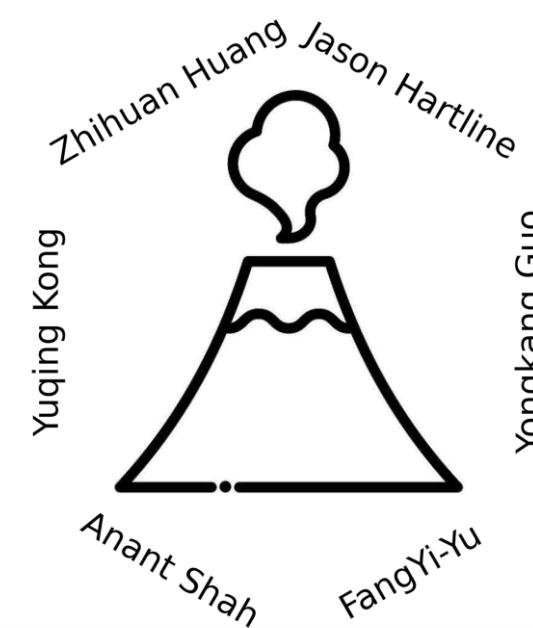
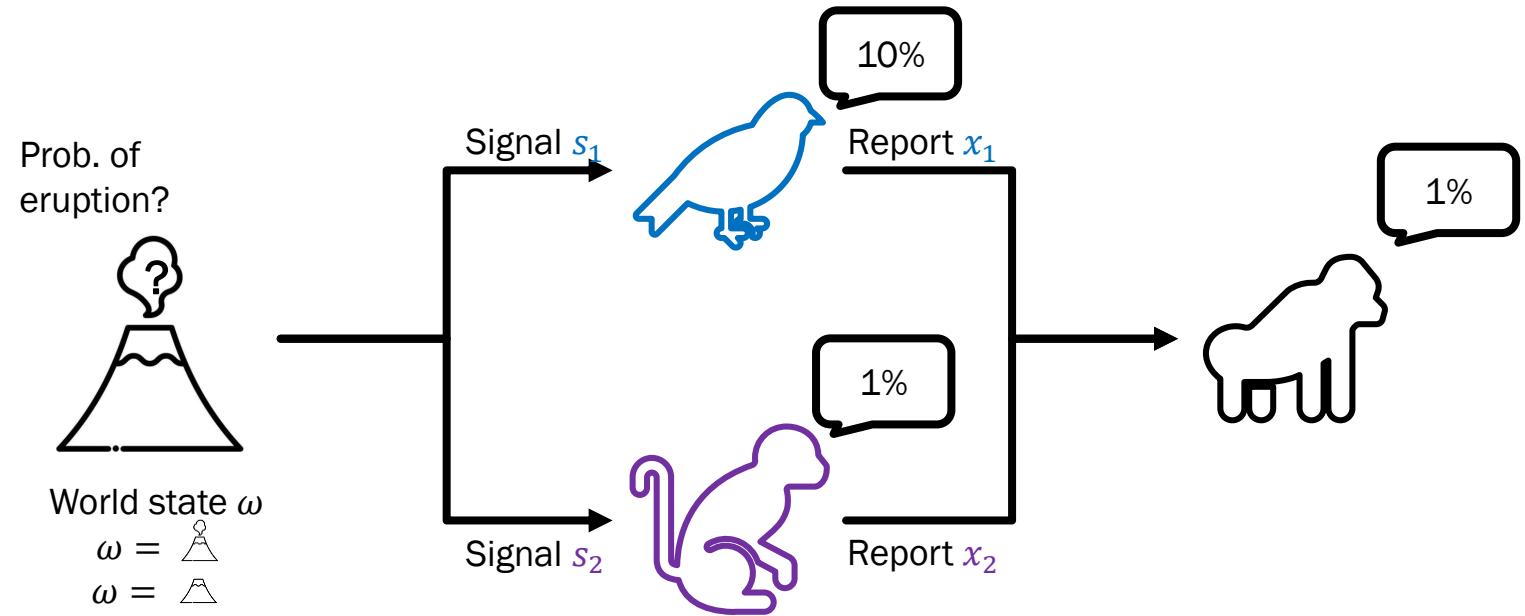


