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ABSTRACT

We initiate the study of information elicitation mechanisms for
a crowd containing both self-interested agents, who respond to
incentives, and adversarial agents, who may collude to disrupt the
system. Our mechanisms work in the peer prediction setting where
ground truth need not be accessible to the mechanism or even exist.

We provide a meta-mechanism that reduces the design of peer
prediction mechanisms to a related robust learning problem. The
resulting mechanisms are e-informed truthful, which means truth-
telling is the highest paid e-Bayesian Nash equilibrium (up to e-
error) and pays strictly more than uninformative equilibria. The
value of € depends on the properties of robust learning algorithm,
and typically limits to 0 as the number of tasks and agents increase.

We show how to use our meta-mechanism to design mecha-
nisms with provable guarantees in two important crowdsourcing
settings even when some agents are self-interested and others are
adversarial.
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1 INTRODUCTION

Crowdsourcing, the process of employing workers to complete
concise tasks, enables the requester (mechanism designer) to col-
lect valuable information. Image annotation, relevance judgment,
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sentiment analysis, and language translation are now routinely com-
pleted through crowdsourcing on platforms like Amazon Mechani-
cal Turk and CrowdFlower. One major challenge for crowdsourcing
is ensuring reliable results from a diverse set of workers.

To effectively elicit reliable information, a crowdsourcing mech-
anism needs to account for agents’ incentives, which may vary
between individual agents: agents could be strategic, adversarial,
and altruistic [16]. Workers who are strategic can be motivated
with monetary payments. However, the values of such payments
must be chosen carefully; self-interested strategic agents may ma-
nipulate their information or effort level to try to gain additional
payments from the mechanism. For example, an agent participating
in a mechanism that pays agents based on the total number of tasks
they complete may hurry through the tasks without investing the
effort necessary to complete each task well. A good mechanism
must appropriately reward truthful and effortful work.

Workers who are adversarial may have some external incentive
to collude to sabotage the mechanism [10, 11, 13, 15]. Such agents
are unlikely to respond to monetary incentives and thus are often
outside of the purview of the models of agent behavior tradition-
ally considered in mechanism design. However, a rich history of
compromised computer systems serves as a warning of the peril of
ignoring the possibility of these non-strategic agents attempting
to disrupt the system. Examples include denial-of-service attacks
against websites [12], computer viruses [17], Google Bombing [25],
Goldfinger attacks [20] against nascent cryptocurrencies [3], and,
recently, Zoom Bombing [2].

Finally, agents motivated by altruism or honesty may both exert
effort and report truthfully regardless of incentives. If every agent
is honest, eliciting information reduces to a statistical inference
problem illustrated in Figure 1 (a).

One potential way to handle the possible presence of all these
different types of workers is to insert random “gold-standard” ques-
tions whose answers are known. However, these questions can
be cumbersome to construct (e.g., calibrating examples for peer
grading is a costly use of instructors’ time). Another solution is to
pay agents for agreeing with a trusted reviewer. However, this begs
the question of how one can determine which reviewers are trust-
worthy. Moreover, mechanisms employing either of these solutions
necessarily incur additional costs—either paying workers to answer
questions with known answers or employing additional trusted
workers. Furthermore, neither of these methods applies when there
is no accessible ground truth, e.g. on matters of opinion.

Peer prediction (sometimes called information elicitation with-
out verification) literature has introduced new techniques to cir-
cumvent these hurdles. However, peer prediction in the presence
of rowdy crowds with both strategic and adversarial agents faces
several challenges. Adversarial inputs may degrade the quality of
the output. Additionally, adversarial reports may also malign the
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incentives for strategic agents causing even strategic agents to act
unpredictably. For example, strategic agents may answer incor-
rectly believing this will increase their payments due to the effects
of adversarial agents. Removing the effects of the adversarial behav-
ior in crowdsourcing systems is made additionally difficult because
crowdsourcing workers are often transient and/or anonymous.

Our Contributions. We design crowdsourcing mechanisms that
can elicit information from rowdy crowds, where a constant fraction
of the crowd can adversarially collude and the remaining agents are
strategic. Our mechanisms are asymptotically informed truthful.
This means that for any € > 0, for a sufficient number of tasks
and/or agents that: 1) truth-telling is an e-Bayesian Nash equilib-
rium; 2) in expectation, the truth-telling equilibrium pays each
agent within e of their optimal payment under any e-Bayesian
Nash equilibrium and strictly more than under any uninformative
strategy profile, (i.e. where the agents’ strategies do not depend on
their information). In particular, this means that the effect of the
adversaries goes to zero in limit.

In such mechanisms, truth-telling is essentially the best that
each agent can expect to do. Thus, strategic agents should always
report truthfully and effortfully, just as an honest agent would.

We present a meta-algorithm, the Robust Mutual Information
Framework (RMIF), for designing asymptotically informed truth-
ful mechanisms for rowdy crowds (Sect. 4). This meta-algorithm
reduces the mechanism design problem to a certain robust learning
problem. As shown in Figure 1. (d), the key is to use the output
of the robust learning algorithm to both compute payments and
produce outputs that are robust against adversarial influence. To
our knowledge, this is the first work that considers information
elicitation from a combination of strategic and adversarial agents.

We apply our meta-algorithm to the multi-task setting, where
each agent is asked a batch of a priori similar questions, e.g., "is
there a bus in the picture?” First, we focus on a general model of
peer prediction, where each task need not to have a ground truth,
but agents’ information for each task is assumed to be correlated
(Sect. 5). Second, we consider the Dawid-Skene model [7], where
each task has a ground truth, and agents’ information is indepen-
dent conditioned on the ground truth.

For both models, we provide asymptotically informed truth-
ful mechanisms for rowdy crowds that are minimal—i.e. agents
need not report any additional information—and detail free—i.e.
the mechanism requires no foreknowledge of agents’ beliefs or
distribution of answers.

1.1 Related Work

The literature on information elicitation without verification fo-
cuses on capturing the strategic aspect of human agents (c.f. Fig-
ure 1 (c)). In the multi-task setting, Dasgupta and Ghosh [6] pro-
posed a seminal informed truthful!, minimal, detail-free mechanism.
Shnayder et al. [24] and Kong and Schoenebeck [19] independently
generalized this beyond binary signals. The former also introduced
the concept of informed truthfulness. The latter work proposed a

! Actually, it is strongly truthful, a slightly stronger notion.
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mutual information based meta-algorithm, which our Robust Mu-
tual Information Framework (RMIF) builds upon. The prior mecha-
nism design work does not consider adversarial agents, and offers
no guarantees in the presence of adversaries.

Issues of adversarial inputs are broadly studied by the robust
learning literature. In particular, the multi-tasks setting corresponds
to robust batch learning which is studied in Qiao and Valiant [22]
and Chen et al. [5]. In both works, an adversary controls an «
fraction of the input samples, while the other 1 — « fraction of
data are ii.d. sampled from an unknown target distribution. The
proposed learning algorithms are shown to be robust such that
as the number of samples increases, the error between the output
and the target distribution decreases. In addition, empirical works
like Goodfellow et al. [14] and Papernot et al. [21] also provide
promising approaches to defend against adversary who can alter
input data in a separate manner. This approach is illustrated in (b)
in Figure 1. Notice that these papers do not consider the mechanism
by which the non-adversarial data is procured. Instead, it implicitly
assumes that all non-adversarial data is solicited from honest rather
than strategic agents.

- Robust
report algorithm report algorithm

(a) Honest agents (b) Honest & adversarial agents

payment payment
Robust

Learning Learning
algorithm

report | - algorithm
(c) Strategic

(d) Rowdy crowds

Figure 1: Pipeline models for information elicitation from
diverse crowds.

