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Abstract

Being popular in language evolution, cognitive science, and
culture dynamics, the Naming Game has been widely used
to analyze how agents reach global consensus via communi-
cations in multi-agent systems. Most prior work considered
networks that are symmetric and homogeneous (e.g., vertex
transitive). In this paper we consider asymmetric or hetero-
geneous settings that complement the current literature: 1)
we show that increasing asymmetry in network topology can
improve convergence rates. The star graph empirically con-
verges faster than all previously studied graphs; 2) we con-
sider graph topologies that are particularly challenging for
naming game such as disjoint cliques or multi-level trees and
ask how much extra homogeneity (random edges) is required
to allow convergence or fast convergence. We provided the-
oretical analysis which was confirmed by simulations; 3) we
analyze how consensus can be manipulated when stubborn
nodes are introduced at different points of the process. Early
introduction of stubborn nodes can easily influence the out-
come in certain family of networks while late introduction of
stubborn nodes has much less power.

1 Introduction

The analysis of shared conventions in multi-agent systems
and complex decentralized social networks has been the
focus of study in several diverse fields, such as linguis-
tics, sociology, cognitive science, and computer science. The
problem of how such conventions can be established, from
among countless options, without a central coordinator has
been addressed by several disciplines (Nowak and Krakauer
1999; Brighton and Kirby 2001). Among them, the multi-
agent models and mathematical approaches gain the most
attention by accounting for both the network topology and
opinion change over time (Steels 2005; Nowak, Plotkin,
and Jansen 2000; Baronchelli, Loreto, and Steels 2008;
Pickering and Lim 2016; Franks, Griffiths, and Jhumka
2013). It has been shown that the emergence of new politi-
cal, social, economic behaviors, and culture transmission are
highly dependent on such convention dynamics (Backstrom
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et al. 2006; Hurford 1989; Nowak, Plotkin, and Krakauer
1999).

In order to analyze the social dynamics in multi-agent sys-
tems in depth, we focus on one stylized model, the Nam-
ing Game, in which agents negotiate conventions through
local pairwise interactions (Steels 1995; Baronchelli et al.
2006a). The Naming Game captures the generic and essen-
tial features of an agreement process in networked agent-
based systems. Briefly speaking, when two agents wish to
communicate, one agent, the speaker, randomly selects one
convention from her list of current conventions and uses this
convention to initiate communication with the listener. If the
listener recognizes that convention, both the speaker and lis-
tener purge their lists of current conventions to only include
that “successful” convention. If the listener does not recog-
nize that convention, she adds it to her list of known conven-
tions.

This simple model is able to account for the emergence of
shared conventions in a homogeneous population of agents.
Both simulations and experiments have been conducted on
various network topologies. However many key questions,
especially those related to asymmetric and heterogeneous
agents, remain open. For example: what network topolo-
gies enable the fastest convergence? Does community struc-
ture help or harm convergence? Does homogeneity or het-
erogeneity help or harm convergence? How robust are the
dynamics to possible manipulations by a small number of
agents? Moreover, rigorous theoretical analysis is almost en-
tirely absent in previous work on the Naming Game. In this
paper we aim to fill in the literature in the following aspects:

1. We discovered that the star graph empirically converges
faster than all previously considered graphs for the Nam-
ing Game. This network differs from previously analyzed
topologies in that it is not symmetric (vertex transitive).
In some sense, it is not too surprising that the star graph,
an asymmetric graph, works so well to reach consensus,
which is a symmetry breaking problem. Though, from
first principles, this is far from obvious, and other asym-
metric graphs, for example a multi-level tree, perform ex-
tremely poorly.

2. To understand network topologies that inhibit fast con-
vergence of the Naming Game, we study two networks
with community structures: agents divided into two dis-



connected communities; and a multi-level tree. For the
first network, it is clear that it cannot converge to con-
sensus (it is disconnected). We investigate how much in-
ter community communication needs to be added in order
to facilitate convergence. Empirically we observe a sharp
threshold on the level of inter community communica-
tion: above this threshold, fast convergence is guaranteed,
and below it the dynamics fail to converge before time
out. We give theoretical justifications for this threshold by
showing that convergence takes exponentially long if in-
ter community communication is insufficient (below the
threshold). For the second network, the multi-level tree,
we observe via simulations that it converges exceedingly
slowly—we conjecture that it takes exponential time. For
this network, we perform the same simulation tests for
adding homogeneity and obtain similar results.

We show that with added communication, the community
divisions that thwart consensus can be overcome. Perhaps
surprisingly, the amount of intercommunity communica-
tion required after disagreement is entrenched, is not sub-
stantially more than the amount of communication needed
to avoid such division in the first place.

3. Finally, we analyze a third way of introducing asymmetry
and heterogeneity: including “stubborn” nodes that do not
follow the standard Naming Game protocol. Our experi-
mental results suggest the following hypothesis: in some
graphs (e.g. cliques) even a small constant (e.g. 5) number
of stubborn nodes can assure convergence to a particular
name. However, in others networks (e.g. star graphs, grid
graphs, Kleinberg’s small world models), the number of
nodes required seems to grow with the size of the graph.
Additionally, we prove that in a complete graph, manipu-
lation after convergence is much harder than before: there
exists a value p such that if an adversary controls more
than a p fraction of the nodes, consensus results can be
easily manipulated; otherwise it takes exponential time to
manipulate the consensus.

