 0
Xo(t) =1 =X1(t), Co,0(t) = C1,1(¢), and Co,1(t) = C1,0()-

With these symmetries, we further define z(® = (Z(t),Z(t))
where Z( ) 2 Xo(t) and Z(t) Co,1(t). We can reduce the number

of parameters from 6 to 2 and have

20 20 1 e (Z(t))

Z§t+1) _ th) 1 Pselectf (Z([)) (8)
where

fZ) = (fing (Z1 + Z2(1 - 221)) - Z1) )

f2(Z) = (=Z3 + 22,1 - Z1)) .

Observe that as n increases, the above process can be approximated
by the following ODE by Theorem 4.2:

{m“(1%MM@

d
I Z9 = Pselectf (Z)

(10)

4.3 Proof of Theorem 4.1
The main idea of the proof has three parts:

(1) There exists a pgejeet” such that for all peeject > Pselect”s Z )
converges to (0, 0) if there is ¢y such that Z(®) is close to
(0,0).
(2) Given pgelect > Pselect” there exists ty large enough such that
z hits an asymptotically stable region for (0, 0) at time #.
(3) Given ty, there exists a n large enough such that Z (nt0) and
z(tp) are close.
We formalize these three statements in Lemmas 4.6, 4.7 and 4.9. The
proof of Theorem 4.1 is deferred to the full version.

LEMMA 4.6. For all peejet there exist dp, ... > 0 and large enough
n such that if there is ty > 0, HZ(tU) - 0” < Operects then

lim ‘Z(’) - o” =0.

t—o0

The detailed proof'is deferred to the full version. To prove Lemma 4.6,

there are two parts: by Theorem 4.3, we can show 0 is asymptot-
ically stable for (10) and there is a potential function V. Then we
can show the Z(*) in (8) converges to 0 when 7 is close to 0 by

showing V (Z(t )) is decreasing as t increases when n sufficiently

large.

LEMMA 4.7. There exists pgelect” < 1 large enough such that for
all peelect > Pselect” and § > 0, there is ty, ||z(t9) — 0] < §/3.

The proof of Lemma 4.7 is more complicated. The statement
basically says starting from the initial condition (0, 0.5), z converges
to 0 when pgeject is large enough.

LEMMA 4.8 (STABILITY). There exists pseject” < 1, a region Ry C
R? containing (0,0), and ty > 0. If pselect = Pselect” and z(0) =
(0,0.5), z(tp) € Ra, and z(t) € Ry forallt > t.

The detailed proof is deferred to the full version. Informally,
to prove the second part of Lemma 4.8, we first define our stable
region Rq = {(x1,x2): 0 < x1 < x7,0 < xp < x;‘},1 where (xi‘,x;)
is the fixed point of Equation (9) with smallest positive x]. We must
show at each boundary the drift is inward such that if the z(¢) is at
the boundary the z(t + €) will go back to the stable region. For the
first part, we show z hits the stable region R4 fast by taking peject
large enough. With Lemma 4.8 the rest of the proof of Lemma 4.7
goes as follows:

ProoF oF LEMMA 4.7. Our system is two dimensional, so the
solution z is a Jordan curve, and it is bounded in R4 if z € Ry4 for
t > 19 by Lemma 4.8. Therefore by Theorem 4.4 z converges to
either a fixed point or a limit cycle.

!Technically, we need our regions to avoid the fixed point, so R4 = [0, yy 1% [0, y;]
where y] < x{ and y; < x;. By the continuity of the system and because the fixed
point (x7, x3) is a saddle point, the stability argument still holds.



We first show no limit cycle. By Theorem 4.5, it is sufficient
to show the divergence of f is not identically zero and does not
change sign in Ry

Vf = (1 _pselect) (_l + f;;f (Zl + 22(1 - 221))) - ps;;d ’

Because a k-majority function defined in (3) is Lipschitz such that
there exists Ly > 0 for all x € [0,1], |fi;1f(x)| < Lg, we can
take pgelect” large enough such that for all x and pgeject = Pselect s
Vf(x) < (1 - pselect) (-1 +Lk) - I% < (1 - pselect)(Lk -1+
1/2d) — 1/2d < 0. Since 0 is the only fixed point in R4 and there is
no limit cycle, lim;—,0 z(¢t) = 0 O

LEMMA 4.9. Given constants ty > 0, 8 > 0, and pseject there exists
n large enough such that V4% f) _ z(t)|| < 6/3.