2 MODEL

There are n agents and m tasks. Each agent will report on all the
tasks. There is a finite set of possible signals X. As is common in
the literature [1, 6, 18], we assume that the tasks are a priori similar
where the signals for all agents on each tasks are i.i.d. sampled from
some prior P on X™. We use X to denote the random variable of the
joint distribution of all agents’ signals on all tasks (e.g. with support
X"XM) We use X; to denote agent i’s signals; X; s to denote agent
i’s signal on task s; and X_; to denote the signals of all agents
except i. Moreover, X, X, )A(i,s and X_; are similar notions for
agent’s reports. We often consider a set of permissible priors P,
and it is a common knowledge among the agents that the actual
prior is permissible, i.e., P € P.

A multi-task peer prediction mechanism M = (n,m,X, L) col-
lects m reports in the set X from each of n agents, denoted as X,
and rewards the agents according to the function £ : X™*™ — R".
£Li(X) denotes the i—th index of the reward function, which is agent
i’s payoft.

Our model assumes agents have no cost while obtaining signals.
However, by scaling the payments, our techniques can be general-
ized to the setting where agents incur a cost to obtain signals.



Information Elicitation from Rowdy Crowds

2.1 Model for Rowdy Crowds

In this paper, we disregard the existence of the honest agents so
that all agents are either rational, acting in their selfish interest to
maximize their utility, or adversarial, acting arbitrarily. We use A
to denote the set of adversarial agents and R the set of rational
agent where [n] = A UR. Honest agents will be discussed in future
work (section 7).

Let a be the fraction of adversarial agents so that |A| = an.
Adversarial agents first observe their signals, {X; s : i € Aands €
[m]}. Then they can collude and submit arbitrary reports x;, 5. Since
the adversarial agents can collectively decide their reports, we
model this as one adversary controlling all adversarial agents be-
havior. We define the adversary’s mapping from their signals to
reports as o : XXM — XEMXM We use Sy to denote the set
of strategies available to the adversary.

A rational agent i € R wants to maximize her expected payment
by reporting strategically. Her strategy o; : X; — X; can be seen as
a (random) mapping from her signals X; to reports X;. We make the
common assumption from the peer prediction literature [1, 6, 19]
that agents’ strategies are task-independent. This means agent i
chooses a mapping o; : X — AX, which is applied independently
to each signal. Thus, X i,s is a random variable drawn from 0;(X; s).
We use S; to denote the set of agent i’s possible strategies. We use
S := [1;er Si to denote the set of rational strategy profiles.

Importantly, note that once all agents’ strategies are fixed, X is
itself a random variable which depends on the randomness of X
and the randomness of the strategies.

We call the above setting multi-task information elicitation
from rowdy crowds with parameters (£, «)—RowdyCrowds(?, a),
for short. Given a mechanism M, with prior P, strategies og € Sg,
and o7 € S, for agent i we denote agent i’s ex-ante payment as

E [£iX)].

PM
u; OR,O0H) :=
. (R, 08) Xoon o

Definition 2.1. In RowdyCrowds(P, ), a (rational) strategy pro-
file og € Sg is called an e-Bayesian Nash equilibrium (¢-BNE)
in M if o is an e-BNE regardless of the adversary’s strategy or
P € P. Formally, for all i € R, al.' € S;, and all adversarial strate-
gies 04 € S with |A| = an,

P,M P,M
u; (og,09) = u; (O"R\{i}vo'i”o'ﬂ) —€.

2.2 Mechanism Design

In the literature of information elicitation, there are two partic-
ularly important classes of task-independent strategies: the first
is the truth-telling strategy profile, T, where all rational agents’
reports are equal to their private signals. The second is an unin-
formed strategy profile, 0, where all rational agents’ strategies
are independent of their signals. Ideally, truth-telling should be an
equilibrium. It should also be a desirable equilibrium for the agents,
so that they play it rather than any other equilibrium.

The below definition of an e-informed truthful mechanism rig-
orously formulates this goal by adapting the informed truthful
definition from Shnayder et al. [24] to our setting.
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Definition 2.2. A mechanism M for the RowdyCrowds(%, «)
setting is e-informed-truthful if the mechanism is e-informed
truthful regardless of adversary’s strategy. Formally,

(1) The truth-telling strategy is an e-Bayesian Nash equilibrium;

(2) The truth-telling strategy has the highest payment with e

additive error for each agent: for all adversarial strategies
o7 and 0.4’ (which need not be the same), rational strategy
profile og,and i € R, uf’M(rR, oq) > u}.)’M(o:R, oq’)—¢;

(3) For any uninformed strategy profile g, adversary strategies

o7 and o7’ (which need not be the same), and i € R,
P,M P,M ’
u; (T‘R’Uﬂ) > u; (G:R,Uy( )

It is required that truth-telling pay more (up to additive error €)
than any other equilibrium and strictly more than any uninforma-
tive equilibrium. This implicitly accounts for the cost to the agents
of observing the signal. By scaling up the payments, the payment
gap between the truthful and uninformed strategies can be made
arbitrary large to overcome the cost of observing the signal. Note
that only uninformative strategies can be played without incurring
the cost of observing the signal.

Furthermore, we say a mechanism M is asymptotically informed-

truthful, if for all P € P and € > 0, the mechanism is e-informed-
truthful against an « adversary when n and m are large enough.?

As shown by Kong and Schoenebeck [19], f-mutual information
can serve as an important tool for truthful mechanism design. Here,
we consider a special case of this tool which is used throughout
this paper— total variation distance mutual information.

Definition 2.3. Let Px y be the joint distribution of random vari-
ables X and Y, and Py, Py be the marginal distributions of X, Y
respectively. The total variation distance mutual information is the
total variation distance between Py y and Px Py, i.e.

1
IPx,y — PxPylltv = 3 Z IPx, y(x,y) — Px(x)Py(y)l.
xeX,yeyY

We will simply use MI(X; Y) := ||Px,y — PxPylltv.

In this paper, we usually deal with the mutual information be-
tween random vectors with i.i.d. entries. For simplicity, we intro-
duce the termwise mutual information (twMI). Formally, if X, Y are
two random vectors with length of m and i.i.d. entries, MI(X§, Ys) =
MI(Xy, Yy ) for all s, s’ € [m]. The termwise mutual information of
the vectors denotes the mutual information of any pair of entries,
ie twMI(X,Y) = MI(X;, Ys) for all s € [m].

The empirical estimator of termwise mutual information, twMI(X, Y),

uses a realized version of two random vectors X and Y of length
m with 1.i.d entries with support X and Y respectively to estimate
their termwise mutual information:

3>

X,y

H{s: Xs =x,Ys =y}| [{s:Xs =x}|{s:Y¥s =y}
m m?2

1)

The data-processing inequality (DPI) is a well-known (and
very useful for our purposes) property of mutual information: sup-
pose the X and Y are two random variables and M(X) is a (random)

?Here we assume there exist p > 0 such that in permissible priors P, the termwise
mutual information between any pair of agents i and j is great than p.
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function applied to X so that M(X) and Y are independent condi-
tioned on X, then

MI(M(X); Y) < MI(X; Y). (DPI)

Because MI is symmetric, the analogous statement holds if M is
applied to Y.

The data-processing inequality implies that applying any strat-
egy on agents’ signals can only decrease the mutual information.
This property plays an important role in mechanism design. Note
that (DPI) also applies to termwise mutual information.

3 PRELIMINARY: ROBUST LEARNING

The problem of learning a discrete distribution given access to
independent samples has been intensely studied in the statistics
community. In this section, we introduce two different settings for
density estimation for a distribution P on a finite space Q.

In the first setting, estimation is from i.i.d. samples (with no cor-
ruption). If we have my, samples wy, ..., Wy, from P, the empirical
distribution P from those my, samples is defined as

~ 1
P(w) := — Z 1{w; = w] forallw € Q.
mp,

I<mp

The following show that the empirical distribution P has a small
total variation distance from the real distribution P

LEMMA 3.1 (THEOREM 3.1 IN [8]). For anye, § > 0, finite domain
Q, and distribution P on Q, there exists M = O (é max(|Q], (1/5)))

such that for allmp, > M the empirical distribution withmy i.i.d. sam-
ples, P, , satisfies Pr[||P — Py |lrv < €] = 1-6.