The results on stubborn nodes have implications for the
use of the Naming Game in distributed systems. In Steels
and Mclntyre (1998) it was assumed that the protocol
would be robust to manipulation. We confirmed this claim
if the stubborn nodes appear after the system has con-
verged. But in certain networks these protocols are im-
mensely vulnerable to rogue agents that appear from the
start.

Related Work

Baronchelli et al. (2006b) proposed the Naming Game as a
simple multi-agent framework that accounts for the emer-
gence of shared conventions in a structured population. One
of the most important problems for Naming Game is to un-
derstand how fast the global consensus can be reached and
what factors affect it. Some research has been conducted to
analyze the effect of network topology on the Naming Game
dynamics (Dall’ Asta et al. 2006). Lu, Korniss, and Szyman-
ski (2009) show via simulations on real-world graphs that
communities show speedy convergence of the dynamics.
Centola and Baronchelli (2015), using human-subject study,
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empirically demonstrate the spontaneous creation of univer-
sally adopted social conventions and show simple changes
in a population’s network structure can greatly change the
dynamics of norm formation. Baronchelli et al. (2007) show
that finite connectivity, combined with the small-world prop-
erty, ensures superior performance in terms of memory us-
age and convergence rate to that of the grid or complete net-
work. Additionally, a dynamically evolving topology of co-
evolution of language and social structure has been studied
by Gong et al. (2004), for a more complex language game.

One common way to influence the social dynamics and
facilitate the converging process towards the consensus is to
break the symmetry. Lu, Korniss, and Szymanski (2009)Lu
et al. have made use of a special kind of agents called “com-
mitted” nodes, who will stick to a preferred opinion without
deviating, and show that such agents often reduce the time
needed to reach consensus. However, in their work they did
not evaluate how these nodes might influence which name
was converged upon. Additionally, they did not study how
the network topology interacted with stubborn nodes or how
robust the communication protocol is.

2 Preliminaries

We present here the version of the Naming Game introduced
in Baronchelli et al. (2006a) in which agents negotiate con-
ventions (names), i.e. associations between forms and mean-
ing. The process stops when all agents reach consensus on a
single ‘name.” The Naming Game is played by agents on a
(weighted) graph G = (V, E, w) and proceeds in steps. At
each step ¢, each agent v, is characterized by its inventory
(list of names) A;(v) C S. At time 0 each agent has an ini-
tial inventory Ag(-) which is possibly empty. At each time
steps =1,2...

e An edge is randomly chosen with probability proportional
to its weight; and with equal chance one vertex incident
to the edge is considered as the speaker and the other as
the listener.

e The speaker v selects a word ¢ uniformly at random from
its inventory A;(v) and sends c to the listener u. If the



speaker’s inventory is empty, the speaker invents a new
word c (one that is not in the list of any other agent).

o If the word is in the listener’s inventory, ¢ € A4(u), the in-
teraction is a “success”, and both the speaker and listener
remove all words besides ¢ from their inventories.

e If the word is not in the listener’s inventory, ¢ ¢ As(u),
the interaction is a “failure” and the listener adds c to its
inventory.

The process stops when all the inventories are a singleton
of the same name, and we say the process has reached con-
sensus. Notice that the only time a node can have an empty
inventory is if it starts that way and has yet to engage in any
interaction.

The way in which agents may interact with each other is
determined by the topology of the underlying contact net-
work. Here we will introduce the models considered in this

paper.
1. Complete graphs: all agents are mutual connects.

2. Regular random graph G,, i, (see Bollobds (1998)): every
node has degree £k = 8 and the connection is randomly
sample under this constrain.

3. Kleinberg’s small world model (Kleinberg 2000): in stan-
dard Kleinberg’s model the nodes are on two dimen-
sional grid. Each node u connects to every other node
within Manhattan distance p as strong ties, and there are ¢
weak ties which connects to other nodes v proportional to
d(u,v)®. In our simulation, the each nodes has 4 strong
tie which is p = 1, and 4 weak ties with @ = 2.

4. Watts-Strogatz’s small world model (Watts and Strogatz
1998): the nodes are on one-dimensional ring, and con-
nect to 8 nearest nodes with respect to Manhattan dis-
tance, then we rewire the edges of independently with
probability 0.5.

5. Complete bipartite graph is a bipartite graph such that ev-
ery pair of graph vertices in the two sets are adjacent. If
there are p and ¢ graph vertices in the two sets, the com-
plete bipartite graph is denoted K p, ).

6. The trees in this paper refer to perfect k-ary trees with
height h—that is, a rooted tree with h levels where each
node except leaf nodes has exactly k children and the leaf
nodes are all at the level h. Note that a star graph with n
leaves is the complete bipartite graph K ,,. Alternatively,
a star graph can also be defined as rooted tree of branching
factor n — 1 with depth 1.

3 Networks with Fast and Slow Convergence

In this section we study the convergence rate of various
graphs. Here we show that a family of asymmetric graphs,
the star graphs, empirically converge faster than previously
proposed graphs. Next, we point out, perhaps surprisingly,
that the convergence time of a multi-level tree is extremely
slow. We will engineer and analyze fast converge versions
of trees by adding random edges in Section 4.