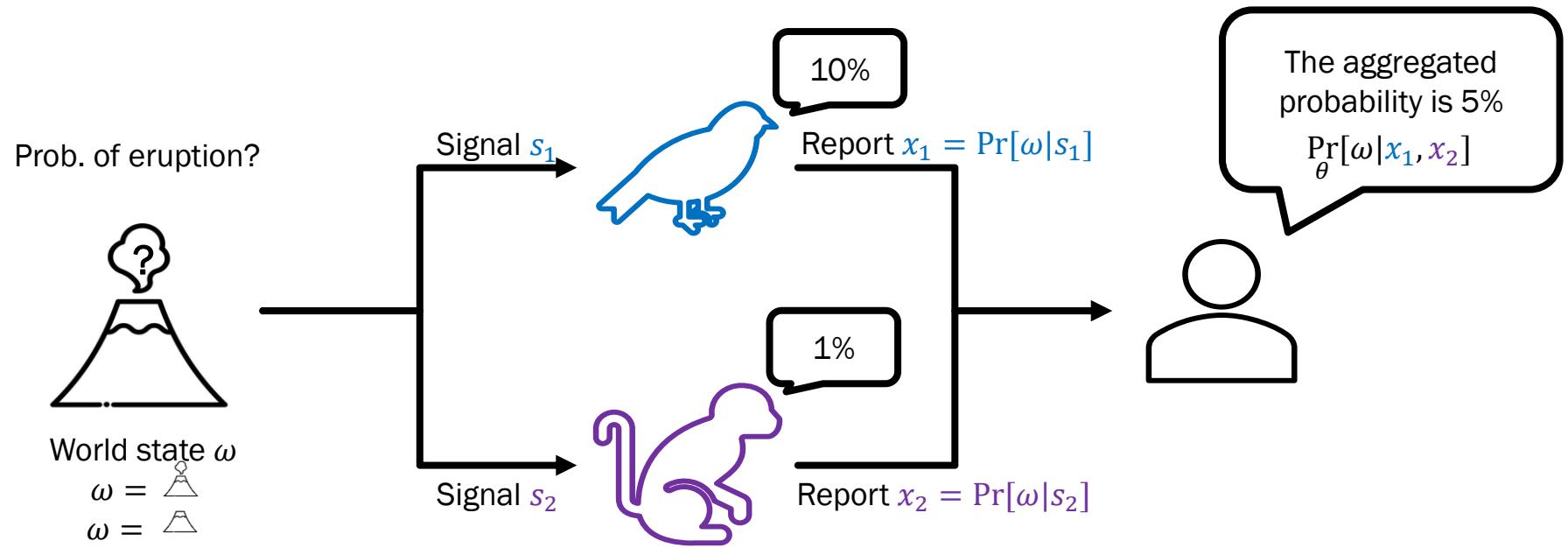
Algorithmic Robust Forecast Aggregation



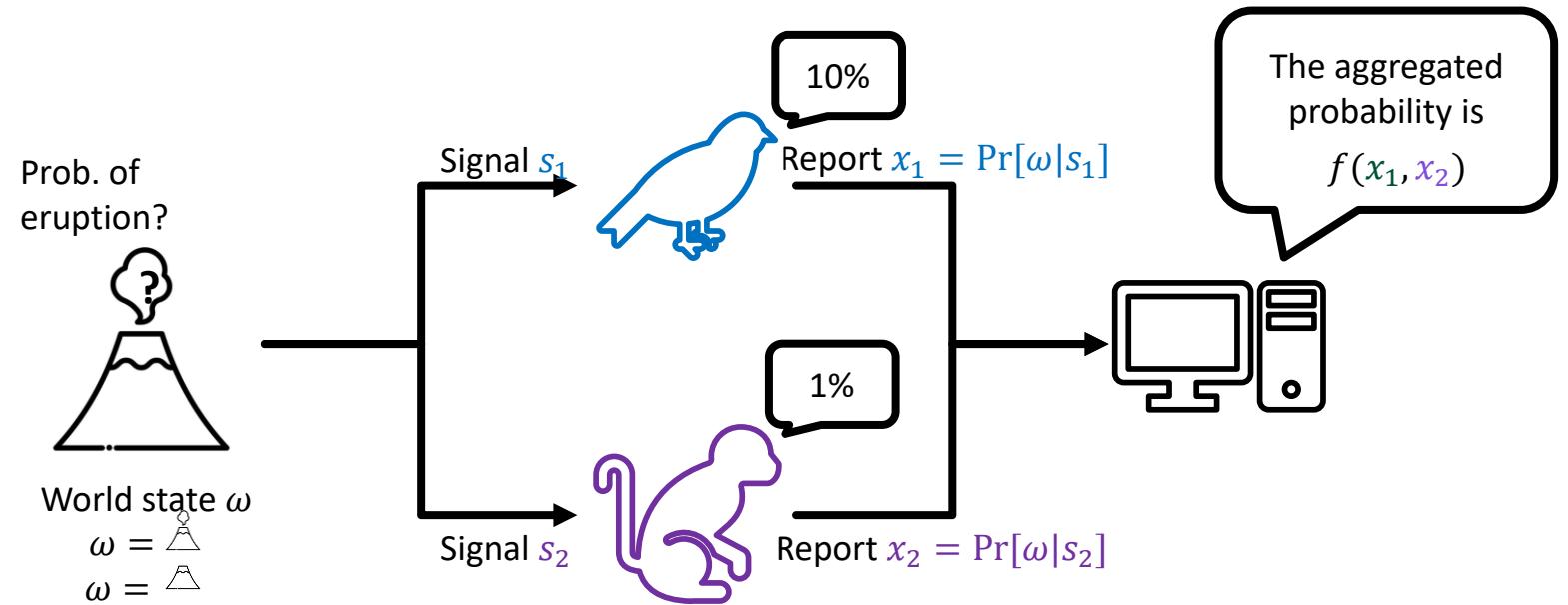
Long time ago...