Now, we introduce the setting of density estimation with an «
fraction of corrupted batches. Specifically, the input consists of ny
batches and each batch has k; data W € Q"KL At lease a (1 — a)
fraction of the batches draw their samples from the distribution P
i.i.d. which are called honest batches. The remaining « fraction of
batches can be arbitrarily corrupted. The following result shows
if the corruption has this batched structure. We can accurately
recover the density function P such that the error approaches zero
as the number of batches and the size of batches are large enough.
Formally,

THEOREM 3.2 (Q1A0 AND VALIANT [22]). Let o < apypcn = 1/900,
5 € (0,1), and k; > 1. Given np = O((|Q| + kg +log(1/6)) /a?)
batches of samples of which a (1— ) fraction of batches consists of kr,
iid draws from a distribution P with support Q, there is an algorithm
Lyatch that runs in time pon(2|Q|, kr,1/a,log(1/6)) and returns a
distribution P such that ||P — P|lty = O(ar/vkr) with probability at
least1— 6.

Note that we can estimate the distribution P with vanishing error
as k. increases. That is because the adversary in the batch model
can only corrupt & rows of the data in W € Q"KL instead of an
arbitrary « fraction of data. This structure allows the algorithm to
better detect corrupted data. (See [5] and [22] for more discussion.)

4 META ALGORITHM

Now we provide a framework for designing information elicitation
mechanisms for rowdy crowds. We pay each agent i a robust es-
timation of the termwise mutual information between i’s reports
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X; and a (potentially randomly chosen) projection function of the
other agents’ reports f(X_;). A projection function f : X" - Z
maps a collection of n’ agents’ reports to a finite signal space Z.
We can extend this to f : X" — Z™ by applying f to each
task independently.

Definition 4.1. Inthe RowdyCrowds(P, «) setting, let £ : X" —
R" be a payment function, and let F be a distribution over projection
functions, f. Then (L, F) is a robust mutual information estimation
pair with €1, € error if:

For any prior P, truth-telling strategy profile 7, any rational
strategy profile og € Sg, and any adversary strategy o4 € S,
the expected payment of agent i € R satisfies:

uf’L(T'R,Uﬁ)= E [L£iX)]

X, TR, 07

> EfNF[tWMI(Xi;f(Xfi))] — €1, and (2)
uLiogoa)=_ E  [LiX)]

X, or,0a

< By p[twMIOG; f(X-0)] + €. 3)

Moreover, if additionally, we insist the prior is permissible, P € P,
we require:
fEF [twMI(X;; f(X-i))] > €1 + ez for all i € R. (4)

Under this definition, when the (non-adversarial) agents report
truthfully, the expected payment £; of each agent i € R is approx-
imately lower bounded by a certain mutual information (Eq. 2).
Moreover, under any reports, the expected L; is approximately
upper bounded by this same mutual information (Eq. (3)).

Our Robust Mutual Information Framework uses the fol-
lowing theorem to create an (€1 +€2)-Informed Truthful Mechanism
from a (L, F) robust mutual information estimation pair.

THEOREM 4.2. For the RowdyCrowds(P, @) setting, foranyn, m, X,
if (L, F) is a robust mutual information estimation pair with (€1, €2)
error, then M = (n,m, X, L) is (€1 + €3)-informed truthful.

Intuitively, the framework can provide (approximate) informed
truthful mechanisms because, first, for strategic agents, truth-telling
is an approximately optimal BNE by (2) and (3). Second, in any un-
informed equilibrium with information structure P, since )A(rR\ (iy =
{Xj,s :j € R\ {i},s € [m]} does not depend on Xg\ (;}, in (3),
the rational agents’ report is unchanged if we replace the signals
to all always be zeros. This renders the right hand side of Eq. (3)
equal to zero. Thus, as long as the information structure P and the
projection function F satisfy (4), the truth-telling payment exceeds
that of any uninformed equilibrium. We leave the complete proof
of Theorem 4.2 to Appendix A.

We illustrate two ways to deploy our framework. First, we can de-
sign f to be very simple, i.e. projecting onto one variable, and then
L will use robust learning to estimate the termwise mutual infor-
mation (Sect. 5). Second, we can make f itself robust to adversarial
noise (Sect. 6).

5 PEER PREDICTION IN THE GENERAL
SETTING

The general setting of peer prediction considers the case where
agents’ signals are correlated while ground truth need not exist [6,
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19, 24]. In this section, we focus on designing £ to be robust while
considering F that uniformly outputs a random rational agents’
report, i.e. f()A(,,-) = Xj, where j is selected from R\{i} uniformly
at random. We can rewrite Theorem 4.2 as follows.

COROLLARY 5.1. In general RowdyCrowds(P, a) setting, if VP:

<e€

®)
foralli € R and Ejcr) (i [tWwMI(X;, Xj)] > 2¢, then RMIF(L, F)
is 2e-informed truthful.

uf’ﬁ(m ,Gﬂ)_EjeR\{i} JEG.[tWMI(Ui(Xi); 0j(X;))]
i, 0}

Corollary 5.1 follows directly from Theorem 4.2. On one hand,
if all rational agents report truthfully, Eq. (5) is sufficient to show
Eq. (2). On the other, Eq. (5) is sufficient to show Eq. (3) since the data
processing inequality implies that Eq;, o; [twMI(03(X;), 0;(X;)] <
E[twMI(X;, X;)] for all j € R\{i}. Thus, we transform the original
problem into a problem of estimating twMI(X;, X ;) robustly.

Now, we provide two e-informed truthful mechanisms as ap-
plications of our framework. The first is a naive mechanism with
€ = O(a); the second is a mechanism based on a robust learning
algorithm that is asymptotically informed truthful.

5.1 Naive mechanism

The idea of the naive mechanism (Mechanism 1) is straightforward.
We randomly select a peer j and pay i the empirical termwise mutual
information between i and j’s reports, i.e.

LX) = twMI (Xi,Xj) for arandom j € [n] \ {i}, 6)

MECHANISM 1: Naive mechanism for average mutual information be-
tween i and other rational agents

Input: Agents’ report profile X on m tasks, and an index i € [n]

Result: Payment for agent i

Pick j € [n]\{i} uniformly at random.

Compute the empirical joint distribution from agent i’s and j’s reports, for
x,yelX

I{s: Xis = x, X s =y}
- )
and compute the empirical marginal distribution, for x, y € X

Pij(x, y) =

Puwy = W Xes 2 g gy - Lot X 2 00
Output
L1030 = M0, o) = 5 3, 1Piste )= o)l )
x,yeX

The following theorem shows that this indeed yields an e-informed
truthful mechanism. However, the error of the naive algorithm is
€ = O(a), where « is the fraction of adversary, which implies that
Mechanism 1 is not asymptotically informed truthful.

THEOREM 5.2. In the general RowdyCrowds(P, o) setting with m
tasks and n agents, the naive mechanism is | 4(1 + ﬁ)a + On(+/ Im%)) -

informed truthful.
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We leave the proof in Appendix B.1, while we sketch how to
employ Corollary 5.1 to prove the theorem here.

We must bound the error between twMI (payment in Eq. (6))
and the ground truth twMI. On one hand, a rational agent i has
probability 1—« to be paired with a rational peer j. In this case, twMI
is close to twMI with an error of O(+/log m/m) when the number of
tasks is m. In addition, there is an extra error bounded by a which
is caused by taking the average over different sets (j € [n]\{i} and
j € R\{i}). Furthermore, with probability a the selected peer j is
adversarial. In this case, since twMI is bounded between 0 and 1,
the error is bounded by «a.

Theorem 5.2 shows the naive mechanism is @(«)-informed truth-
ful. Thus, with a large a, the naive mechanism has a poor truthful-
ness guarantee. In the next section, we will show that in a general
symmetric setting, we can obtain € < a.