We first examine the convergence time for different
graphs on a large scale. Here we calculate the time in

terms of the number of communication steps denoted as “s”.
We look at complete graphs, random regular graphs (G, i
graphs), Kleinberg’s small world graphs, Watts-Strogatz
graphs, as well as star and tree graphs. Unless mentioned
otherwise, we will use the same setting defined above in
Section 2. From Figure 2 we can see that the star graph con-
verges the fastest. The tree graph is in fact the slowest. If the
tree has two levels with 5000 nodes, after 107 steps the nodes
still cannot reach consensus. Therefore we did not present
the consensus time of the tree in the figure. Among the rest
of the graphs, the Kleinberg’s small world model is the sec-
ond slowest, while the other graphs have convergence rate
roughly a constant factor of each other.
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Figure 2: Evaluation of the consensus time for different
graphs with size growing until 40000.

The network topology’s impact on the Naming Game’s
consensus time is fairly intriguing. To better understand the
results, let us consider the best and worst topology scenar-
ios for multiple agents to reach consensus. The best (quick-
est) way to reach consensus is to have a specific node to
inform all the other nodes of the name. In other words, it
is represented by a star graph and the center node is always
the speaker. In the naming game framework, even when the
speaker/listener role assignment is uniformly random, the
star graph is still the fastest in reaching global consensus.
This is partly attributed by the asymmetry inherent in the
star graph topology.

To analyze the effect of asymmetry, we simulate the graph
morphing from a balanced complete bipartite graph to a star
by increasing the number of vertices in the larger side of a
complete bipartite graph. Figure 3 shows the converge time
for various complete bipartite graphs. Moving to the right in
the figure, the graph becomes more asymmetric and we see
that the convergence time decreases. Note that at m = n
(m/n = 1), this is a balanced bipartite network, and at
m = 2n — 1 (m/n = 2) this is a star graph. This find-
ing is also aligned with the idea that breaking symmetry can
improve consensus efficiency for naming game via “stub-
born” agents (Lu, Korniss, and Szymanski 2009) (and see
Section 5).

On the other hand, the worst graph topology for reaching
global consensus is the multi-level tree graph. We hypothe-
size that this is due to the “community structure” embedded
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Figure 3: Evaluation for converging time for various com-
plete bipartite graphs K, o,,—,, where m is the cardinality
of the larger partition of vertices.

in the tree that converge fast by themselves. In a two-level
tree, the subtrees of the main tree are themselves star graphs.
Such community structure enables fast “local” convergence
of the dynamics within the communities, but face challenges
in reaching global convergence — the communities are try-
ing to influence each other but each community has more
internal influence than external influence. This phenomena
is the topic of the next section, where we give both empiri-
cal and rigorous theoretical analysis.

4 Effects of Community Structure

In this section we study the effects of community structure
using two network models, one of them is a dense graph
and the other one a sparse graph. The first is a graph of het-
erogeneous agents divided into two disconnected communi-
ties. The simplicity of this model permits theoretical analysis
of precisely how and when community structure can exhibit
convergence. The second is a multi-level tree introduced in
the previous section.

Given a weighted graph G where the sum of the weights
is W we construct Hom(G, p) by adding f’fp(‘ﬁv—) mass to

2
each edge (creating a new edge if it does not exist). This
effectively samples the complete graph with probability p
and the graph G with probability 1 — p.

For each network, we first examine the convergence rate
of Hom(-, p) using simulations. We show that adding a suf-
ficient amount of homogeneity overcomes the heterogeneity.
For the first network, we will provide a theoretical analysis
which predicts, supports, and explains the empirical results.

Disjoint Cliques

Naturally, a graph G of 2n heterogeneous agents divided
into two equally sized disconnected communities will not
converge to consensus. As p increases from O toward 1
Hom(G, p) becomes a network of increasingly intercon-
nected communities.

Additionally, the behavior of the Naming Game depends
on the initial states, i.e., the collection of names at these
nodes at the beginning. We consider two situations for the
initial states. 1) “Empty” start, where all nodes start with

empty lists Vo € V, Ag(v) = ¢. 2) “Segregated” start, in
which the two groups have different initial opinions, Vv €
Vi,Ao(v) = {0} and Vv € V5, Ap(v) = {1}. Clearly it
is more challenging for the Naming Game to reach global
convergence under the segregated initial state.

Simulation Results. Figure 4 (row 1 (a)) shows the conver-
gence time for different values of p under different initial
scenarios on graphs of size n. For each setting we run the
simulation multiple times and plot the time to reach consen-
sus for each run as a dot in the figure. In certain situations it
is hard to reach consensus even after a long time. Therefore
we set 107 as the time-out criteria — i.e., if no consensus is
reached after 107 rounds and we stop the simulation. From
Figure 4 (row 1 (a)) we can see that when p is smaller it is
harder to reach consensus for all situations. When p is suf-
ficiently small all situations may hit the timeout condition
before consensus is reached. In addition, the threshold of p
which allows this happen is larger for the “segregated” ini-
tial setup compared to the empty initial setup. Similarly, for
graphs of larger size it is easier to hit the time out condition.
When p > 0.2 the time to reach consensus for all situations
is small so we chose not to plot it.

To further analyze the naming game behavior when p is in
between [0, 0.25], we show in Figure 4 (row 2 (a)) the frac-
tion of trials failing to reach consensus (before timing out)
with different values of p. It is clear that for the empty start
initial condition, the game will time out at about p = 0.24,
while for the segregated start case, the game will time out
when p is around 0.26. This threshold value changes with
the size of the local community.

Curiously, for the “empty” start, graphs with smaller sizes
are more likely to encounter timeouts than their larger coun-
terparts. This may be because the smaller size of each com-
munity results in a greater chance of quickly reaching local
consensus, which resembles the segregated start scenario.
Therefore, it takes longer for graphs with smaller sizes to
break the local consensus and escape the so called “stuck”
situation.

