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Abstract
We study learning statistical properties from strategic agents
with private information. In this problem, agents must be in-
centivized to truthfully reveal their information even when
it cannot be directly verified. Moreover, the information re-
ported by the agents must be aggregated into a statistical es-
timate. We study two fundamental statistical properties: esti-
mating the mean of an unknown Gaussian, and linear regres-
sion with Gaussian error. The information of each agent is
one point in a Euclidean space.
Our main results are two mechanisms for each of these prob-
lems which optimally aggregate the information of agents in
the truth-telling equilibrium:

• A minimal (non-revelation) mechanism for large popula-
tions — agents only need to report one value, but that value
need not be their point.

• A mechanism for small populations that is non-minimal —
agents need to answer more than one question.

These mechanisms are “informed truthful” mechanisms
where reporting unaltered data (truth-telling) 1) forms a strict
Bayesian Nash equilibrium and 2) has strictly higher welfare
than any oblivious equilibrium where agents’ strategies are
independent of their private signals. We also show a minimal
revelation mechanism (each agent only reports her signal) for
a restricted setting and use an impossibility result to prove the
necessity of this restriction.
We build upon the peer prediction literature in the single-
question setting; however, most previous work in this area
focuses on discrete signals, whereas our setting is inherently
continuous, and we further simplify the agents’ reports.

1 Introduction
Traditional statistical estimation approaches assume inputs
are given and produce an output. However, increasingly, in-
puts must be obtained by eliciting information from a di-
verse set of users. In this new environment, gathering inputs
can be at least as important and difficult as the computa-
tion itself. In many settings, users must be rewarded for their
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participation, and this is especially important when a repre-
sentative sample is desired. However, rewarding users can
create perverse incentives that lead to inaccurate reports, es-
pecially when the answers cannot be verified by the system.
For example, agents may agree to participate due to the flat
fee but then not take the time to report accurately or hide
information due to privacy concerns.

This work develops systems to facilitate accurate statisti-
cal estimates by rewarding honest reporting—even when the
information cannot be directly verified (peer prediction)—
and then aggregating the results. In fact, we will see that
often the aggregation and the reward go hand-in-hand: accu-
rate rewards are produced by aggregating the information of
other agents, but the truthfulness of the other agents relies on
these accurate rewards. This creates a certain “full-pipeline”
solution that integrates information elicitation and aggrega-
tion into a single process.

We consider two fundamental statistical estimation prob-
lems: mean estimation and linear regression. In the mean
estimation problem, the signal space is Rd. Each agent i can
choose to access a signal si ∈ Rd which is drawn from an
unknown Gaussian distribution. The mean of the Gaussian
is unknown to the agents but believed to be drawn from a
commonly known Gaussian prior distribution known to the
agents, but not the mechanism. The mechanism’s goal is
to estimate the mean of the distribution by motivating each
agent i to report some information about si truthfully.

For the linear regression problem, each agent i has a fea-
ture/attribute vector φ(xi) ∈ Rd+1 of a point xi which is
publicly known, and has access to a private signal yi ∈ R.
The yi point is from an unknown linear function applied to
φ(xi) plus some Gaussian error. While the linear function
is not known, it is selected from some common prior. The
mechanism’s goal is to estimate the linear function by mo-
tivating each agent i to report some information about yi
truthfully. Due to the space limit, all our results for the linear
regression problem are deferred to the full version. However,
the key technical ideas are all present in the mean estimation
problem.

Challenges for continuous signal spaces The signal
spaces in the above two problems are both continuous,



which is different from most of the existing work where sig-
nal spaces are discrete. A key technical difficulty for contin-
uous signals is to reduce the report space of each agent. Even
if one could directly port the prior discrete mechanisms to
the continuous setting, the resulting mechanisms would re-
quire agents to report their posterior of others signals. In our
Gaussian setting, this would require agents to report the co-
variance matrices of their prediction of others’ signals. We
do not believe it is realistic to ask agents for such informa-
tion. For example, not everyone knows, or even has intuition
about, covariance matrices.

In contrast, our mechanisms only ask agents for their sig-
nals or their expectation of another agent’s signal.

1.1 Our Results
Mechanism design goals We assume that the agents share
a common prior, i.e. a common joint prior distribution over
agents’ private signals, which is a typical assumption when
agents are only assigned one task (Miller, Resnick, and
Zeckhauser 2005; Prelec 2004). We seek to design informa-
tion elicitation mechanisms that satisfy a number of useful
properties including:
Informed truthful: (Shnayder et al. 2016) Truth-telling is

a strict Bayesian Nash equilibrium which has the high-
est welfare (expected sum of agent payments) among all
equilibria and a strictly higher welfare than any oblivious
equilibrium where agents’ strategies are independent of
their private signals.

Minimal: A mechanism is minimal if agents only need to
report one value from the signal space. Additionally, we
say a mechanism is a minimal revelation mechanism if
the value it requests from each agent is the agent’s pri-
vate information. If the one question the mechanism asks
each agent may be about a different value (e.g. their best
prediction for a peer’s value), we call it a minimal non-
revelation mechanism.