5.2 Mechanism for Symmetric Priors

We denote Psymm as the set of symmetric priors such that the joint
distributions between any pair of agents are identical. Formally,
for all P € Psymm there is a distribution Q on X2, such that for
all i,j € [n] P;j = Q. Furthermore, we say a joint distribution
P is e-informative if the mutual information between any pair of
agents’ signals is greater than e. Let 5y, C Psymm be the set
of symmetric prior such that all P € g, ., are e-informative.

The main idea of our mechanism for symmetric priors (Mech-
anism 2 in Appendix B.2) is to learn this underlying Q robustly
and use it to compute the MI as the payments, and then to appeal
to Corollary 5.1. We employ the batch learning algorithm Ly 4¢ch
[22] which can robustly learn an unknown distribution with finite
samples. The input of Ly, is an N X K matrix where a 1 — a
fraction of the rows contain K i.i.d. sample from the distribution
Q, and the remaining « fraction of rows are adversarially chosen.
Then, Ly,ich returns an estimate of Q with an error asymptotically
decreasing with K. (Theorem 3.2)

MECHANISM 2: Algorithm for symm prior on agent i

Input: Agents’ report profile X on m tasks, and an index i € [n]
Result: Payment for agent i
Set W:=[n]\ {i},K:=|m/|W|]and Z; = O forall j € W;
// the set of K pairs of reports of agent i and j
for s € [m] do

while pick j € W randomly do

if |Z;| < K then

Z;=7Z;V (Xi,s’ Xj,s)Q
break;
Run Lpaich on {Z; }jew and get a distribution Q~,-,* on X?;

/! {Zj}jew consists of |W|=n-1 batches of i.i.d. samples,
and only O(a) fraction of batches are corrupted.

Compute the product of the marginal distribution denoted as R, *; on X?
where forall x, y € X

Ri(x,y)= ) 0ie(x,2) - Y Qinlw, ).

zeX weX
Output
. 1 - N
LiX)= 5 7 1Qu(xy) = R, y)l ®)
x,yeX
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THEOREM 5.3. Given any ¢ > 0, for RowdyCrowds(Pfymm, a), if
and o < pypch, Mechanism 2 is asymptotically informed truthful for
symmetric strategy profile. 3

Compared with the naive mechanism, in Mechanism 2, we are
able to make the error approach 0 by increasing the number of
tasks. Details of the proof are included in Appendix B.2. Here we
provide a sketch.

Our algorithm for symmetric agents has two phases. First, for a
given rational agent i, the joint distributions between o;(X;,s) and
0j(Xj,s) are the same for all j € R\{i} and s € [m], and we denote
this as simply Q;, «. We create an (n — 1) X K matrix as follows: for
each j € [n] \ {i} samples (about) K new tasks to obtain a row of
K fresh samples from Q; j, where K = [m/(n — 1)]. Because an «
fraction of rows are corrupted and the rest are i.i.d. samples from
Qi+, we can apply Lpaicn to learn an estimate Q; . of Q; .. Once
we have Q; ., we can explicitly estimate the estimated termwise
mutual information and pay each agent i accordingly.

REMARK. In order to guarantee all K(n — 1) samples are indepen-
dent, agent i is paired with each j € [n]\{i} K times and each task is
used to generate one sample from Q; ;. Thus, we require the number of
tasks to be at leastn—1, i.e. K = [m/(n—1)] > 1. However, to accom-
modate small values of m, we can make n small by random selecting a
small number the workers and pay them according to our mechanism,
and pay the rest of agents zero. Specifically, given oy qich, @ ande, there
existsng = O (max {6_2, (log 1/€) max{(apatch — @) 2, (0{)_2}}), such
that our mechanism is e-informed truthful mechanism when n > ng
andm > e 2a®ny. See Appendix B.3.

Furthermore, we can use the batch learning algorithm as a black
box, such that the truthfulness guarantee of our mechanism can be
improved with any improvement in the batch learning algorithms
(see in Appendix B.3.) Our reduction does not lose anything in «,
so our mechanism can handle the same fraction of adversaries that
the best batch learning algorithm can.

6 PEER PREDICTION ON DAWID AND SKENE
MODEL

The RMIF can be particularly powerful if the prior P on agents’
signals is a latent variable model where agents’ signals are mutually
independent conditioned on the latent variables. Examples include
Dawid Skene models, Gaussian mixture models, hidden Markov
models, and latent Dirichlet allocations.

The key insight is that if P is a latent variable model, using our
RMIF, it is sufficient to design a robust latent label recovery algorithm
r that, for each task s € [m], can robustly recover the latent variables
Ys € Y from the signals on the task, where Y is the space of possible
latent variables. Armed with such a robust latent label recovery
algorithm r : X" — Y, we can set the projection function F to
deterministically be r. We define the payment function of agent
i € [n] to be L(X) = tWI(X,-; r(X_;)), the empirical estimator of
the termwise mutual informational between agent i’s reports and
the recovered latent variables. The pair (£, F) is a robust mutual
information estimation pair.

3We cannot rule out the possibility that there exists an asymmetric equilibrium in
which some rational agent is paid more than in the truth-telling equilibrium.
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Here we sketch the general idea while showing a rigorous in-
stantiation in Sect. 6.1. Eq. (2) holds by our definition of £ and F
and because the empirical estimate of the mutual information is
close to the real value. For Eq. (3), there are three parts. First, by
(DPI), the payment at the non-truthful strategy profile is weakly
less than the termwise mutual information between agents’ signals.
In other words, uf’L(m ,oq) = E[£i(X)] = twMI(X;; F(X_;)) ~
twMI(X;; F(X_;)) < twMI(X;; X_;). Then, because for any s € [m)],
Xj s and Xj s are independent conditioned on the latent variable
Ys and r(X_;s) ~ Y5, we have twMI(X;;X_;) < twMI(X;;Y) ~
MI(X;; F(X-;)). Finally, because r is a function on the signals on
eachtasks € [m], X_; s, by (DPI), twMI(X;; F(X_;)) < twMI(X;; X_;).
Combining these, we have Eq. (3), since:

ul"L(og, 02) ~ twMI(X;; F(X-1))
< twMI(X;; X-;)

~ twMI(X;; F(X-1)) ~ ul* £ (2, 0.).

In order to satisfy the above conditions, we desire that the robust
latent label recovery algorithm r only requires signals on one task
as input, instead of all the signals on all tasks. However, we may
use other signals to learn the latent label recovery algorithm and
use this fixed function to recover latent variable of each tasks.

6.1 Crowdsourcing on Symmetric Dawid and
Skene Model

We give an example of this approach by considering the symmetric
Dawid and Skene model [7].

Definition 6.1. The symmetric Dawid Skene model (symm DS
model) has parameters (X, Y, w,I') where X is a set of signals, Y
is the set of latent labels, e.g., {good,bad}, w € Ay is the prior
distribution of latent labels, and I' € RIYIXIXT which encodes a dis-
tribution of X conditional on each y € Y, ie Iy x = Pr[X =
x|Y = y]. Formally, for the multitask setting, P(x1,...,x,) =
2yey Wy [lie[n) Iy, x;- We use I to denote the row vector of T

Now we use the RMIF from Sect. 4, and design an asymptotically
informed-truthful mechanism for rowdy crowds. Note that in the
DS model, for any agent i and task s, her signal X; s is independent
of other agents’ signals X_; s on the tasks conditioned on the latent
label of task s, Ys. Suppose we have a robust latent label recovery
algorithm r(X_; ;) which outputs the latent label Y; for each s and
set the projection function F = r. Then Eq. (2) and (3) are satisfied
by the above derivation. Therefore, by Theorem 4.2, we can design
an approximate informed-truthful mechanism for rowdy crowds by
designing an accurate an robust latent label recovery algorithm r.