However, for the segregated start, it immediately starts
with the “worst” case setting where the two communities
have diverging opinions, so overall it takes longer to leave
“stuck” situation compared with graphs of the same size in
the “empty” start scenario. Additionally, graphs with larger
sizes in the segregated setting more easily encounter a time-
out. This may be because larger graphs occasionally time out
even if they are not really “stuck” because they take longer
to reach consensus in any event.

Theoretical Analysis. Next we will analyze the consensus
time for the naming game on Hom(G, p) where G has 2n
agents divided into two equally sized disconnected commu-
nities with segregated start.

Theorem 4.1. Let G be the disjoint union of two n cliques,
each of size n. Then for the segregated start naming game
on Hom(G, p), there exists a constant py ~ 0.110 such that
if 0 < p < pg the expected consensus time is exp(2(n)).

Here we sketch a proof of theorem. A full proof appears
in the appendix.
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of random edges p for (a) disjoint cliques (b) tree structure; (c) normalized number of random edges used for communication

as a function of the probability of random edges p.

To prove this theorem, we formulate the naming game as
a nonhomogenous random walk on Z* and relate this non-
homogenous random walk to a corresponding autonomous
system in R%.

In the segregated start scenario, every node has an ini-
tial opinion, therefore no new name will be generated, and
nodes inventory will be either {0}, {1}, or {0,1}. Due to
the symmetry among nodes, at each step ¢ we only need to
keep track of the number of nodes in the two groups whose
inventory corresponds to the three categories above. More-
over, because the total number of two communities are n,
we can use four variables to discribes this random process:
fraction of {0}, {1} nodes in two communities.

As the size of community increase, the above process is
closely related to its mean field which can be seen as a au-
tonomous system in R*. We show that this system has a sta-
ble fixed point as long as 0 < p < pg. To proof Theorem 4.1
we show two things with the help in autonomous system:

1. Global behaviour: the random process X (¢) will initially
“converge” to a point corresponding to the stabile fixed
point of the autonomous system.

2. Local behaviour: the random process X () takes exponen-
tial time to leave the regions corresponding to the regions
around stable fixed point of the autonomous system.

Tree Structure

In this section, we systematically study the Naming Game
on trees and examine how the naming game converges when
applying Hom(-, p) to the tree structure. We show that con-

vergence is substantially sped up for random edges added
with small probabilities.

In Figure 4 (row 1 (b)) we evaluate the time to reach con-
sensus based on the probability p of choosing random edges.
It is clear that for trees with smaller depth (d) and more
branches, the time to reach consensus is larger. Compared
with Figure 4 (row 1 (a)) we see that by adding random
edges, the tree graph is much less likely to encounter a time-
out than the densely connected community graph. Figure 4
(row 2 (b)) show the fraction of agents failing to reach con-
sensus as a function of p. Additionally, though the additional
pairs can break up the sparse community structure and help
to accelerate the converging process, redundant communica-
tions may be introduced at the same time. Therefore in Fig-
ure 4 (c) for various p, we present the total number of time
the dynamics choose a homogenous edge before consensus
is reached, normalized by time it takes homogeneous graph
(clique) to reach consensus. We can see that there is actually
an tipping point where the homogenous edges are used the
least, which implies the edges of the original tree actually
help towards consensus. Above this point, the homogeneous
edges provide unnecessary communication redundancy.

5 Stubborn Nodes

In this section we introduce another aspect of asymmetry
and heterogeneity. We introduce special agents called “stub-
born” nodes, which never change their own opinions and
aim to influence the whole network. The topic is also related
to the robustness of the naming game in the real world set-
ting, in which a small number of nodes can be malicious and
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not follow the protocol. The primary question we want to ask
is: how and when can such nodes affect the opinion/name to
which the dynamics converge? There are two important fac-
tors to consider here — the network topology and the time
when the stubborn nodes are activated. Here we consider
two situations: 1) the stubborn nodes join at the beginning
of the game; 2) the nodes become “stubborn” after the graph
has converged to one global opinion. Figure 5 (a) (b) show
the fraction of trials converging to the stubborn nodes’ pref-
erence based on the number of stubborn nodes in situation
1) for graphs of size 1000 and 10000, respectively. From
Figure 5 (a), it is clear that in some graphs (e.g. the clique)
even a small constant (e.g. 5) number of stubborn nodes can
guarantee convergence to a particular name. Note that as the
number of nodes increase, the curve barely changes, and if
anything, becomes a sharper threshold. However, in others
networks (e.g. star, grid, Kleinberg model), the number of
required nodes seems to grow with the size of the graph.

This shows that in certain networks these protocols are
not robust to rogue/stubborn agents. By comparing Figure 5
(a) and (b)), we see that the complete graph is not affected
much by its size in terms of the influence efficiency of the
“stubborn” nodes. However, in the Kleinberg and star graphs
the number of stubborn nodes needed greatly depends on the
size of the network. Note that here we choose the same num-
ber of stubborn nodes because complete, regular and Watts-
Strogatz graphs actually perform similarly with size 1000 on
these number of stubborn nodes.

Additionally, we show that in the complete graph, manip-
ulating the name after convergence is much harder than be-
fore: there exists a value py € [0, 1], such that if an adversary
controls more than pg fraction of the node, consensus can
be easily manipulated and otherwise it will take exponential
time to manipulate the consensus. In Figure 5 (c) we verify
this empirically by showing the fraction of trials converging
to the stubborn nodes’ preference (before timing out) based
on the fraction of “stubborn” nodes within the network. It
shows that at least 10% such stubborn nodes are needed to
manipulate the opinion of the original graph empirically.