When human master the Bayes rule...

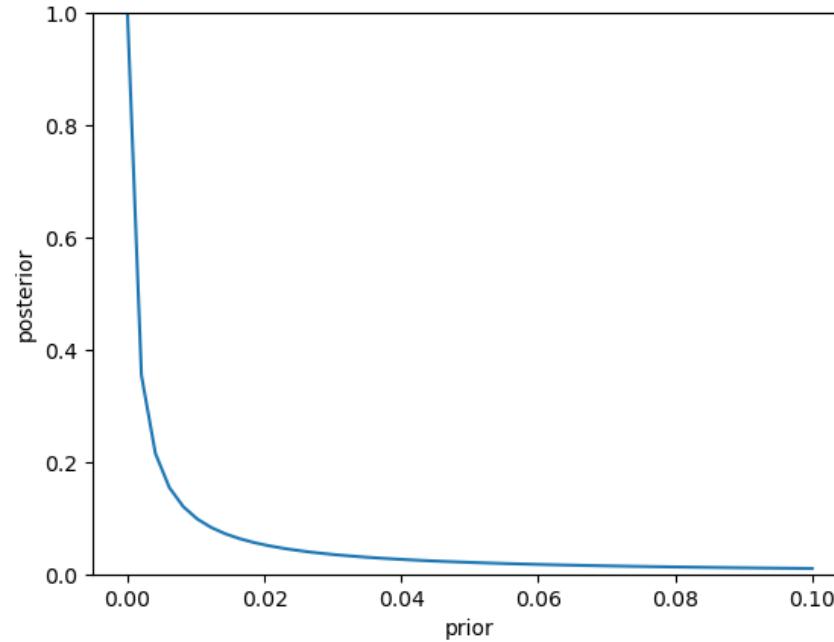
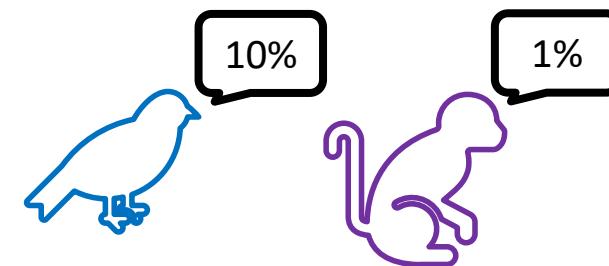