To successful recover the latent labels, the DS model cannot
be “singular”. A common assumption requires each row of T to
be independent. Additionally, we require the fraction of adver-
sary to be smaller than the distance between each row of T, yps :=

miny, /.4 DiL(TyTy)
Ty - TlogTy ] Where Dki(Tys Ty) := Xy Ty, x log(Ty /Ty, x)

is the KL-divergence from I}y to Ty,.

THEOREM 6.2. Let o = min {@paich/3, YDs }> Where apgich is de-
ned in Theorem 3.2 and ypg is defined above. For RowdyCrowds(Pps, @)
Y. Y
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setting on the symmetric DS model such that a < a*, Mechanism 3 is
asymptotically informed-truthful.

We first state our mechanism formally, and then provide a proof
of Theorem 6.2 in Appendix C.

To minimize the required number of agents and tasks for our
mechanism, we can use the subsampling idea in the remark after
Theorem 5.3. Formally, given small enough € > 0 and & < «*, there

existsng = O (max {(a* —a)%logl/e, (d% +a2log1/e) 2 }) where

dy = % miny, y [y, x min {4, mingz, D (Ty; Tyr)}, such that if n >
ng, m > d,_zaz ng, we have an e-informed truthful mechanism.
Furthermore, we also provide a black-box reduction for Mech-
anism 3. The main difference is that in addition to the black-box
batch learning algorithm, we write the latent label recovery algo-
rithm in a black-box form. The details of the subsampling trick and

the black-box reduction are provided in Appendix C.4.

6.2 Mechanism details
Our mechanism (Mechanism 3) has three stages.

(1) Estimate the parameters of the DS model (w, I') from agents’

report profile X.
(2) For each task s € [m] infer the latent label s based on the

reports {Xi,s}iea_rlzy

(3) Finally, pay each agent with the empirical estimation of
termwise mutual information between her reports and the
estimated latent labels.

In the first stage, we estimate the parameters w and I robustly. First,
we observe that to recover the parameters w and T, it suffices to
estimate the moments of the distribution P. [26] The first moment
Mj is the marginal distribution of one agent’s signal where (M;)x =
2y Wyly,x forall x € X, and the second and third moments are

(M2)x,,x, = ) wyTy x,Ty,x, for all x1,x, € X ©)
Y

(M3)xp, x5, %3 1= Z:wyl"y,x1 Ty, x, Ty, x, forall x1, x2,x3 € X, (10)
y

where M is the probability of two agents’ signals and M3 is the
probability of three agents’ signals. Because M and M3 are distri-
butions on a finite space (X? and X* respectively), we can use a
robust batch learner (Theorem 3.2) for density estimation to derive
estimations Mz and Ms for second and third moments respectively.
Algorithm 4 shows how to use the L}, algorithm to estimate
the second moment M. The idea is very similar to Mechanism 2
in section 5. The algorithm of M3 can be defined similarly. These
moments are indeed density functions on finite domains. Therefore,
with a careful decomposition of tasks, we can use a robust density
estimation algorithm for batch learning setting [22], to derive esti-
mations of the moments and offset the adversary’s attack. Thus, as
the number of tasks m increases, the error between (w, ') and the
real parameter (w, I') vanishes.

In the second stage, with accurate parameters (w, f), we can use
maximum likelihood estimator to infer the latent label for each
tasks g5 for each s in [m]. If the fraction of adversaries « is smaller
than some constant «*, which depends on the parameters of DS
model (w,T'), we can recover latent labels for all tasks with high
probability when the number of agents n is large enough.
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Finally, in the third stage, for each agent i € [n] we use the
empirical estimation of the termwise mutual information between
her reports X; and the estimated latent labels Y.

MECHANISM 3: Mechanism for symmetric DS model

Input: Agents’ reports X on m tasks

Randomly partition agents [n] into three groups {Go, G1, G2} with size at
least | n/3] and tasks [m] into {Tr, Tr } with size at least | m/2 ] which
partition the reports into six blocks: X(g.h) .= {Xi,s i €Gy,s € Th}
forg=0,1,2and h = L, R.

forg € {0,1,2} do // Estimate the parameters

Estimate the second and the third order moments M;g ) e RIKIXIXI 4nd
Mgg) € RIXIXIXIXIXT defined in (9) and (10) by running the robust
batch learning algorithm L}, (in Theorem 3.2) on X' (9:1),

Compute the whitening matrix Q € RXXIYI where
MP(Q, Q)= QMY Q = Iy € RV,

Use the robust tensor power method to compute
eigenvalue-eignevector pairs {(1y, vy) : y € Y} of the whitened
tensor Mgg)(Q, Q, Q). Then compute ﬁv(yg) = /1;2 and
£ = 4,(Q0") Mo, e RIXI,

Set w'9) € Ay and I'9) e RIYIXIXI naturally combine the «»(yg) and
the f;g ) respectively.

org € {0,1,2},s € T do // Estimate the latent labels

Estimate the latent label of task s, ?s(g +1) (mod 3) with a maximum
likelihood estimator using the parameters from group G,

-

(ﬁi(g), 1(9)), and reports from group Gy 11 (mod 3)»
{Xj,s 17 € Ggi1 (mod 3) }»
~(g+1 (mod 3
Ys(g+ (mod 3))

= argmax 1 log v”v;g) + Z log f;gi
s Xj,s

yey J€Gg+1 (mod 3)

-

or i € [n]do // Compute the payment for each agent

Set Y = Y9 when i € Ggi1 (mod 3)

Compute and pay agent i with the empirical total variational distance
mutual information twMI from the at least [m/2] samples
{(Xiso Ys):s € TR} in X x Y.

Recall that for our RIMF, we desire that 1) the robust latent label
recovery algorithm r only requires signals on one task as input,
but 2) we may use other signals to learn the latent label recovery
algorithm and use this fixed function to recover the latent variable
of each tasks.

In order to achieve these, we need to decompose the agents into
three groups Gy, G1, and G,. We also decompose the tasks into two
blocks: Ty and Tg. We use Ty, to estimate the parameters (w,T),
and recover the latent labels for tasks in Tg. Thus, agents’ reports
X € X"™XM are decomposed into six blocks. In Figure 2, we use an
example to show how to use this decomposition in our mechanism.

7 CONCLUSION AND FUTURE WORK

We provide a framework (RMIF) for the design of informed truthful
mechanisms that uses robust learning algorithms to thwart adver-
sarial attacks. This can be used to understand which properties of
robust learning algorithms are useful for information elicitation
from rowdy crowds. In particular, under two commonly used set-
tings, we provide three mechanisms based on our framework to

(11)
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task s
Gy | w®,F©®
Xis
Gy
?5(1)
Gy
| agent i
T Tr

Figure 2: Suppose agent i is in G2 and we want to recover a
latent label of task s € Ty to pay agent i: The mechanism
consists of three stages: 1) We use reports in gray area (tasks
in T from agents in Gy) to obtain estimate (w(o), F(O)). 2) To
infer the latent label f’s(l) for task s € Tr, we apply maximum
likelihood estimator on reports in dark orange area (group
G1), with estimated parameters (W(O), F(O)) from stage 1. 3) Fi-
nally, we pay i € G, the empirical estimate of the termwise
mutual information between her reports in dark blue area
({Xi’s : s € Tr}) and the estimated latent labels {?5(1) :s € TR}

ALGORITHM 4: Algorithm for moments M,

Input: An @-corrupted reports X € QL*™ML
Letky =mp/("})and B= {1 =(i,j): i < j € [nL]};
// Generate (") batches B and each batch has k; samples
for 1 € Bdo
| SetX,=0andl, = |X,|.
for s € [mr] do
while pick 1 = (i, j) € B randomly do
if I, < k, then

L=1+1
Xi e = Xiss Xj.s);
break;

Run Lpaeh on {X, : ¢ € B} and output a distribution M, on Q2;

show that both robust recovery of joint distributions and robust re-
covery of latent variables lead to asymptotically informed truthful
mechanisms for rowdy crowds.