Small population compatible: The mechanism works for
a constant number of participants. In a large-group mech-
anism, we assume that the number of participants goes to
infinity.

Detail-free: The mechanism need not know the common-
prior of the agents.

Informative prior compatible: Agents may have some
prior knowledge about the distribution of signals. In this
case, the mechanism must be robust to an agent reporting
a mixture of its signal and its prior when it is trying to
predict the most likely signal of a peer. A common exam-
ple of an “uninformative” prior is a Gaussian distribution
with an infinite variance (e.g., a Jeffery prior defined in
Definition 2.2).

Our mechanisms Our main result is to develop two in-
formed truthful mechanisms for both mean estimation and
linear regression which optimally aggregate the informa-
tion of agents to estimate the statistical property in the
truth-telling equilibrium: Proxy BTS mechanism and Dis-
agreement mechanism. Our two mechanisms are based on

the same intuitions of the BTS mechanism (Prelec 2004)—
reward surprisingly common signals—and the Disagree-
ment mechanism (Kong and Schoenebeck 2018a; Radanovic
and Faltings 2014)—which punishes agents for giving fore-
casts that appear to disagree with their reported signals. We
also ask if there exists a minimal revelation mechanism. In
general, we show that the answer is no. However, for the
special case where agents’ knowledge of peer’s private in-
formation comes solely from their private information (not
from the prior), we present the Metric Mechanism, a mini-
mal revelation mechanism for small populations.

We summarize the properties of our mechanisms below:

mechanism Metric Proxy BTS Disagreement

strict BNE X X X
informed truthful X X X
informative prior X X
small population X X
minimal X X

Our mechanisms simplify agents’ reports by only collect-
ing signals and/or posterior expectations without collecting
the covariance matrices.

1.2 Related Work
Peer prediction Miller, Resnick, and Zeckhauser (2005)
introduce the peer prediction mechanism which is the first
mechanism that has truth-telling as a strict Bayesian Nash
equilibrium and does not need verification. However, their
mechanism requires the full knowledge of the common prior
and there exist some equilibria that pay more than truth-
telling. In particular, the oblivious equilibrium pays strictly
more than truth-telling. Kong, Ligett, and Schoenebeck
(2016) modify the original peer prediction mechanism such
that truth-telling pays strictly better than any other equi-
librium but still requires the full knowledge of the com-
mon prior. Prelec (2004) designs the first detail-free peer
prediction mechanism—Bayesian truth serum (BTS). More-
over, BTS is informed truthful. However, BTS is non-
minimal: each agent needs to report the forecast in BTS.
In addition, BTS requires an infinite number of partici-
pants. A series of works (Radanovic and Faltings 2013;
2014; Witkowski and Parkes 2012)) relaxes the large popu-
lation requirement but loses the informed truthfulness prop-
erty. Kong and Schoenebeck (2018a) propose a mechanism
that is detail-free, informed truthful and works for a small
population—the disagreement mechanism. In the above peer
prediction literature, agents are assigned a single task and it
is typically assumed that the agents are homogeneous and
share a common prior. Our work lies in the single-task set-
ting and makes the common prior assumption. However, our
study of the linear regression case allows agents to be het-
erogeneous.

Other works (Dasgupta and Ghosh 2013; Kong and
Schoenebeck 2016; Shnayder et al. 2016) consider the multi-
task setting, which requires many a priori similar tasks, but
usually relaxes the assumptions of homogeneous agents and
a common prior.

In contrast with the general peer prediction literature, we



consider a strategic statistical estimation setting where the
private signals are from a continuous space.

Continuous signal space Goel and Faltings (2019) pro-
pose a mechanism that elicits continuous valued multi-
attribute personal data (e.g. body measurements). However,
unlike the present work, they consider a setting where agents
report multiple, say d, attributes and the continuous valued
attributes are modeled by a mixture multidimensional nor-
mal distribution with K components, and their results re-
quire that d,K ≥ 2. They also require the number of agents
to be infinite. We consider the setting where d,K = 1, and
two of our proposed mechanisms are suitable for small pop-
ulations.

Radanovic and Faltings (2014) also consider the continu-
ous signal space. They apply a discretization approach and
ask the agents to report their forecast over all the possi-
ble signals (non-minimal). However, the discretization ap-
proach leads either to large finite space size (when the cells
are small), which renders the forecast report impractical; or
loses a lot of information (when the cells are large). More-
over, a meaningful discretization requires the mechanism to
have certain information about agents’ prior beliefs. Intu-
itively, without having any information on the prior distri-
bution, the mechanism cannot decide what is a good “reso-
lution” of discretization: no matter how small each “cell” is
in a discretization, there exists a Gaussian distribution with
sufficiently small variance such that the probability mass of
this distribution is mostly in a single cell. Because of this,
the mechanism is not detail-free. In contrast, we utilize the
metric information such that we can design minimal mech-
anisms, and the forecast report is practical even in our non-
minimal mechanism.

