

Designing Automated Market Makers for Combinatorial Securities: A Geometric Viewpoint

Prommy Sultana Hossain Xintong Wang Fang-Yi Yu

Summary

By leveraging range query and range update problems (RQRU) in **computational geometry**, we propose a unified framework for designing automated market makers for combinatorial securities. Our key contributions include:

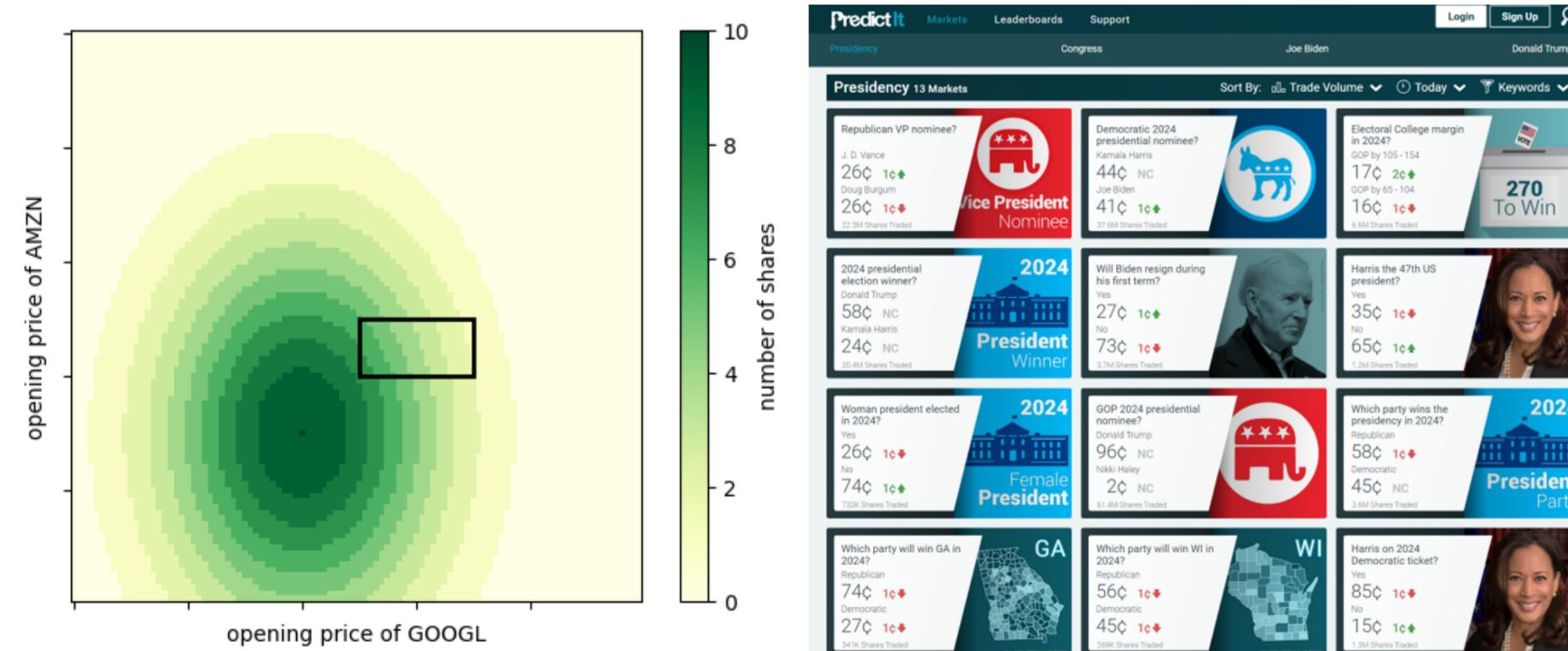
- Designing a partition-tree scheme that supports sublinear time price, cost, and buy query for LMSR when the **VC dimension** is bounded.
- Generalizing to **quadratic scoring rule** and **3/2-power scoring rule** by establishing connections to variants of RQRU.
- Integrating **multi-resolution market designs** into partition-tree scheme.
- Introducing the **combinatorial swap operation problem** in decentralized finance and demonstrating that it can be efficiently reduced to range update problems.

Problem Formulation

Prediction markets with combinatorial securities

We are interested in aggregating predictions on a random variable on \mathcal{X} , e.g., the opening value of AMZN and GOOGL at 4pm tomorrow by offering binary securities on a collection of events $E \in \mathcal{F}$.

- Pay \$1 if event E occurs and \$0 otherwise.
- Adjust prices of these securities to elicit predictions.
- For example, $\mathcal{X} = \mathbb{R}^2$ and \mathcal{F} consists of 2D Intervals (e.g., $[180, 220] \times [180, 200]$).