The current paper focuses on handling the setting with strategic
and adversarial agents and the truthful guarantee is the informed
truthfulness. In future work, we believe it is possible to achieve
even stronger truthfulness guarantees by considering the existence
of honest agents or mechanisms in Schoenebeck and Yu [23]. More-
over, in this paper, our truthfulness guarantee only considers pay-
ments to strategic agents. An interesting future direction is to study
how to detect and punish adversarial agents.

Grant Schoenebeck, Fang-Yi Yu, and Yichi Zhang
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A PROOF OF ROBUST MUTUAL
INFORMATION FRAMEWORK

By Definition 2.2, there are three steps to prove e-informed truth-

fulness. We first show that truth-telling is an approximate BNE,

where any agent who deviates from truth-telling cannot achieve

an extra payment larger than €. Suppose all other rational agents

report truthfully. Agent i’s expected payment under strategy o is

ul£(oR\ (1) 0> 0.a) <Bp_pltwMIX;; fX-D))] + € (Eq. (3))

(Eq. (2))
Therefore, the truth-telling strategy profile is an (1 + €2)-BNE.

Next, we show that the truth-telling strategy profile is paid ap-
proximately the highest by similar derivations.

Suf’z(‘[q{, oq)+e+e

u; £ (og. 02) <Ep pltwMIXi: f(X_ )] + €2 (Eq. (3))

(Eq. (2))

Finally, we show that the truthful equilibrium is paid strictly
higher than any uninformed strategy profile. Note that any unin-
formed strategy profile is equivalent to the situation that agents
receive uninformative signals but report truthfully. Thus, for an
arbitrary uninformed strategy profile ¢ (for rational agents), it’s
equivalent to say the agents receive the signals that are all zeros
while reporting truthfully, i.e. 6;(X;) = 7;(0). Thus,

Suf’L(IR, oq)+€e+ e

up £ (0. o.7) <Ep_p[twMI(0; f(X_1))] + €2 = €
(by Eq. (2) and uninformed strategy)
Moreover, we require the prior is permissible (Eq. (4)), so that
€1 +e < EfNF[tWMI(Xi;f(X_i))], and thus,
€2 < By p[twMICX;: fF(X1)] - 1 < u]E (g 0)

where the second inequality is by Eq. (2). Putting this together with
Eq. (4), we have that uf"E(OR, oq)<e< uf’L(rR, 7).

B PROOF OF THEOREMS IN GENERAL
SETTING

B.1 Proof of Theorem 5.2
By Eq. (5), we aim to upper bound the expected difference between
the estimated termwise mutual information twMI and the ground
truth twMI. First, we break this difference into three terms. Then,
we derive the upper bound of the three terms separately.

To simplify notation, we define twMI;; := twMI(0;(X;); 0j(X})),
E [tWMIl'J'] = Ex, 01,0; [tWMI(U,‘(X,‘), Uj(Xj))], and B [tWMI,’j] =
EX, 010, [tWMI(0:(X;), 0j(X)))].

Suppose i is rational, we can bound the left hand of Eq. (5) as

[Betanioy [B [P )| - Bjern [B [tw ]

J— 1 J—

<— J;{E |, || + — jekz\:{i} (2 [wh 5| - 2 [owvin, )
an PE—

+m jER\{i}E[tWMIi’j] . (12)
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This inequality follows directly from separating the summations
and use triangle inequality.

We derive the upper bound of the above three terms separately.
As for the first, though we have no knowledge of what the adver-
sarial agents can do, we know that the total variation distance of
two distributions is always between 0 and 1. Therefore, we know
that the first term in Ineq. 12 is upper bounded by -5 a. Similarly,
because there are n — an — 1 rational agents, we can derive an upper
bound for the third term which is also -5 a.

To bound the second term, we have to derive the upper bound

of tWMIi,J' - tWMIi,j

for rational agents.

We first note that the difference

twMI; j — tWMIi’j‘ is less than

2> By Pyl Y B@RG) - P
(x.y)ex? (x,y)eX? (13)
13

Also, notice that the second term in Eq. (13) can be bounded as

D PP - PP ()|

(xy)ex?

= Y (B -ri) B + (B - ) Putx)|
(xy)ex?

< > P - Pl + ) Piw) - () (14)
xeX yeX

Therefore, in order to bound |thIi, j — twMI;, j|, we only have
to bound the error of the estimated marginal distribution and the
estimated joint distribution. Here, we use a standard result that any
distribution with finite domain Q is learnable within total variation
distance d and with 18 probability in O (W) samples. [9].
Therefore, we can learn the joint distribution with an error bounded
b . . |X|2+log(1/5)

y € and probability 1 -8 with O | —————
we can learn the marginal distribution with an error bounded by
€/2 and probability 1 -8 with O (w) samples. Since we
log(1/8)

62

samples. Similarly,

consider |X| as a constant, when m = O ( ) the following

two upper bounds hold with probability 1 — &.

Z iﬁij(x, y) — Pij(x, y)| <€, and Z |151(x) - P,~(x)| <
(x.y)eX? xeX

€
5
Combining these two bounds with Eq. (13) and Eq. (14), we know
that ‘thIi, j = twMI;, j‘ < € (with probability 1 — §). Furthermore,
we know that [twMI; j — twMI; ;

holds since both twMI;,; and twMI; ; belong to [0, 1]. Therefore,
Ineq 12 can be further written as

Bjeni (i) |B |V || - Bjem gy [E [twhty ]|

:z—na(l—(1—5)5—5)+(1—5)e+6:2(1+;)a+e+§.
n—1 n—1

is upper bounded by 1 always

Then, what’s left is to rewrite the error € + § in terms of m.
Furthermore, we want both € and § are asymptotically equal to
zero as m is large. We know that m = O(=log §/€?). An intuitive

way is to set § = O(1/m) and € = O(y/log m/m). Thus,
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[Betmn oy [B[ 3015 || - By oy [B [owan ]|
logm) '

(15)

1
<201+ —)a+0
n—-1 m

Therefore, combining Eq. (15) with Corollary 5.1, Mechanism 1
is (4(1 + ﬁ)a + Oy, (y/log m/m))—informed truthful.

B.2 Proof of Theorem 5.3

To show that Mechanism 2 is asymptotically informed truthful,
we will show the error of the inform truthfulness, denoted as e,
is asymptotically decreasing in n and m. With the batch learning
algorithm introduced in Theorem 3.2, we will prove € = O(er/VK),
where K = [m/(n - 1)]. To do so:

First, for a given rational agent i, the joint distributions between
0i(Xj,s) and 0j(Xj,s) are the same for all j € R\{i} and s € [m], and
we denote this as simply Q; .. We use Qi,* to denote an estimation
of Q;, « learned by L., with adversarial reports. Moreover, we use
R; « to denote the product of marginal distributions computed from
Qi,« Le. Ri«(x,y) = Y, ex Qi«(x,2) - ZWG&QL*(W, y). Similarly,
R; « is an estimation of R; » computed from Q; .

Following the idea of Corollary 5.1, we want to upper bound
the difference between the expected payment (Eq. (8)) and the
underlying twM], i.e. the left hand of Eq. (5). This difference can be
rewritten as follows.

‘]EX,UfR,Uj{ [Li(X)] - Ejer\(1) [Ex,oi,oj [twMI(0; (X;), Gj(Xj))]”

1

2 EX,U'R,O‘](

1101,+(6 ) = Rin(x )l = ) 1Qi+(x. y) = Ri ol y>|]

x,yeX
Thus, in order to prove the theorem, it is sufficient to prove the

following equation.

DU 10in (x5 9) = Rix, ) = D 1Qiu(x, y) = Riul(x, 9)

x,yeX x,yeX

VK

The upper bound of the estimation error of Q~,-’*(x, y) can be
obtained directly from the results of Ly, [22]. Let € = JL? From

the results of Lyatcn (Theorem 3.2), we know that if every agent
is symmetric and n = O((|X| + K + log(1/8)) /a?), where X is the
signal space, K is the size of each batch (in our case K = [m/(n—1)]),
and 6 € (0,1), then with probability at least 1 — § the error of
learning the joint distribution is O (¢), i.e. |Q,~,*(x, y) — Qi,*(x, y)| =
O (e) for Vx,y € Q. Next, we want to derive the upper bound of
the error of Ri’*(x, Y).