Kong and Schoenebeck (2018b) consider eliciting agents’
forecasts, which are also continuous values between 0 and
1. However, the strategic statistical estimation problems we
study can come from high-dimensions and lack the structure
which is exploited by Kong and Schoenebeck (2018b).

Strategic machine learning Cai, Daskalakis, and Pa-
padimitriou (2014) study the statistical inference from
strategic sources and this work is an inspiration for this pa-
per. One key difference is that, in their model, each agent
draws a signal with some noise (less noise is more costly),
but then is assumed to truthfully report his received signal.
We do not make the assumption that agents must report
truthfully. This is especially significant in the case where
agents have prior information about the signal that they
could use to coordinate without procuring additional infor-
mation. Their work focuses on incentivizing optimally cost-
effective effort rather than truth-telling.

Liu and Chen (2018) use machine learning techniques
to incentivize agents to report truthfully on heterogeneous
tasks. Conceptually, our linear regression techniques are
similar in that they use information aggregation to accom-
plish information elicitation. However, the work by Liu and
Chen (2018) is rather different as it focuses on the discrete
setting.

Chen et al. (2018b) also consider the problem of strategy-
proof linear regression. However, their setting is very dif-
ferent from ours. In their model, the agents care about the
outcome of the learner, and this is what incentivizes them to
truthfully (or un-truthfully) report. In our setting, agents are
motivated by monetary incentives and are indifferent to the
outcome of the learner.

Finally, there is a series of work on procuring data when
that data has different costs (Roth and Schoenebeck 2012;
Cai, Daskalakis, and Papadimitriou 2014; Chen et al. 2018a;
Zheng et al. 2017). Our model is better suited to study
procuring high-quality data rather than cost efficiency.

2 Preliminaries
Throughout the paper, we use n to denote the total number of
agents. Let ΩS be the signal space, and each agent i obtains
a signal si ∈ ΩS .

2.1 Prior and Posterior
Before obtaining a signal, each agent believes that the set of
n signals (s1, . . . , sn) is sampled from a joint distribution
P over Ωn

S called the prior, which is common knowledge.
After agent i receives signal si, he updates his belief to the
posterior Qi(si), which is a distribution over the remaining
n−1 signals (s1, . . . , si−1, si+1, . . . , sn). We omit the input
si and just write Qi when there is no confusion.

Let P be a family of prior distributions. An important
family of common priors we consider in this paper is the
Gaussian common prior. First, we define a type of joint dis-
tribution called the two-step Gaussian distribution.

Definition 2.1. Given m0 ∈ Rd and two positive definite
matrices σ2, τ2 ∈ Sd++ ⊂ Rd×d where Sd++ is the set of d-
dimensional positive definite matrices, a two-step Gaussian
distribution with parameters (n,m0, σ

2, τ2) is a joint distri-
bution (X1, . . . , Xn) ∈ Rd defined as follows: a common
mean (state) µ is sampled from N (m0, σ

2); for all i ∈ [n],
Xi ∼ N (µ, τ2) are sampled independently and identically.

Definition 2.2. Consider the signal space ΩS = Rd. A
prior P is called a Gaussian common prior if P is a two-
step Gaussian distribution with parameters (n,m0, σ

2, τ2)
for certain m0 ∈ Rd and positive definite matrices
σ2, τ2 ∈ Sd++. We denote a Gaussian common prior by
G(n,m0, σ

2, τ2). P is called a Jeffreys prior if P is a two-
step Gaussian distribution with parameters (n,m0,∞, τ2).1

We summarize some related properties of the Gaussian
common prior below (see Bishop (2006)).

Proposition 2.3. Under a Gaussian common
prior G(n,m0, σ

2, τ2), the marginal distribu-
tion for each si is N (m0, σ

2 + τ2), and after
agent i receives signal si, the posterior Qi is a
two-step Gaussian distribution with parameters
G
(
n− 1, (σ−2 + τ−2)−1(τ−2si + σ−2m0), (σ−2 + τ−2)−1, τ2

)
.

1The Jeffreys prior (Jeffreys 1946) is a special case of the Gaus-
sian common prior where the distribution of the common mean is
arbitrarily close to the uniform distribution. This property is cap-
tured by setting σ =∞.



Consequently, under a Jeffreys prior P = G(n,m0,∞, τ2),
after agent i receives signal si, the posterior Qi is a
two-step Gaussian distribution G

(
n− 1, si, τ

2, τ2
)
.

2.2 Game Theory Basics
Informally, an information elicitation mechanism collects
from each agent i a report, and rewards each agent i based
on his report and the other agents’ reports.
Definition 2.4 (Mechanism). An information elicitation
mechanismM = (ΩR, πR,M1, . . . ,Mn) specifies a space
of allowed reports ΩR, what kind of information should
be contained in the report πR, and rewards each agent i
Mi(r) : Ωn

R → R≥0 upon receiving the report collec-
tion r = (r1, . . . , rn) ∈ Ωn

R. We view πR as a function
πR : P × ΩS → ΩR which maps a prior distribution and
a signal to a report which truthfully contains the required
information.2

Based on the nature of ΩR and πR, mechanisms can be
classified into the following three types.
(Revelation) minimal ΩR = ΩS , and πR(P, si) = si.