LMSR for combinatorial securities

We consider using logarithmic market scoring rule (LMSR) to adjust price of each securities, $C(\mathbf{w}) = b \ln \left(\sum_{x \in \mathcal{X}} e^{w_x/b} \right)$, and offer operations for all $E \in \mathcal{F}$:

- $\text{price}(E; \mathbf{w})$: return the current price of security for E ,

$$\text{price}(E; \mathbf{w}) = \sum_{x \in E} e^{w_x/b} = \sum_{x \in E} \frac{\partial}{\partial w_x} C(\mathbf{w}). \quad (1)$$

- $\text{cost}(E, s; \mathbf{w})$: return the current cost of s shares of security for E ,

$$\text{cost}(E, s; \mathbf{w}) = C(\mathbf{w} + s\mathbf{1}_E) - C(\mathbf{w}). \quad (2)$$

- $\text{buy}(E, s; \mathbf{w})$: update the state $\mathbf{w} \leftarrow \mathbf{w} + s\mathbf{1}_E$.

xintong.wang@rutgers.edu

Range Query and Range Update (RQRU)

Range query is a classical problem in computational geometry with many variants. For example, one common objective is to count the number of points or sum of weights within a region E .

$(+, \cdot)$ -RQRU

Gives a set system $(\mathcal{X}, \mathcal{F})$, and initial weights $W_0 : \mathcal{X} \rightarrow \mathbb{R}_+$. $(+, \cdot)$ -RQRU requests a sequence of operations, taking one of the following forms: for any $E \in \mathcal{F}$ and $S \in \mathbb{R}_+$:

- $\text{query}(E; W)$: compute the total weight of range E , $\sum_{x \in E} W(x)$.
- $\text{update}(E, S; W)$: update $W(x) \leftarrow S \cdot W(x)$ if $x \in E$, and $W(x) \leftarrow W(x)$ otherwise.

Equivalence

LMSR (market operations)	RQRU (arithmetic operations)
Price and Cost	Query (+)
Buy	$\xleftarrow{W(x)=e^{w_x/b}}$ Update (.)