We provide theoretical analysis on the lower bound for

the number of “stubborn” nodes required to manipulate the
global consensus to align with the “stubborn” nodes’ in a
complete graph. In completed graph if the naming game
converges to opinion 1, we want to answer the following
question: what fraction of stubborn nodes with opinion 0 are
required in order to convert the graph’s consensus to 0 in
polynomial time?
Theorem 5.1. Given the naming game with p fraction of
stubborn nodes defined above, there exists a constant py ~
0.108 such that for all 0 < p < pg the expected consensus
time is exp(Q(n)). Additionally, if po < p < 1 foralle > 0
the fraction of original opinion is smaller than € after O(n)
steps.

The proof appears in the appendix.

6 Conclusions

Our work sheds light on how asymmetric and heteroge-
neous agents, in both network topology and node types, af-
fect the Naming Game with respect to convergence rate and
the converged state. We show that in network structure com-
plete asymmetry as in the star network is beneficial while
asymmetry represented in community structures slow down
global convergence. We rigorously studied how community
structure can prohibit global convergence, and we also the-
oretically prove how much additional communication is re-
quired to facilitate convergence for graphs with community
structures. Besides, we also analyze the robustness of dif-
ferent topologies (protocols) and discovered that only about
1% stubborn nodes can make a big difference in the behav-
ior if they are introduced early in the game, while the in-
troduction of stubborn nodes after convergence is achieved
does not change much. Additionally, we theoretically prove
how many stubborn nodes are needed to convert the global
consensus for a complete graph, when they emerge after the
convergence is reached. We believe these insights improve
our foundational understanding of social dynamics in multi-
agent systems and will spur on further insightful studies on
this topic.
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A Preliminary

Our technique to prove Theorem 4.1 and Theorem 5.1 which
combines mean field approximation and stability of differen-
tial systems. We think our technique will apply to other set-
tings as well. At a very high level: first we relate the random
process to a differential equation, and next we characterize
the long term behaviour of differential equation.

Mean field approximation

There is extensive literature about stochastic processes and
its mean field approximation e.g. (Ellison 2000). Given a
nonhomogeneous random walk X (¢) in Z¢ we can associate
the behavior of it with the corresponding differential equa-
tion in R®. Formally, let X,,(¢) be a discrete time Markov
chain on Z¢ with parameter n which is time-homogeneous
and the increments of the walk are uniformly bounded by S.
As a result, random vectors X, (¢ + 1) — X,,(¢) have well
defined moments, which depend on X (¢) and n. In particu-
lar, an important quantity is the one-step mean drift vector
F, : RY — R? defined to be

Fu(X) = EX,(t+ DX, (0] Xa(t) = X (1)

In particular if there exists a function f independent of n
such that F,(X) = f(Z), then there is a close relationship
between X and the x which we define as a solution of the
following autonomous differential system

a’ = f(x) @

with initial condition x(0) = X (0)/n.

The following theorem shows that the differential equa-
tion approx1mates the original random walk X (¢) such that
X (t) ~ nd(L) under proper conditions.

Theorem A.1 (Wormald’s method (Wormald 1995)). For
1 < ¢ < a where a is fixed, let yo : St — R and
fe : R+ 5 R such that for same constant Cy and all
¢, lye(he)| < Con for all hy € S™* and n. Let Yy(t) de-
note the random counterpart of yg(ht) Assume the follow-
ing three conditions hold:

1. (Boundedness) For some functions § = f(n) > 1 and
~v = v(n), the probability that

max |Vt + 1) — Yi(t)| < B

conditional upon H,, is at least 1 — ~ fort < Tp.

2. (Trend) For some function \y = Ai(n) = o(1), for all
{<a

[E[Y,(t+1)

— Yt H) - gl 222y <

fort <Tp.
3. (Lipschitz) Each function f; is continuous, and satisfies a

Lipschitz condition, on
Dn {(tazb "'7Za) it 2 0}7

with the same Lipschitz constant for each {.

Then the following are true.

1. For (0,21, ...,24) € D the system of differential equations

dz
d—;ffg(x 21,0 2a), 0 =1, 2 3)

have a unique solution in D for z; : R — R passing
through z¢(0) = 2, for 1 < ¢ < a, which extends to
points arbitrarily close to the boundary of D;

2. Let A\ > M\ +Conywith A\ = o(1). Fora suﬁ?ciently large
constant C with probability 1 — O(ny + 5 exp( —na® ),

Yo(t) = nZg( )+ O(An) 4

uniformly for 0 < t < on and for each { where zy(x)
is the solution in Equation (3) with z, = Ye@t) ,and o =
o(n) is the supremum of those x to which the solutlon can
be extended before reaching within £>°-distance C ) of the

boundary of D.

Stability of autonomous system

Stability capture the long term behaviour of (2). Here is
some notation: a point Z € R’ is called an equilibrium
point of system (2) if f(Z) = 0. Moreover the equilib-
rium Z is asymptotically stable if Ve > 0,36 > 0 such that
[|[2(0) —z|| <6 = ||z(t) — Z|| < € Vtand 3§ > 0 such that
lim;_, ||z(t) — Z|| = 0. The stability of the system can be
determined by the linearization of the system which is stated
below.