That is, the mechanism only collects each agent i’s pri-
vate signal si;

(Non-revelation) minimal ΩR = ΩS , and πR can be arbi-
trary. That is, for each agent i, the mechanism collects a
value r ∈ ΩS , which may be the private signal si, or any-
thing else specified by the mechanism. For example, in
the Gaussian common prior case, this may be the posterior
of the common mean Qi (which is (σ2 + τ2)−1(σ2si +
τ2m0) as given in Proposition 2.3);

Non-minimal ΩR and πR can be arbitrary. For example,
a non-minimal mechanism can collect from agent i his
private signal si and the mean of his posterior belief
Qi. In the case P is a Gaussian common prior, we have
ΩR ∈ Rd × Rd and πR(P, si) = (si, µi) where µi =
(σ−2 + τ−2)−1(τ−2si + σ−2m0) (see Proposition 2.3).
Our disagreement mechanism in Sect. 5 is an example of
this.
The definitions of (mixed) strategy (denoted by θi : P ×

ΩS → ∆ΩR
), 3 (expected) utility (denoted by ui : P ×

∆n
ΩR
→ R), social welfare and Bayes Nash equilibrium fol-

low their standard definitions in game theory, and the pre-
cise definitions are in the full version. A strategy profile
θ = (θ1, θ2, . . . , θn) is truth-telling if each θi is a pure strat-
egy and θi(P, si) = πR(P, si). On the other hand, a strategy
θi is oblivious if θi does not depend on the signals: for any
s1, s2 ∈ ΩS and any P ∈ P , we have θi(P, s1) = θi(P, s2).

2Intuitively, a mechanism recommends πR to agents which is a
mapping from signals to reports, i.e., “what agents are supposed to
report.” This notion is necessary because a real number has count-
ably many digits and a mechanism taking in a single real number
as input can actually encode an arbitrarily long sequence of real
numbers.

3In this work, the report spaces ΩR are Euclidean spaces, and
we only consider the agents’ strategies have finite second moments:
for each agent i and si ∈ ΩS , θi(P, si), E[θi(P, si) · θi(P, si)>]
is finite. The restriction to finite second moment is largely a tech-
nicality as highly diffuse strategies are unlikely to pay well in our
mechanisms.

2.3 Mechanism Design Goals
A mechanism is (strictly) truthful if the truth-telling strategy
profile is a (strict) Bayes Nash equilibrium under every prior
P ∈ P . A stronger goal is to design a mechanism that is
(strictly) truthful and the truth-telling profile has the maxi-
mum welfare. The ultimate goal we want from a mechanism
is the informed truthfulness.
Definition 2.5. A mechanismM is informed truthful under
a prior family P if it is 1) strictly truthful, 2) the truth-telling
profile has the maximum welfare,4 and 3) there is no obliv-
ious Bayes Nash equilibrium or and for any i ∈ [n] and
P ∈ P , ui(P,θ) > ui(P,θ

′), where θ is the truth-telling
profile and θ′ is any oblivious Bayes Nash equilibrium pro-
file.
Definition 2.6. A mechanismM is an optimal estimator of
a statistic, if, in the truthful equilibrium, the collection of
agents’ report forms a sufficient statistic (Fisher 1922).

3 Minimal Revelation Mechanisms
In this section, we study minimal revelation mechanisms
which ask agents to report private signals only. We first
present a mechanism called the metric mechanism that is
revelation minimal and informed truthful when agents have
a Jeffery prior. However, in Sect. 3.2, we present a strong im-
possibility result showing that there is no revelation minimal
mechanism that can achieve truthfulness in general Gaussian
common priors.

3.1 Minimal Revelation Mechanism for Jeffreys
Prior

In this subsection, we present the metric mechanism which
is minimal revelation and informed truthful if agents have a
Jeffreys prior as in Definition 2.2.

Mechanism 1 The metric mechanismMmetric

1: Generate (predetermined) two disjoint groupsA,B with
size equal to bn2 c and n− bn2 c arbitrarily.

2: Each agent i reports a signal ŝi ∈ Rd where ΩR = Rd

and πR(P, si) = si. If |A| < |B| we randomly remove
an agent in group B and give it 0 payment.

3: For each agent i ∈ A we randomly choose a reference
agent j ∈ B and a competitor k ∈ A (and vice versa
for each agent in B) such that i, j, k are distinct. The
payment to agent i is

Mi(ŝ) =

{
−100 if ŝi = ŝk
‖ŝj − ŝk‖22 − ‖ŝj − ŝi‖22 otherwise.