Applications: Algorithms and Hardness Results

Partition-tree-based scheme

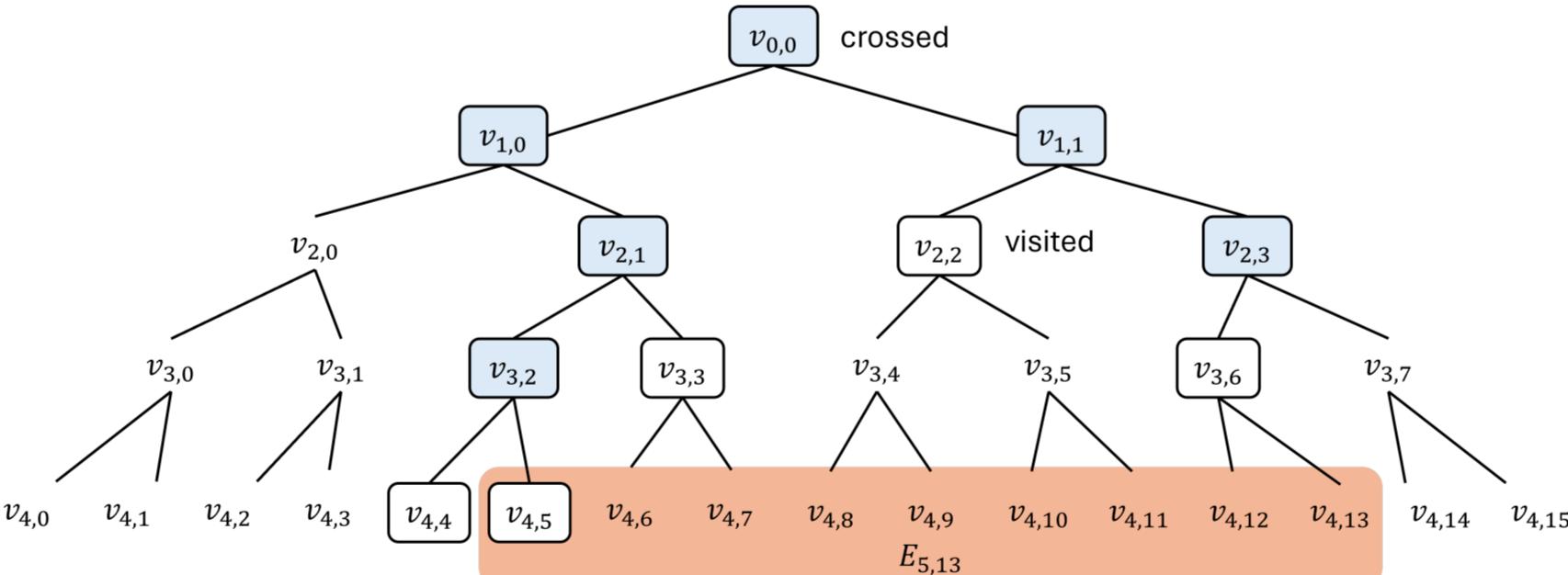


Figure 1. A partition tree for 1D intervals with $n = 16$. The squared nodes are visited by the query and blue ones has node set crossed by $E_{(5,13)}$.

1. 1D intervals: $O(\log n)$, where $n = |\mathcal{X}|$
2. Intervals, and hyperplane in \mathbb{R}^d : $O(n^{1-1/d})$
3. Bounded VC: $O(n^{1-\epsilon})$ with $\epsilon > 0$

Hardness results

Introduce several hardness results from computational geometry.

1. 1D intervals: $\Omega(\log n)$
2. 2D intervals: $\Omega(n^\omega)$, connections to solving matrix multiplication
3. Unbounded VC dimension: no $o(n)$ including 1-junta or comparison securities.

Prediction Markets Beyond LMSR

More cost-function-based market making

Table 1. Summary of reductions for AMMs to various range query range update problems

Automated market maker	Query	Update
Logarithmic market scoring rule	addition + multiplication	
Quadratic market scoring rule	addition + addition +	
γ -power market scoring rule	addition + group action	

Partition tree and multi-resolution markets

- Example: Predict the opening day of the Gates and Hillman Centers at CMU. We are interested in using different scoring rules for 1) *quarter submarket* (trading securities to bet on during which quarter the center will open), 2) *month submarket*, 3) *week submarket*, and 4) *day submarket*, to facilitate aggregating information at different granularity.
- Show that the multi-resolution design has the same complexity including arbitrage removal given *efficient and local weight updates*.

Decentralized Exchanges

Constant function market maker

Given a finite set of n assets (cryptocurrencies) \mathcal{X} , CFMM maintains a *reserve* of available assets $\mathbf{w} \in \mathbb{R}^{\mathcal{X}}$ and uses a *trading function* $\varphi : \mathbb{R}^{\mathcal{X}} \rightarrow \mathbb{R}$.

- Logarithmic trading function $\varphi(\mathbf{w}) = -\sum_{x \in \mathcal{X}} e^{-w_x/b}$
- Constant sum trading function $\varphi(\mathbf{w}) = \sum_{x \in \mathcal{X}} w_x$
- Geometric mean trading function $\varphi(\mathbf{w}) = \prod_{x \in \mathcal{X}} w_x$

Traders propose to exchange one basket of assets \mathbf{r}^+ for another $\mathbf{r}^- \in \mathbb{R}^{\mathcal{X}}$. The exchange will accept the proposed trade if $\varphi(\mathbf{w} + \mathbf{r}^+ - \mathbf{r}^-) = \varphi(\mathbf{w})$ and update the reserve to $\mathbf{w} \leftarrow \mathbf{w} + \mathbf{r}^+ - \mathbf{r}^-$.

Combinatorial swap problem

Given $(\mathcal{X}, \mathcal{F})$, a combinatorial swap market maker with φ takes any $E^+, E^- \in \mathcal{F}$ and supports the following operations

- $\text{forward_trade}(E^-, E^+, s_+, \mathbf{w})$: return s so that $\varphi(\mathbf{w} + s_+ \mathbf{1}_{E^+} - s_1 \mathbf{1}_{E^-}) = \varphi(\mathbf{w})$ and update $\mathbf{w} \leftarrow \mathbf{w} + s_+ \mathbf{1}_{E^+} - s_1 \mathbf{1}_{E^-}$.
- $\text{backward_trade}(E^-, E^+, s_-, \mathbf{w})$: return s so that $\varphi(\mathbf{w} + s_1 \mathbf{1}_{E^+} - s_- \mathbf{1}_{E^-}) = \varphi(\mathbf{w})$ and update $\mathbf{w} \leftarrow \mathbf{w} + s_+ \mathbf{1}_{E^+} - s_- \mathbf{1}_{E^-}$.

Automated market maker	Query	Update
Log CFMM	addition +	multiplication ·
Linear CFMM	addition +	addition +
Geometric mean CFMM	multiplication ·	addition +