Theorem A.2 (Lyapunov’s indirect method (Strogatz
2014)). Let x* be an equilibrium point for x’' = f(x) where
f : D — R% is continuously differentiable and D is a neigh-
borhood of x*. Let A = %|w:a:* then x* is asymptotically
stable if A is Hurwitz, that is Re()\;) < 0 for all eigenvalues
of A.

Moreover, there exists an close set U C D and x* € U
and a potential function V : U — R such that V (z*) = 0,
and V(z) > 0, 4(V(z)) <0forz € U\ z*.

However the above theorem only captures the behaviour
of x when it is close enough to the stabile fixed point *. On
the other hand for global stability, the following theorems
is quite useful when system (2) is in the plane. To state the
theorem we need to introduce more terminology. A set is
bounded if it is contained in some cycle {z € R?|||z — a <
C} for some o € R? and C > 0. A point p € R? is called
an w-limit point of the trajectory I',, = {z(¢)|t > 0,2(0) =
zo} of the system (2) if there is a sequence ¢, — oo such
that lim,, o, z(t,,) = p.

Theorem A.3 (Poincare-Bendixon Theorem (Strogatz
2014)). Let 2z’ = H(z) be a system of differential equa-
tions defined on E an open subset in R? where H is differ-
entiable. Suppose a forward orbit with initial condition z
I'., = {z(®)|t > 0,2(0) = 20} is bounded. Then either

o w(zp) contains a fixed point
e w(zp) is a periodic orbit

The following theorem gives us a sufficient condition for
nonexistence of periodic orbit



Theorem A.4 (Bendixson’s Criteria (Strogatz 2014)). Let
H be differentiable in E where E is a simply connected re-
gion in R2. If the divergence of the vector field H is not
identically zero and does not change sign in E then z' H(x)
has no closed periodic orbit lying entirely in E.

Note that the theorem only holds for two dimensions sys-
tem and fails in general.

B Main Results

The main idea used to prove both Theorem 4.1 and Theorem

5.1 is to show the existence of a stable fixed point x* of

the solution to differential system (2) and then to relate this

stable fixed point to the nonhomogeneous random walk (1)

by showing:

1. Global behaviour: the random process X (¢) will initially
“converge” to a point corresponding to the stabile fixed
point of the autonomous system.

2. Local behaviour: random process X (¢) takes exponential
time to leave the region corresponding to a regions around
stabile fixed point of the autonomous system.

Here we prove a auxiliary theorem for the second part.

Theorem B.1. [f x* is an asymptotically stable equilibrium
of (2), given a closed set U containing x* there exists r, > 0
such that in system (1) if || X (to)/n — z*|| < 7, then

E[arTg;trzin{X(T) ¢ UM X (to)/n—a*|| < rq4) = exp(Q(n)).

To prove Lemma B.1, we use the second part of Lya-
punov’s indirect method Theorem A.2, which shows the ex-
istence of a potential function V(x) at some region around
the asymptotically stable fixed point in system (2) such that
the value of potential function is strictly decrease along the
trajectory. On the other hand, the counterpart of that poten-
tial function in (1) will be a supermartingale V(X (¢)) and
we use the optional stopping time to show that it takes an
exponential time for the supermartingale to increase by con-
stant.

Proof of Lemma B.1. By Theorem A.2, we know that there
exists a potential function V' and an open region U C D
such that V(z*) = 0, and V(z) > 0, %(V(az)) < 0 for
x € U\ z*. Now we consider a random process

and the conditional expectation is

EW(i+1) = W(@)|X(0)]

By (XU oy (X0 )
‘ X(4)
:VV(X:)) ' f( nn ) +O(ﬁ)
1d 1
:E%V(x) o X(0) +O(ﬁ) )

Therefore W (i) is a supermartingale such that E[W (i+1) —
W(i)|X(4)] < 0 when %}t) € U\ {z*} and n is large
enough. /

The idea is to use the optional stopping theorem by prov-
ing the process X (t) is not likely to pass through the an-
nulus B,, \ B, for some properly choosen r,,r,. Here
we need to use the properties of the potential function V'
from Theorem A.2. Note that U is open, there exists r;, > 0
such that a open set B,, = {||lx — 2*|| < r,} C U. Be-
cause the boundary U \ B,, is compact and V' is continu-
ous, there exists mingep,, V() which is denoted as /,. On
the other hand, because V' (2*) = 0 and V' is continuous,
there exists a close set B,,, where 0 < 7, < 13 such that
lo = max,cp, V(z) < 0.3l

Given such 7o, 1, if X (t9)/n € B, at some time ¢ and
the system leaves the stable region U at time ¢; > t( there
exists 0,7 when n is large enough such that

T =argmin{X(t)/n €U\ B, }

to<t<ty
o = arg torgz;)éT{X(s)/n € B, }

which gives us
W (o) < 0.5lq,and W(r) > I

Moreover by the definition of o, 7, for all 0 < ¢t < 7 the
random process X (t) would stay in the annulus B,, \ B, .
Therefore for all ¢ such that o < t < 7, we have W (¢) is a
strict supermartingale

1d 1. —h

where constant —h = max,eg,,\B,, 4y (z)| < 0 since
the annulus is compact. ’

Therefore by standard optional stopping time theorem
with initial state W (o 4 1) where [, < W (o + 1) < I, the
average time for W (¢) to hit W (t) > I is exp(Q(hn)) =

exp(Q2(n)). O

C Proof of Theorem 4.1

Recall that we want to formulate the naming game as nonho-
mogenous random walk on Z* and relate this nonhomoge-
nous random walk to a correpsonding autonomous system in
R* to study consensus time. Note that we can use four vari-
ables to describe this random process: fraction of {0}, {1}
nodes in two communities by following notations.