(1)

Theorem 3.1. Given any Gaussian prior G(n,m0,∞, τ2)
defined in Definition 2.2 with n ≥ 4, the minimal revela-
tion mechanismMmetric is an optimal estimator, and is, in
addition, informed truthful.

4There is a subtle distinction. In Shnayder et al. (2016)’s defi-
nition, the truth-telling profile has the maximum expected payment
to each agents. Our definition is equivalent to theirs when every
agent uses the same strategy.



To prove this theorem, the following lemmas are required.

Proposition 3.2 (Bias variance decomposition). Given a
random vector x ∈ Rd and constant matrix A ∈ Rd×d,

E[x>Ax] = Tr(ACov(x)) + E[x]>AE[x],

where Cov(x) = E[(x−E[x])>(x−E[x])] is the covariance
matrix of x.

Proposition 3.2 implies the following lemma, and the
proof is in the full version.

Lemma 3.3. Given a distribution D ∈ ∆Rd and an ar-
bitrary constant positive definite matrix A ∈ Rd×d, define
U : Rd → R as U(x) = Es∼D

[
(x− s)>A(x− s)

]
. Then

U(·) is continuous, and has unique minimizer x = Es∼D[s]
with minU(x) = Tr(ACov(s)).

Proof of Theorem 3.1. Strictly truthful: We first analyze
the best response for agent i at truth-telling strategy pro-
file θ. Note that if everyone tells the truth ŝj = sj which
is a two-step Gaussian distribution, and the probability of
sj = si for any k 6= i is 0. So, a strategy θi is a best re-
sponse if it minimizes the quadratic form

E[‖ŝj − ŝi‖22 | si] = E[(sj − ŝi)>I(sj − ŝi) | si] (2)

Because identity matrix I is positive definite, and sj and
ŝi are independent conditioned on si, by Lemma 3.3,
it is minimized when Ej∈B [sj − ŝi | si] = 0 and
E [Tr(Cov(ŝi)) | si] = 0, so E[θi(si)] = Ej∈B [sj | si] = si
due to Jeffreys prior. As a result, truth-telling is a strict
Bayesian Nash equilibrium.

Truth-telling has the maximum welfare: We want to
show the social welfare of truth-telling equilibrium is bet-
ter than or equal to all other non-oblivious strategy Bayesian
Nash equilibrium.

Given any fixed report profile ŝ such that ∀i 6= k ŝi 6= ŝk,
we consider the expected social welfare with respect to the
randomness over the choice of reference agents j, k. If n is
even,∑

i

Mi(s) =
∑
i

E
j,k

[
‖ŝj − ŝk‖22 − ‖ŝj − ŝi‖22

]
=2

∑
i∈A,j∈B

(
2‖ŝj − ŝk‖22

n

)
− 2

∑
k∈A,j∈B

(
2‖ŝj − ŝk‖22

n

)
=0.

Informed truthful: Finally, we show any oblivious equi-
librium has strictly less welfare. Suppose there is an oblivi-
ous equilibrium with strategy profile θ. θi(si) is independent
of si, so ŝi are independent samples from random variables
θi. Suppose there exists i, k in A, ŝi 6= ŝk, and, without loss
of generality, ŝi 6= Ej∈B [θj ], it is not an equilibrium be-
cause there exists s∗i , (ŝi + Ej∈B [θj ])/2 which has larger
expected payment by (2). Therefore for all i, k inA, ŝi = ŝk
and the average welfare is −100.

Remark 3.4. There is a simple mechanism with 0-1 pay-
ments that achieves the same property. Instead of rewarding

each agent based on (1), we can reward i for being strictly
“between” j and k:

Mi(ŝ) =

{
1, if ‖ŝj − ŝi‖ < ‖ŝj − ŝk‖
0, otherwise.

The same arguments in the proof of Theorem 3.1 show that
this variant of the metric mechanism is informed truthful.

3.2 Impossibility Results
The theorem below, whose proof is deferred to the full ver-
sion, shows that, minimal revelation mechanisms cannot
achieve even the weakest truthful property—truth-telling as
a strict Bayes Nash equilibrium, if no additional assump-
tion is made about the prior distribution (other than it is a
Gaussian common prior). Notice that having truth-telling as
a (weak) Bayes Nash equilibrium is trivial: we can pay each
agent a fixed amount regardless of what he reports.

Theorem 3.5. For any number n of agents, there is no min-
imal revelation mechanism such that the truth-telling profile
{θi(P, si) = si} is a strict Bayes Nash equilibrium.

In the full version, we also show that, if we consider the
nonzero-effort setting where each agent i needs to spend a
positive amount of effort ci > 0 to obtain signal si and as-
sume quasi-linear utility functions (i.e., for each agent i, his
utility is given by his payment minus the effort ci he spent),
there does not even exist a mechanism that has truth-telling
being a (weakly) Bayes Nash equilibrium.