Cramm B.1. |I~€i,*(x, y) — Ri «(x,y)| = O(e).

Since R, «(x,y) = Xzex Qi+(x,2) - Xiyex Qi«(w,y). The claim
is true because every Q; « is at most O(e) away from Q; «, and |X|
is considered as constant.

Thus, we have a upper bound of the error of the product of
marginal distributions which is also O(e). Now, we can write the
average MI as

D 100 ) - Rinx )l = D |Qin(xy) — Ria(x, )] £ O(e).

(x,y)eX? (3, y)eX?

=o(i.
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Note that the above derivation holds with probability 1 — J.
However, by the same argument in section B.1, we know that with
(the other) probability of §, the payment is bounded at 1. Therefore,
by increasing n, we can make § arbitrarily small and the difference
between the expected payment and the expected underlying twMI
is bounded by O(\/LI?). Then combining this with Corollary 5.1, we

complete the proof.

B.3 Optimizing Parameters for Symmetric
Priors

We focus now on minimizing the parameters n and m. First, we
can randomly select a small number of agents, pay those selected
agents according to our mechanism, and pay the rest of agent zero.
Second, we use the batch learning algorithm as a black box for
the design of our mechanism, such that the truthfulness guarantee
of our mechanism can be improved with any improvement in the
batch learning algorithm. Finally, we integrate these two parts and
rewrite Theorem 5.3 with a proof.

For the first part, note that the only requirement on the size
of selected agents is the fraction of adversary in the group is ap-
proximately equal to the original fraction @ with high probability.
Therefore, the size of the selected group is depending on the error
and independent of the total number of agents n. Consequently,
the number of tasks m required is only depending on the error and
independent of n.

Now, before we rewrite a new version of Theorem 5.3, we define
the black-box version of the batch learning algorithm.

Definition B.2. Black-box Batch learning algorithm (o, hy, ¥/ ):
If the fraction of adversarial agents is upper bounded, i.e. « < ap,
dp € (0,1), €, > 0 and the size of each batch kj, = Q(hy(a, €p)).
There exists an n;, = O(Y (e, d, kp,)) where ny, batches of samples
of which a (1 — @) fraction of batches consists of kj, i.i.d. draws from
a distribution P with support Q (|| is considered to be a constant),
there is an algorithm £}, that returns a distribution P such that

IP = Pliry = O(ep)
with probability at least 1 — Jp,.

Any batch learning algorithm can be written in this form with
three parameters, i.e. &y, the upper bound of the adversarial fraction,
hyp, a function of a and ¢;, that determines the requirement of the
size of batch to achieve error €, and ¥, a function that determines
the lower bound of the number of batches. Now, we are ready to
write Theorem 5.3 in a black-box form.

THEOREM B.3. Given a batch learning algorithm L} with pa-
rameters (p, hy, Yy ), in general RowdyCrowds(P, a) setting with
symmetric prior and strategies, @ < ay, then, there exists an n* =

O (max { log1/€” Uy (@, €*, hy(a, e*))}), such that if n > n* and

(ap—a)?’
m > hy(a, €*)n*, an O (¢*)-informed truthful mechanism exists.

The proof is mostly identical to Theorem 5.3. We omit the proof
due to space constrain.

Theorem 5.3 is a special case of Theorem B.3 using Ly, (The-
orem 3.2) as L. We can recover Theorem 5.3 by setting a;, =
hatch = 1/900, hy (@, €p) = o€}, Yy (@, 8, ky) = (kp, +1log 1/6)/a?.
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This leads to an n* = O (max { log1/e ((l) + M)}) and

the requirement on m becomes (61)2 n*. This gives us the following
corollary, which is another version of Theorem 5.3.

CoROLLARY B.4. In the general RowdyCrowds(P, @) setting,with

symmetric prior and strategies, @ < apuch, then, there exists an
% _ log1/e* 1 2 log1/e* . «
n*=0 (max {—(%mchia)z, o) +—=7— || suchthatifn>n

andm > (%)2 n*, a O (¢*)-informed truthful mechanism exists.

C PROOF OF THEOREM 6.2

With basic understanding of those three stages in Mechanism 3 in
Sect. 6, the proof idea of Theorem 6.2 is straightforward. If we can
estimate the parameters (w, I') accurately (Lemma C.2), and recover
all latent labels {Ys : s € Tr} correctly (Lemma C.6), we can pay an
agent by the termwise mutual information between her reports and
estimated latent labels, and asymptotically informed-truthfulness
can be derived from Theorem 4.2.

Before we dive into the proof, we first need to control the frac-
tion of adversary agents in all groups Gy, G1 and Gg. Let a9 be
the fraction of adversary in group G, where g = 0,1, 2. Since we
partition the agents after they reports, in RowdyCrowds(P, a) we
can use a Chernoff bound to show a(9) are close to a for all g.

Lemma C.1. Given RowdyCrowds(P, &) with n agents, for all e, >
0 and 64 > 0, there existsng = Q (bge#) such that ifn > ng,

Pr[Vg =0,1,2, |09 — a| > 4] < Sa.

Now we prove Lemma C.2 and C.6. Due to the symmetry of
Mechanism 3, without loss of generality, we only need to prove
Theorem 6.2 in the perspective of agent i who is in Gs.

C.1 Estimate the parameters

In the perspective of agent i in Gy, for the first stage, she only cares
about the value of F(O), w© in Gy illustrated in Figure 2.

Lemma C.2. For all positive €para and dpara, let npara
= poly(log 1/8para, 1/ Abatch) Where constant apagcn, is defined in The-
orem 3.2. In group Gy, if the fraction of adversary a© < apuen/3,
the number of agents in group 0, | n/3] 2 npara and the number of
tasks |Tg | = Q(egazran3), there exists a permutation 7 on Y such

that with probability at least 1 — dpara
~ (0 ~(0
mﬁx |Wg(/) - W;-[(O)(y)| < €para and m}?X ||1"!§ ) ﬂ(O)(y)”Z < €para,

(0)

where wy " and 11(,0) are the estimated parameters learned from Gy.

The above lemma shows if the number of tasks in Ty is large
enough, we can have an accurate estimation of w and I'. The proof
of Lemma C.2 consists of two parts: First, Lemma C.3 and C.4
ensure the estimated moments ]\;Igo) and A;Igo) are accurate. Then,
in Lemma C.5, we show the spectral method can approximate the
parameter (w, ') when the estimated moments are accurate. We
omit the proof due to the space constrain.

LEmMA C.3 (ESTIMATE My). Let the fraction of adversarial in group
Go to be o < Qpatch/2. For all 5 > 0, there exist np > |n/3] and
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myp > |m/2] depending onlog 1/8 and op,icn /2 such that the output
M;o) is close to My. Formally,

Z M (1., x2) = Ma(x1, x2)| = O (0‘(0) ”i/mL)

x1,x2€X

with probability at least 1 — 6.

The above lemma follows directly from Theorem 3.2. A major dif-
ference is the upper bound of the fraction of adversary is changing
from ap,ich tO Apateh /2. This is because if the fraction of adversarial
agents in group Gy is at most a9, the fraction of the corrupted
batches in that group is at most 229

By similar an augment we have the following lemma.

LEmMMA C.4 (ESTIMATE M3). Let the fraction of adversarial in group
Go a® < Qpatch/3 be a constant. For VS > 0, there exist np > |n/3]
and mp, > |m/2] depending on |X|, log 1/ and apaicn/3. There is
an algorithm that outputs M3 close to Ms. Formally,

Z IV (x1, x2. x5) = M1, x2,x3)] = O (a(o) : \/n?i/mL)

X1,X2,x3€X

with probability at least 1 — §.

