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Long time ago...
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When human master the Bayes rule...

Prob. of eruption? Signal s; 4 Report x; = Pr{w|s;]
el gl

World state w ),
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The aggregated
probability is 5%
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When we do not know joint distribution 6...

The aggregated
probability is

Prob. of Signal 53 Report x; = Pr{w|s4] f(xq, %)
eruption?
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Prior matters

1.0

* If the prior probability of
eruption u
— Given prediction x; and x5, the
posterior is L
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Prior Matters

1.0

* If the prior probability of
eruption u
— Given prediction x; and x,, the
posterior is
(1 —wx1x; L
(1= wxyx, + u(l —x)(1 — x3) N
— 5% => safe e o om o o o

— 0.000001% => far less than the
forecasts => Dangerous!




Aggregating multiple forecasts

Weather forecast
Elections
Investments
Medical Prognosis




Outline

* Robust forecast aggregation problem

— An ignorant aggregator
» does not know the information structure
e aims to minimize the regret in the worst information structures.

* Theoretical results
— FPTAS based on online learning method
— Two challenges

e Numerical results
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* Robust forecast aggregation problem

— An ignorant aggregator
» does not know the information structure
e aims to minimize the regret in the worst information structures.




Robust Forecast Aggregation Problem [ABS18]

* |nputs
— Binary state of nature 0 = {0,1}

— Two forecasters {1,2} with signal sets
S51,55.
— Information structure ¢

0 eA(Q XS XS,) { \

Signal s

— Each forecaster reports the posterior WorI.d state w
X; = %r[w = 1|s{]

ﬁ
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Report x;

Report x,
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Robust Forecast Aggregation Problem

* |nputs
— Binary state of nature 0 = {0,1}
. : Report x,
;\ivc?g Zc.)recasters {1,2} with signal sets Signals, 4 [ — ]
— Information structure Q) ] _>—.J_HJE
8 €AQ XS, XS,) /\ o
— Each forecaster reports the posterior WorI.d state w G —_—

Signal s, Report x;

x; = Prlo = 1|s{]

* Qutput a forecast f (x4, x,) where
f:10,1]% - [0,1] is called an
aggregation scheme
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Measure aggregation schemes

The forecast should be accurate and robust

* Accurate:
— Squared loss function I(f,8) = E4[(f — w)?],

— Regret against Bayesian aggregator with 6
R(f,0) = I(f,0) — l(opte, 0).

Q

A —

f(xlr xZ)

—

World state w — 5@)
X2
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Measure aggregation schemes

The forecast should be accurate and robust

* Accurate:
— Squared loss function I(f,0) = Eg[(f — w)?],
— Regret against Bayesian aggregator with 6
R(f,0) = l(f,0) — l(opte, 0).
* Robust: a set of information structures © the

performance is small —
inf sup R(f, 6) A

f(xlr xz)

—

eF
f 9 € @ World state (v =~ > ﬁ]@)
X2
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Possible Approaches

e Common function, e.g., average
* Delicate designed aggregators [ABS, PNAS 2018]
* An algorithmic and systematic method?
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Outline

* Theoretical results
— FPTAS based on online learning method
— Two challenges
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FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an e-optimal

aggregator for inf sup R(f, @) if one of the following holds
fEF geo

1. O is finite

2. 0O consists of conditional independent information
structures and F is the collection of L-Lipschitz aggregators
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FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an e-optimal

aggregator for inf sup R(f, @) if one of the following holds
fEF geo

1. O is finite
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Algorithm: equilibrium computation

inf sup R(f, 8) as a zero-sum game

fE€F geo
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R(f,0) 3C7
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Online Learning: Efficient Best Response

No-regret vs Best response

Mixed Strategy Best Response

w; 01

Aggregator

%llll%} om0y 7 Egy[R(f,0)] S6 argmino-ulny.0) @?




Online Learning: Learn Mixed Strategy

No-regret vs Best response

Round t Roundt + 1
Mixed Strategy Mixed Strategy
wim 6, R(ft,6,)=.5 wit! -0,
Nature Nature

w mm 0 R(f%,0,) =0 t+1
@) = s

i

wym 0, R(f%,0,) =.5 witl mm g,
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Online Learning: Optimal Solution

N Aggregator

{%B} W*zzﬁ;wt EQ“’W*[R(f*,H)] {@ f*ZZ%;Tlft @f

~ inf sup R(f, 6
fey-‘eeg (f )
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FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an e-optimal

aggregator for inf sup R(f, @) if one of the following holds
fEF geo

2. 0O consists of conditional independent information
structures and F is the collection of L-Lipschitz aggregators
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Two challenges
* The dimension of @ € A(Q) X §; X S,) is high.
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Two challenges

* The dimension of @ € A(Q) X §; X S,) is high.
— Dimension reduction

Multiple signals Binary signals

= Linear Combination of -

2 3 4 s
S
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Two challenges

* The dimension of @ € A(Q) X §; X S,) is high.
— Dimension reduction
e ® and F are continuous.

— Discretize 0 to finite information structure ®/ and show
R(O,F) ~ R(0/™", F)
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Control the Regret R(0,F) ~ R(©/™", F)

* (¢,d)-Covering
— Forany 8 € O, we can find 8’ € ®' such that d(8,0') < e.
— Use the nearest information structure in the Euclidean space.
— Prove they are close in the TVD(EMD) metric.

* Discretize in two steps:
— Discrete reports (EMD)
— Discrete prior (TVD)
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Control the Regret R(0,F) ~ R(©/™", F)
R(f%0) =1(f*0)—1(0,0)

* Bayesian aggregator IS hot smooth

— Find a smooth one to approximate optg
— Trimming the non-smooth area.

— Extend the smooth regret to the full space. L
e Best-response ! is not smooth ol

— Restrict ft to smooth function.
— Calculate the best smooth response by Ellipsoid method.
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Two solutions

* Reduce dimension
— The dimension of @ € A(QL X §; X S,) is high.

* Discretize ® and run no regret+best response
— Calculate the best response f in F.

— Control the regret R(0, F) ~ R(0/™, F)

28



e Numerical results

Outline
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Our Results (Numerical)

Aggregator Formula Regret
Simple average S 0.0625
A * I e 0.0260

verage prior (T2 (1 2 ) (1 _a) LT )

xiz2(l—ep(x1,x2))
State-of-the-art T (—ep a2 ) T2 (L =F2)ep(z152) 0.0250
Our - 0.0227

Table 1: Regret of different aggregators.

Here ep(x1,x2) = {

0.4921 + 0.495,
0.492; + 0.49z5 + 0.02,

Ef r1 + o <_: 1
otherwise




Our Results (Numerical)

e Extremization
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(a) Simple averaging

e Uniform loss

0.8-
Lo

(a) Simple averaging

1.0

(b) Average prior

1.0

(b) Average prior

1.0

(c) State-of-the-art

1.0

(c) State-of-the-art

(d) Our aggregator

(d) Our aggregator

1.0

08

0.6

04

0.2

0.05

0.04

0.03

0.02

0.01

31



Conclusion and Future Work

e Conclusion

— An algorithmic framework for robust information aggregation
— Automatic design of aggregators, even in scenarios with complex

report formats

* Future work using partial knowledge 0

— Aggregation
* Higher order reports
* Decision

— Elicitation
* Proper scoring rule

Q

A —

World state w

f(xli xZ)

—L
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Loss (Weight)

Additive vs. Ratio vs. Absolute
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