4 Proxy Bayesian Truth Serum
In this section, we propose a minimal mechanism called
the proxy Bayesian truth serum (the proxy BTS), which is
informed truthful for Gaussian common priors. From each
agent, the proxy BTS elicits either the agent’s private sig-
nal or the agent’s posterior expectation. We first present the
mechanism in a way that collects both the private signal and
posterior expectation from each agent, and then show how
to make it minimal by collecting either the private signal or
the posterior expectation.

Theorem 4.1. Let n → ∞ and assume the Gaussian com-
mon prior G(n,m0, σ

2, τ2) on Rd defined in Definition 2.2.
The mean estimation mechanism Mproxy in Mechanism 2
is an optimal estimator. Additionally, Mproxy is informed
truthful.

The main idea of Mechanism 2 is, like the Bayesian truth
serum (BTS) mechanism in (Prelec 2004), to reward “sur-
prisingly common” reports. The agents are asked to provide
both the signals and the posterior beliefs of other agents’ sig-
nals, and their payments can be decomposed into two parts,
the prediction score and the information score.

Prediction score is based on how accurate the reported
prediction is. The first term (−(ŝj − t̂i)

>L−1(ŝj − t̂i)) is
larger when the agent’s prediction t̂i is closer to the refer-
ence agent’s reported signal sj . Moreover, the value of the
first term is essentially the log-likelihood of t̂i with respect
to the Gaussian distributionN (ŝj , L). Thus, it is maximized
from the perspective of agent i when the reported prediction



Mechanism 2 Proxy-BTS mechanismMproxy

1: Generate two disjoint groups A,B with sizes equal to
bn2 c and n− bn2 c arbitrarily.

2: Each agent i ∈ A reports a signal and a prediction of
the posterior mean ri = (ŝi, t̂i). That is ΩR = Rd ×Rd

and πR(P, si) = (si,E[µ|si]). If |A| < |B| randomly
remove an agent in group B and give it 0 payment.

3: For each agent i ∈ A, randomly choose a reference
agent j ∈ B and all agents in A−i , A \ {i} as i’s
competitors (and vice versa when i ∈ B). Calculate the
sample means

µs(i) ,
1

|A−i|
∑

k∈A−i

ŝk, µt(i) ,
1

|A−i|
∑

k∈A−i

t̂k

and sample covariances:

1

|A−i| − 1

∑
k∈A−i

(ŝk − µs(i))(ŝk − µs(i))
> (3)

1

|A−i| − 1

∑
k∈A−i

(t̂k − µt(i))(t̂k − µt(i))
> (4)

of the signal reports {ŝk}k∈A−i
and the prediction re-

ports {t̂k}k∈A−i
respectively.

4: If (3) or (4) is not positive definite, skip to step 6. Other-
wise, let Σs(i),Σt(i) be there positive square roots and
drop i when there is no ambiguity. Compute

K , Σs(Σ
−1
s Σ2

tΣ−1
s )1/2Σ−1

s , L , (K + I)Σ2
s. (5)

5: Depending on t̂i, the agent i’s prediction score PSi(r)
is

−(ŝj−t̂i)>L−1(ŝj−t̂i)+(ŝj−µs)
>Σ−2

s (ŝj−µs), (6)

and depending on ŝi the information score ISi(r) is

−(ŝi−µs)
>Σ−2

s (ŝi−µs)+(ŝi−t̂j)>L−1(ŝi−t̂j). (7)

6: The reward for agent i, Mi(r), is{
−100, if (3) or (4) are singular for some agent
ISi(r) + PSi(r) otherwise

.

is the maximum likelihood estimator of the mean—E[sj |si].
The second term (ŝj −µs)

>Σ−2
s (ŝj −µs) is independent of

agent i’s report, and makes the social welfare, sum of IS and
PS, equal to zero.

Information score is based on an agent’s reported sig-
nal ŝi. A key observation for the information score is that
the expectation of agent i on other agent’s signal in two-step
Gaussian prior is a linear combination of its private signal
si and the prior mean m0. Therefore, if we have 1) agent i’s
expectation on other agent’s signal µs and 2) its expectation
on other agent’s prediction τ̂j , we can recover agent i’s sig-
nal through a proper linear combination of those two values.
Conceptually, we achieve this by rewarding agent i’s signal

Figure 1: Consider a Gaussian common prior G(n, 0, 3, 1),
and agent i receives si = 4. Agent i’s prediction score
has two terms: The blue curve is the first term −(ŝi −
µs)
>Σ−2

s (ŝi − µs). The red curve is the second term (ŝi −
t̂j)
>L−1(ŝi − t̂j).

by two quadratic functions(Figure 1). The optimal point of
the first term (−(ŝi−µs)

>Σ−2
s (ŝi−µs)) is agent i’s expecta-

tion of µs, and the second term (+(ŝi− t̂j)>L−1(ŝi− t̂j)) is
centered on the agent’s expectation of the reference agent’s
prediction τ̂j . By picking L and Σs correctly, we can shift
the optimal point to the proper linear combination of the
above two values. Another way of seeing this is that the first
term rewards the agent for giving a common answer while
the second term punishes an agent for giving an expectedly
common answer. Thus agents are rewarded for “surprisingly
common” answers. While the mechanism is inspired by the
intuition of Bayesian Truth Serum (Prelec 2004), the proof
is not. It must be taken into consideration that agents only
report posterior expectations instead of posterior beliefs in
the original BTS.