The following lemma shows if the estimated M, and M3 are
accurate, we can recover (w, ') accurately.

LEMMA C.5 (LEMMA 4 [4]). There exists a constant K depending
onT andw, such that foralle; < 1/2, if||]\;I£0) —Mz|lop and ||]\;I§O) -
M3 ||0P4 are both less than Key, there exists a permutation i on latent
labels Y such that

- (0 ~(0
m!?x |w§) = Wa(y)| < €1 and m;ix ||1"5(, ) ()l < €1

C.2 Infer the latent labels

For the second stage, we simply compute the most likely label given
the parameters and the reports (of the appropriate group of agents).

For lemmas below, we consider agent i in group G and a tasks j
in Tg. The proof is by a union bound and Chernoff bound argument.
We omit the proof here due to space constrain.

LEmMA C.6. Given a symmetric DS model with parameter (w,T),
minyiyr DKL(Fy ;ry/)

1
4maxy,  |logly, | ’ and €| = 8 mmx,yry,x

recall that yps =

min {4, minyy D (Ty; Ty) }. IFT(®) is accurate where maxy ||I~“;0)—
Tyllz < g1, and the fraction of adversaries in Gy, aW, is less than
YDs, then for alls € Tg

PV # Y] < exp(-0(ny)),

thus, the latent labels for all the tasks are correct with probability
greater than 1 — m, exp(—0(nr)).

In Lemma C.5, we can only show the estimation of parameter is
accurate up to some permutation. Therefore, we can only recover
the latent variable Y accurately up to some permutation. However,
this is sufficient to our mechanism, because the mutual information
is invariant under permutations.

“Here if M is a matrix, ||M |lop is the operator norm (largest singular value). When M
is in REXCXC, [IMllop = % Yliec IIMi,...lop which is the average operator norm
over all C unfoldings.
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C.3 Proof of Theorem 6.2

To prove the theorem, we need to show our payment in Mech-
anism 3 with the latent label recovery mapping f from reports
X" — Y is a robust mutual information estimation pair for any

ef > 0 and e; > 0 when the number of tasks m and the number of

agents n are large enough. Formally, given a sample X € X" with
the latent label Y € Y from (X, Y, w,T), the latent label recovery
mapping f maps X to Y.

First we show Eq. (2): for any adversary strategy o4 € S, the
expected payment of agent i € R satisfies:

up frgooa) = B [LiR)] 2 Ep pltwMI(Xi: F(X_)]-€].
X, TR, 07

Let & be the event that the estimation Y; is equal to the latent label

Y; for all s € Tg up to a permutation 7 on Y,

& :={3n,Vs € Ty, 1?5(1) = n(Ys)}.

When & happens, the latent labels are all correctly recovered up
to some permutation 7. Mechanism 3 approximately pays agent
i with the termwise mutual information between her reports and
latent labels, twMIty (X;; Y) €] /2 when m is large enough because
the termwise mutual information is invariant under permutation.
On the other hand, if the event & fails, agent i loses at most 1,
because the termwise mutual information is bounded by 1.

Therefore, to complete the proof of Eq. (2), we only need to prove

Cram C.7.
Pr[E] > 1-¢;/2 (16)

We can show this by taking n and m large enough and using
union bound on Lemma C.1, C.2 and C.6. Due to space limit, we
omit the details here.

Now we show Eq. (3) is satisfied: for all og and i

w g o= B [Li0] <Bp pltwMICG; FX) e,

Recall that agent i is in group Gy. Regardless of the value of T,
Eq. (11), is a function of reports in group Gjp. Therefore, by data
processing inequality, fix an arbitrary I the mutual information
between YV in Eq. (11) and i’s report is smaller than the mutual
information between the reports in group Gj and i’s reports. Let
ff denote such mapping, and we have

WMI(X;; fx(XG,)) < twMI(X;: Xg,) < twMI(Xi5 X_j).

Moreover, because {X;,s}; are mutually independent conditional
on the latent variable Y for all s, by data processing inequality

twMI(X;; X_) < twMI(X;;Y) < twMI(X;; f(X_;)) + €5 /2

where the last inequality comes from rerunning the above argument
so that f(X_;) = Y; with probability 1 — § where 6 < €} /2. Finally,
by Lemma 3.1, we complete the proof by taking m large enough
such that for any T

ulL(og, o) < twMI(X;; f(XG,)) + €.

SSuch mapping is not well-defined since we cannot always recover the latent label
from a finite number of signals. However, as we show in the results, it is sufficient to
approximately recover the latent label which is possible as the number of signal is
large enough.

Grant Schoenebeck, Fang-Yi Yu, and Yichi Zhang

C.4 Parameter Optimization for Symmetric DS
Model

Similar to Appendix B.3, here we have three steps to optimize the
parameters. First, by Lemma C.1, n should be lower bounded such
that we can randomly select a small number of agents so long as the
fraction of adversarial agents in it is basically unchanged. Second,
if n and m satisfy the requirements of the black-box batch learning
algorithm (Definition B.2), it can guarantee the parameters of the
symmetric DS model will be recovered with small error. Third,
we write the latent label recovery algorithm in Appendix C.2 as a
black box, which leads to an additional requirement on n and m.
Integrating these three parts together, we rewrite Theorem 6.2 in
terms of the black-box parameters and n and m can be optimized.

Definition C.8. Black-box DS model latent label recovery algo-
rithm (ar, dr, Yr):
Given a symmetric DS model with parameter (w,T), let a, and d,
be the parameters given by the algorithm, which could be func-
tions of w,I'. Suppose for any task, there are n, samples of which
a (1 — a) fraction are ii.d. draws from the distribution wyIy, given
the latent label of that task is y, while the remaining « fraction are
adversarialy controlled. If & < «, given an estimation of T, T, such
that max, ||fy = Tyllz < dp, nyr = Qr(er)) and m, = o(1/€,) then
there is a recovery algorithm L; s.t. the latent label of any task
s € [m,] can be recovered with probability at least 1 — O(e,).

As an example, we use the maximum likelihood estimation in
the previous proof which serves as a special case of this black box
algorithm. Here, @, is the upper bound of the fraction of adversaries
required by the algorithm. The input of the latent label recovery
algorithm is an estimation of the distribution I'. The upper bound of
the tolerance of the error of the input distribution is denoted as d.
Finally, ¢ determines the lower bound of the number of samples.
Now, we write Theorem 6.2 in the black-box form.

THEOREM C.9. Given a batch learning algorithm Ly, with pa-
rameters (ap, hy, V), and a DS model latent label recovery algo-
rithm L, with parameters (ar,dy, Yr), let «* = min{ay, /3, @ }. For
RowdyCrowds(Pps., a) setting on the symmetric DS model, if & < o,

there existsann® = O (max { log1/e” ,(Up(a, €%, hp(a, dr)))% er(e*)}),

(a*-a)?
such that if n > n*, m > hy(a, dy)(n*)® and m = o(1/€*), then we
have a O(e*)-informed truthful mechanism.

The proof is basically identical to the proof of Theorem B.3, and
we omit it for space constrain.

Using Lpatch (Theorem 3.2) as L}, and the maximum likelihood
estimator as £,, we can recover Theorem 6.2. Let aj, = apatch =
1/900, hy(a, ep) = az/ei, Up(a,8,kp) = (kp +log1/8)/a?, and
ar = yps, dr = €k, Yr(er) = log1/e,, where yps and € are
defined in Lemma C.6. Plugging these in Theorem C.9 we obtain
the following corollary, which is another version of Theorem 6.2.

CoroLLARY C.10. Let @ = min{apatch/3, ¥Ds}- Then, for any
RowdyCrowds(Pps, ) setting on the symmetric DS model, ifa < a*,

1
there existsann™ = O (max { log1/e (l + log1/e ) ’ }), such that

(a*—a)?’ \ d? a?

2
ifn>n*,m> (di) (n*)3 and m = o(1/€*), then we have a O(e*)-

informed truthful mechanism.
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