Ay communityl | community2
{0} 0] Ry(1)
{1} Bi(t) By (t)
{0,1} M (t) Ma ()
Since n = Ry (t) + B (t) + M, (t) = Ry (t)
By (t) + My(t) for all t, it’s sufficient to consider X ()

NI+

t
(Ry(t), B1(t), Ra(t), B2(t)) in Z* with initial state X (0)
(n,0,0,n) and the naming game reaches consensus at
when X (T') = (n,0,n,0) or (0,n,0,n).



We can now define F'(-) as the mean field of this system
(as in Equation (1)):

F(X(0) =E[X(t+1) - XOIXOl.  ©)

Our approach to understand the behavior of X is mainly
inspired by the stability property of nonlinear autonomous
systems. We define f(-) such that F},(X) = f(2) and then
we can relate the nonhomogeneous random walk X to the
solution of 2’ = f(z) as in (2).

Intuitively we will prove that there exists p such that the
system has an “undesirable” asymptotically stable points =*
(which will be defined mathematically in appendix)

¥ = (r*, 0", b",r")

€24/ —det6el_ed e TdeT6e—et
where 7% = 62+426—j‘3€2€4, b* = 62426—:66264 and
p = 2(1 — e) such that the random process X (t) in Equa-

tion (6) will
1. Reach some region of nz*.

2. Given X (Tp) is in some region of nz* the expected con-
sensus time of the corresponding naming game is expo-
nential in the size of each group exp(€2(n)).

These two conclusions can be proved by the following two
lemmas, respectively and the proof of Theorem 4.1 follows
directly from the above two Lemmas.

Lemma C.1. Given the naming game defined above, if
0<p< # ~ 0.178 given arbitrary constant 4 > 0
the random walk X (t) will converge to x*. That is there exist
To = O(n) such that || X (Ty) /n — || < r4 with probabil-

ity 1 - O( 15 )

xp(ig3,

Lemma C.2. Given the naming game defined above, there
exists a constant py ~ 0.110 such that for all 0 < p < pg
there exists some constant o > 0 such that if || X (To) /n —
x*|| < rq then the consensus time is exp(€2(n))

Now we need to quantify the evolution of this process.
Recalled that our naming game defined in (6)

)}

)}

i}

R

E[R:(t+1) = R(B)IX ()] = {1 - 5 =25+ (—5)%)
+B(—R1 & @7%7(&)273]%132731]%2
2" 2n n 2n n n 2n? 2n?

1 B B R
EBy(t+1) - BulX(0] = L {1 2t 2Bt [y
p,—B1 R By Ry Ry, 3BiRy RiB
+2(2n + n 2n n (n) 2n? 2n?

1 R B B
B[Ra(t+1) = R(0IX(1)] = {1 = 2 =22 +(=2)%)
p,—Ry By Ri B By, 3R:B1  DBaRy
Jr2(2n + n 2n n (n) 2n? 2n?

1 B B R
EB(t+1) - Bat)X(0] = L{(1— 22 222 (fay
p,—By Ry B1 R Ry 5 3B:Ri  RoBy
Jr2(2n +nJFQn n (n 2n? 2n?

Rl(O) = n,Bl(O) = O,RQ(O) = O,BQ(O) =n

)}

has corresponding autonomous differential system as fol-
low.

1
ry = 5{(1 — 7y —2by +b%
1 1 3 1
+ g(?Tl + b1 + 57"2 — b2 — b% — 57"11)2 — 51)17’2)}
1
bllif{(lfb1727"1+7"1
1 3 1
+§(7b1+7“1+ bQ—Tg—T%—*blT'Q—ZleQ)}
1
7’/2_5{(1—7"2—2b2+b2
1 1 3 1
+§(7r2+b2+2r1 b — 53—57“251—5627“1)}
1
b’2:§{(1—b2—2r2+r2
p 3 1
+§(752+T2+ b1—T1 r5 5527“1—57"2191)}
71(0) = 1,01(0) = 0,72(0) = 0,52(0) = (7

Proof of Lemma C.2

With Theorem B.1, to prove Lemma C.2, it is sufficient to
prove z* is a stable fixed point.

Proof of Lemma C.2. With Theorem A.2, it is sufficient to

show all the eigenvalues of A = ﬂ|I:$* are negative. By
R . ox
elementary computation, the eigenvalues of A are

—e—95 —e—95
-D;,——24D
6 1, 6 + D1
e2 -3 e -3
—Dy,— 24D
5 2, 5 + Do
where p = 2(1 — ¢) and

1\/(1 — e)(—8et — 36¢3 + Te2 + 153¢ + 64)

Dy ==
176 e
1
D, = 5\/(1 —e)(—e3 —5e2 + e + 25)

Therefore A is Hurwitz and z* is asymptotically stable if
e>0.835and 0 < p < 0.110 O

Proof of Lemma C.1
To proof Lemma C.1 we prove two claims:

1. The solution z to the differential equation in (7) converges
to x*;

the limit behavior of random process in (6) can be approx-
imated by « in (7), that is lim,, o, X (nt)/n =~ x(t).

With these two claims we can conclude given any r, > 0
there exists to such that || X (¢)/n — z*|| < r, for all
t > to with high probability. For the first claim we use
Poincare-Bendixon Theorem A.3 and use Wormald’s differ-
ential equation method A.1 to prove the second.