Finally, if agents’ strategy are oblivious, they have the
same prediction on other’s signal t̂. Therefore (4) is singu-
lar, and everyone is punished with −100. Contrarily, in the
truth-telling strategy profile, the probability that (3) or (4)
are singular is zero.
Remark 4.2. Note that the reward has two parts PS and IS.
For agent i, the value PS only depends on t̂i, and IS only
depends on ŝi. We can (randomly) ask half of the agents to
report their signals, ŝi, and pay them by IS and the other half
to report their prediction, t̂i, and pay them by PS. The re-
sulting mechanism is still informed truthful, and it becomes
(non-revelation) minimal.

5 Disagreement Mechanism
In this section, we present an informed truthful non-
minimal mechanism for a small number of agents, called
the disagreement mechanism. The intuition underpinning the
mechanism is that agents’ signal reports and forecast reports
should “agree” because an agent’s forecast is just the com-
mon prior updated by their signal. In particular, the mecha-
nism will use other agents’ signals to infer a mapping (pre-
sumably from the prior) of private signals to posterior pre-
dictions of the mean. Then, it will punish an agent based on
how inconsistent his report is with this mapping. It borrows
its name from the mechanism in Kong and Schoenebeck



(2018a) but the same idea was used in Radanovic and Falt-
ings (2014). However, much additional effort is needed
to adapt it into our continuous setting with smaller report
spaces.

Mechanism 3 The disagreement mechanismMdisagree

1: Each agent i reports a signal ŝi ∈ Rd, the mean µ̂i of
his posterior belief Qi, and an amount of untruthfulness
ξi ∈ R≥0 where agent i confesses how untruthful his
report is, with ξi = 0 being completely truthful. That is,
ΩR = Rd × Rd × R≥0 and πR(P, si) = (si, µi, 0).

2: Partition the agents into three groups A, B and C of
sizes at least d + 1 arbitrarily. Let {a0, a1, . . . , ad},
{b0, b1, . . . , bd} and {c0, c1, . . . , cd} be the first d + 1
agents in the three groups respectively.

3: Each agent i is assigned a prediction score defined as

PSi(r) =

 −‖ŝb0 − µ̂i‖2 − ξi if i ∈ A
−‖ŝc0 − µ̂i‖2 − ξi if i ∈ B
−‖ŝa0

− µ̂i‖2 − ξi if i ∈ C
.

4: Each agent i is also assigned an inconsistency score
computed as follows: for each j ∈ {1, . . . , d}, let taj

=
ŝaj
− ŝa0

and Ta = [ta1
ta2
· · · tad

]; define Tb, Tc simi-
larly. Let νaj

= µ̂aj
− µ̂a0

and Ua = [νa1
νa2
· · · νad

];
define Ub, Uc similarly; The inconsistency score for
each i ∈ A is

ISi(r) = −
∥∥UbT

−1
b (ŝi − ŝb0)− (µ̂i − µ̂b0)

∥∥
if Tb is invertible and ξi = 0 ; otherwise ISi(r) = 0.
Define the inconsistency score for agents in groupB and
C similarly (The report of each agent in B is compared
to the first d + 1 reports in C, and the report of each
agent in C is compared to the first d+ 1 reports in A).

5: The payment before normalization for agent i is
M̄i(r) = PSi(r) + ISi(r).

6: Normalize the payments for each agent i as follows:

Mi(r) =


M̄i(r)− 1

|A|
∑

j∈B M̄j(r) if i ∈ A
M̄i(r)− 1

|B|
∑

j∈C M̄j(r) if i ∈ B
M̄i(r)− 1

|C|
∑

j∈A M̄j(r) if i ∈ C
.

7: If all the agents in group A report the same posterior
mean µ̂i, then update the score for each i ∈ A:Mi(r)←
Mi(r)−100. Do the same for agents in groupB and C.

The mechanismMdisagree is shown in Mechanism 3. The
mechanism partitions agents into three groups A, B and C
with sufficiently large sizes, and chooses d + 1 reference
agents in each group. Specifically, all reports from group A
(B,C) are compared to the d+1 reference agents in groupB
(C, A). We say B,C,A are the reference groups of A,B,C
respectively. Each agent is required to report a signal ŝi, the
mean µ̂i of his posterior belief Qi, and an amount of un-
truthfulness ξi ∈ R≥0 where agent i confesses how untruth-
ful his report is, with ξi = 0 being completely truthful. The
prediction score measures how well µ̂i predicts the signal
reported by the first reference agent in the reference group.