Since a k-majority function (3) is smooth, Lemma 4.9 is a corol-
lary of Theorem 4.2.

5 REAL SOCIAL NETWORK
5.1 Simulation Setting

We use a dataset consisting of social circles (egocentric networks)
collected from Facebook [21]. The graph has 4039 nodes and 88,234
edges. In this section, we only consider the 10-core? of Facebook
graph as our base network, which contains 2987 nodes and 83,181
edges. We take V as the set of vertices of the 10-core of Facebook
graph. Then we use Jaccard similarity® to measure tie strength and
take the top 80% edges with the highest Jaccard similarity as strong
ties edges, and rest as the initial weak ties.

5.2 Results

We run the influence-selection dynamics with the 3-majority influ-
ence model on the initial graph defined in Section 5.1, and show
the number of influence steps until consensus in Figure 5. We stop
a trial if the total number of influence step is more than the two
times the square of the size of the graph which is 17,844,338. The
setting of bit map is similar to Figure 2, but there are 20 parameters
Pselect ranging from 0 to 0.95 with even space, and 21 parameters
of gstrong ranges from 0 to 1 with even space.

Small qstrong. We first consider the case where gstrong is small
(the left part of the plots). When pgeject = 0 the dynamics almost
always time out and the number of switches is high which indicates
influence may be not enough for the system to consensus when
the graph has a rich structure. Interestingly, when 0 < pgeject < 0.5
(upper-left quadrant except for the top boundary), the processes
reach consensus quickly, as the weak ties help the opinions to mix.
This result shows moderate selection encourages agents to form
(random) connections and helps the system mix. However, when
selection is dominantly taken, pgeject > 0.5 (lower-left quadrant),
the processes often time out, as the selection process creates local
community structures by the weak ties that hinder communication
between agents of different opinions, preventing the opinions from
mixing.
2Nodes with fewer than 10 neighbors are iteratively removed.
[NuNNo |
[NyUNo [

the set of vertices adjacent to node v. The Jaccard coefficient is commonly used to
measure the strength of an edges [26].

3The Jaccard similarity between u, v defined as J(u, v) = where N, is

5000

44000

13000

s 2000

1000

9strong Ystrong
Consensus time number of switches
Figure 5: Consensus time in Facebook and number of
switches before consensus. The color at each point
(Pselect> Gstrong) in this 21 X 20 bitmap represents the av-
erage number of influence steps before consensus (or
timeout) of 5 trials of the dynamics Sel-Inf( fif, Pselects Istrong)
with 3-majority measured in influence steps.

Large Qstrong. In the right part of the plots with large gstrong. the
processes often reach timeout. This may due to the community
structures in strong ties of the real graph.

Interestingly, in the region of a medium-high selection rate (cen-
ter height of the plots), the processes times out if the graph mostly
consists of either weak ties or strong ties when gstrong is near 0 or
1, because of structures in strong ties and weak ties. However, if
gstrong is near 1/2, the graph has a mixture of strong and weak ties.
The community structures within the strong and weak ties seem
to override each other, and so the processes reach consensus fast.
This suggests multiple independent community structures help the
processes reach consensus, even if individually, the community
structures would stifle agreement.

The results of the simulation on the real-world graph and the
synthetic one are similar when gstrong is small and pgejecy is large.
This is not surprising because the initial condition does not matter
in the above condition. When gstrong is large or pgeject is small the
initial graph matters a lot. Our real-world social network has 10-20
rather distinct communities, but our spatial networks, Newman
Watt’s model, are more uniform. Because of this, the processes on
real-world network become stuck substantially more often.

6 CONCLUSION

As discovered by [11], the strength of weak ties is to get new in-
formation and fresh ideas into the comfort zone created by strong
ties. However, in a time-evolving spatial network, especially one
where selection happens at a substantially higher rate than influ-
ence, the role of strong ties and weak ties, in terms of spreading
fresh ideas, are swapped. The weak ties are too fragile, and the
power of spreading information diminishes. The selection causes
the forming of weak ties that only repeat and reinforce the same
opinion that the person already holds, which ironically, does not
bring any new thoughts. It is nevertheless the strong ties that hold
the network together, prevent it from being fully divided, and moti-
vate the participants to compromise.
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