Proof of Lemma C.1. First, by the symmetry of the system
and initial conditions 7y = 132 = 1 and I;l = 75 = 0. we
can assume that 71 (t) = by(t) and by (t) = 7, for all £ > 0,
and the system of differential equations is equivalent to the
following

1—
M= (L=r =24 b))+ (b - =5 1Y)
1—
V=0-b—2r+r%+ 26
where r(0) = 1, and b(0) =

whpre r(t) = #1(t) = ba(t) b(t) = #1(t) = ba(t) and
p =
e +\/—4e+6e —ed and b* = & 2_\/—4det6e2—e”

2e
x* = (r 0", 0", r")

Note that such z* exists if —4 + 6e — e > 0,i.e. 0 < p <
4-2v3
4=2v3 5 .178,

(r—b—rQ—bQ)

, and we take

To apply Theorem A.3 in (8), we need to show the orbit
of (r, ) is bounded and there is no periodic cycle. It is easy
to see that r(t), b(t) are bounded in interval [0, 1]. More-
over because if r(t) = b(¢) for some ¢ then r(t') = b(t')
for all ' > t, we have r(t) > b(t). Combining these two
observations we have (r,b) is bounded in Q@ = {(r,b)|r >
b,0 < 7,b < 1}. On the other hand, because V - H =
—2+ 155(=2 — 2r — 2b) < 0¥(r,b) € Q which, by Theo-
rem A.4, proves there is no closed orbit. Therefore we have
proven the first claim: lim;_, o (r(¢),b(r)) = (r*,b*) by
Theorem A.3. Furthermore in (7) we have

[|lz(t) — ™| < 0.5r,Vt > to. (8)

For the second claim, we want to show the original pro-
cess in (6) can be approximated by (7). It is not hard to
show that the process is bounded by § = 1 and v = 0,
and by taking A = O(log(n)) we have with probability

1 — O(lognexp(— logz n)

X(nt)/n =z(t) + O(

in terms of each component.
Combining (8) and (9) we have with probability 1 —
O(lognexp(—log%))
[| X (nt)/n —x*|| < rq,VE > to

when n is large enough. O

1
logn

) ©))

D Proof of Theorem 5.1

We define stubborn node which has different behavior in
naming game. A node s is stubborn if its inventory will
not change the process A;(s) = Ag(s) even when it is the
speaker or listener, and we call node s is stubborn node with
Ap(s), and we call other node as ordinary nodes. Here we
consider that on completed graph if the naming game is al-
ready consensus on opinion 1. The Theorem 5.1 gives a way
to understand the following question: how many nodes stub-
born with opinion 0 do we make in order to change the graph
consensus on opinion 0 in polynomial time?

Theorem D.1 (Restate theorem 5.1). Given the naming
game with p fraction of stubborn nodes defined above, there
exists a constant py ~ 0.108 such that for all 0 < p < pg
the expected consensus time is exp(§2(n)). Additionally, if
po < p < 1 forall e > 0O the fraction of original opinion is
smaller than € after O(n) steps.

Similar to the proof of theorem 4.1, we formulate this
process as nonhomogenous random walk on Z? and relate
this nonhomogenous random walk to a correpsonding au-
tonomous system in R? to study consensus time.

Model Description

Given a completed graph G which has n nodes and the
weight of every pair of node is uniform, if every nodes con-
sensus on 1, we want to make p fraction of nodes stubborn
on 0, and all the set of stubborn nodes .S such that |.S| =
That is Vs € S, Ag(s) = {0} and for all ordinary node
v e V(G)\ S, Ao(v) = {0}.

Because the symmetry of the completed graph, only the
number of stubborn nodes matters, and we apply the same
method in theorem 4.1 to simplify the notations. At time ¢,
we define X (t) = (R(t), B(t)) as our state of Markov chain
where R(t) the number of ordinary node with inventory {0},
B(t) the number of ordinary node with inventory {1} and
M (t) be the number of ordinary node with inventory {0, 1}.
Moreover we use 7 to denote the number of ordinary nodes,
n=|V(G)\ S| = (1 — p)n. Here we have

BIR(: + 1) — R()|X (1)
1D (2 - 2D ()5
B{B(+ 1)~ BOIX(1)

—0-pPEE (-0 D

and the corresponding autonomous differential system is

' =(1—p)*(rm +m® —rb) +p(1 —p)sm
vV =(1—p)*(bm +m? —rb) — p(1 —p)b

Proofs

Similar to theorem 4.1, when p < 0.108 it is striaghtforward
to show there exists a stable fixed point z* # (1,0) and
derived the following two lemmas to prove the first part of
Theorem 5.1.

Lemma D.1. Given the naming game defined above, there
exists po ~= 0.108 such that for all constant 0 < p < pg there
exists some constant v, > 0 such that if || X (Tp) /n—x*|| <
1o then the consensus time is exp(Q(n))

Lemma D.2. Given the naming game defined above, if con-
stant 0 < p < 0.108 given arbitrary constant v, > 0 the
random walk X (t) will converge to x*. That is there exists
To = O(n) such that || X (Ty) /n — *|| < rq with probabil-
ity 1l — O(—28n__ )

exp(

log3 n



For the second part of Theorem 5.1, since if p > pg the
consensus point,c* = (1,0) is the only fixed point of the
system, we can use similar technique in Lemma C.1 and
Theorem B.1 to prove given arbitrary small constant € > 0,
b(t) < efort=0(n).