Specifically, we compute the squared distance between µ̂i

and the reference agent’s reported signal, with the amount of
untruthfulness ξi punished (Step 3). The inconsistency score
measures how consistent ŝi and µ̂i are (Step 4). In particular,
to compute the inconsistency score for an agent i ∈ A, we
first use the reports for the d + 1 reference agents from the
reference group B to infer a bijection between private sig-
nals and posterior beliefs of the mean. The mechanism then
checks whether an agent’s posterior mean µ̂i and reported
signal ŝi are indeed consistent with this bijection, and pun-
ishes agent i for the amount of inconsistency. Notice that we
do not punish an agent i for inconsistency if he confesses a
positive amount of untruthfulness ξi > 0. The payment to
each agent i is then computed by the sum of the two scores
(Step 5). At this stage, strict truthfulness is guaranteed: if all
the other agents are truth-telling, an agent’s unique best re-
sponse is also truth-telling with zero confession of untruth-
fulness, as this is the unique way to simultaneously maxi-
mize the prediction score and the inconsistency score.

Next, we normalize the payments (without changing the
set of all equilibria) such that the sum of all the n agents’
payments is zero (Step 6). Finally, we punish all agents in
each group if they report the same posterior (Step 7).5 Step 6
makes sure that the truth-telling equilibrium has the largest
social welfare (which is 0). Step 7 makes sure there is no
oblivious equilibrium at all. Intuitively, an agent i’s best
strategy is to report µ̂i that best predicts the signal reported
by the reference agent, because he can always avoid punish-
ment from the inconsistency score by confessing a negligible
ξi > 0. Since agent i can make his utility arbitrarily close to
the best prediction score (if unable to make it equal to), in
any oblivious equilibrium, all the agents in the same group
should report the same best prediction µ̂i. This is exactly the
case in Step 7 where they are punished by −100. Putting
together,Mdisagree is informed truthful. A rigorous proof of
Theorem 5.1 below is deferred to the full version.

Theorem 5.1. Assume a Gaussian prior G(n,m0, σ
2, τ2)

in Rd defined in Definition 2.2. When the number of agents
n ≥ 3d+ 3, the mean estimation mechanismMdisagree is an
optimal estimator. Additionally,Mdisagree is informed truth-
ful.

Proof sketch. We first show that M is strictly truthful. For
an arbitrary agent i in, say, group A, upon receiving the pri-
vate signal si, agent i believes the signal received by each
of the other agents, including agent b0, is from the Gaussian
distribution qi(si) = N (µi, (σ

−2 + τ−2)−1 + τ2) where
µi = (σ−2+τ−2)−1(τ−2si+σ

−2m0) (see Proposition 2.3).
Firstly, we can show that (µ̂i, ξi) = (µi, 0) is the unique
maximizer to the prediction score by Proposition 3.3. Sec-
ondly, we can show that, fixing (µ̂i, ξi) = (µi, 0), reporting

5An alternative design to the present mechanism would be to
impose a sufficiently large enough punishment for each agent in
group A (B, C) when all agents in group B (C, A) report the
same signal—a more common design in the past literature. This
also yields an informed truthful mechanism. However, this variant
of the mechanism allows oblivious Nash equilibria, whereas the
mechanism described in Mechanism 3 forbids all oblivious Nash
equilibria, which is, in some sense, stronger.



ŝi = si is the only way to make the inconsistency score
0. This again follows from Proposition 2.3. Therefore, fix-
ing the other n − 1 agents’ truthful report r−i, reporting
ri = (si, µi, 0) is the unique maximizer to M̄i(·, r−i).

By the design of the mechanism, M̄j(r) does not de-
pend on ri for each j ∈ B, a maximizer to M̄i(·, r−i) is
also a maximizer to Mi(·, r−i). As a result, we conclude
thatM is strictly truthful. Furthermore, Step 6 makes sure∑n

i=1Mi(r) = 0, so the truth-telling profile has the maxi-
mum welfare 0.

Lastly, we can show thatM is informed truthful by show-
ing that there is no oblivious Bayes Nash equilibrium. If
there were an oblivious equilibrium θ such that all agents
in a group do not report the same signal, then there must
exist an agent whose reported posterior mean µ̂i does not
predict the reference agent’s signal as well as the others. In
this case, i can improve his prediction while making the in-
consistency score 0 by confessing a tiny amount of untruth-
fulness ξ̂i > 0. If there were an oblivious equilibrium θ such
that all agents in a group reported the same signal, then an
arbitrary agent in the group can slightly misreport his poste-
rior mean µ̂i to avoid the −100 punishment.

6 Future Work
There are many attractive avenues available for future work.
Within our model, the question of whether there exists a
minimal non-revelation mechanism that applies in the small
population setting remains open. Moving beyond our model,
one could study priors that are more general than Gaussian
distributions (e.g. exponential families), or learning prob-
lems beyond linear regression (e.g. SVMs). Additionally,
one could study how to efficiently (with minimum cost)
elicit data in a setting similar to ours. A final direction in full
pipe-line learning, is to relax the assumptions on the agents
being fully rational. For example, a fraction of the agents
could be random, malicious, or naturally truth-telling.
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