When we do not know joint distribution $\theta...$



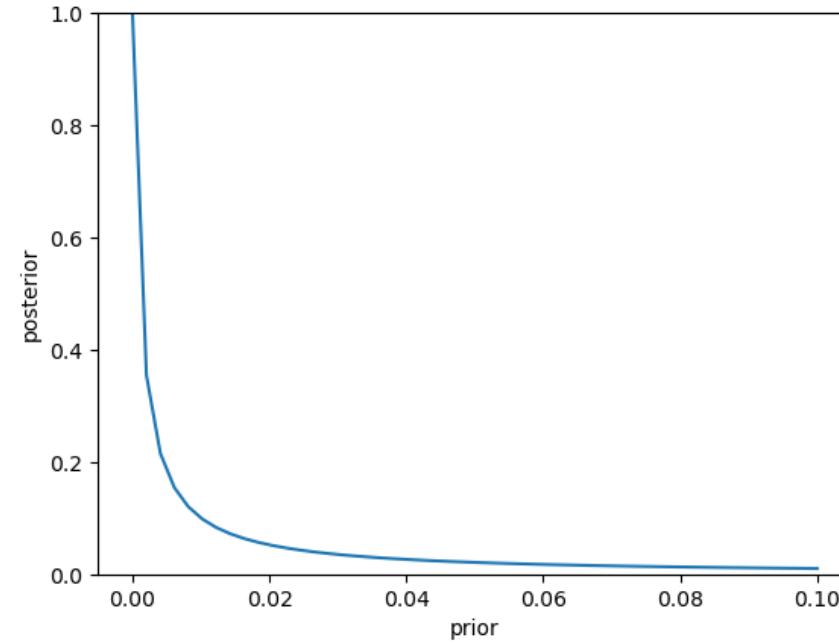
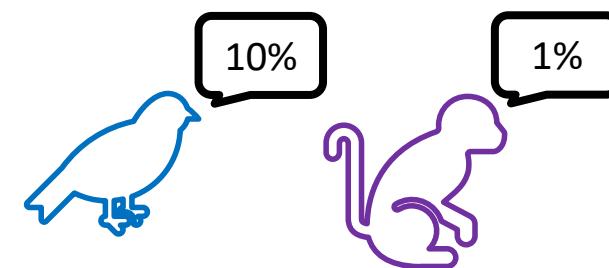
Prior matters

- If the prior probability of eruption μ
 - Given prediction x_1 and x_2 , the posterior is



Prior Matters

- If the prior probability of eruption μ
 - Given prediction x_1 and x_2 , the posterior is
$$\frac{(1 - \mu)x_1x_2}{(1 - \mu)x_1x_2 + \mu(1 - x_1)(1 - x_2)}$$
 - 5% => safe
 - 0.000001% => far less than the forecasts => Dangerous!



Aggregating multiple forecasts

- Weather forecast
- Elections
- Investments
- Medical Prognosis

Outline

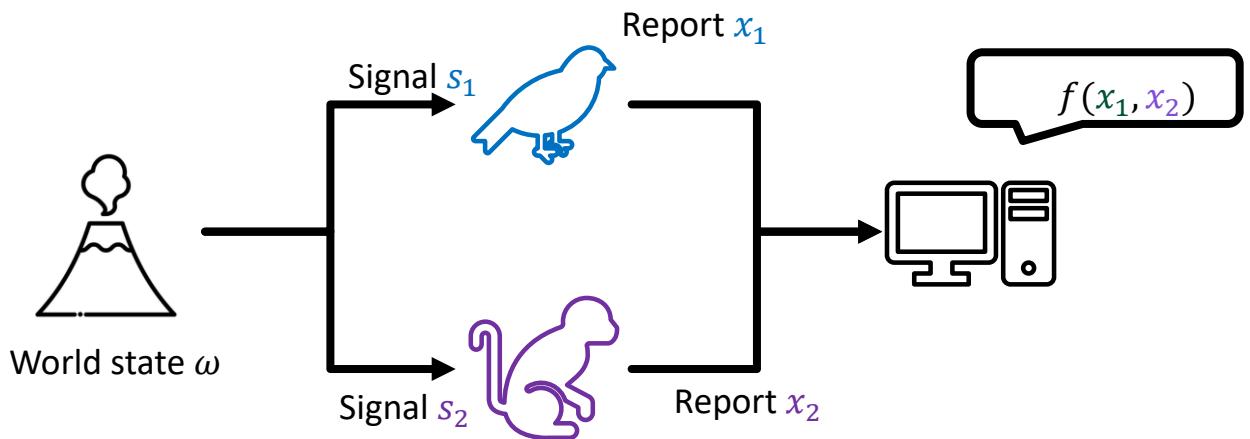
- Robust forecast aggregation problem
 - An ignorant aggregator
 - does not know the information structure
 - aims to minimize the regret in the worst information structures.
- Theoretical results
 - FPTAS based on online learning method
 - Two challenges
- Numerical results

Outline

- Robust forecast aggregation problem
 - An ignorant aggregator
 - does not know the information structure
 - aims to minimize the regret in the worst information structures.
- Theoretical results
 - FPTAS based on online learning method
 - Two challenges
- Numerical results

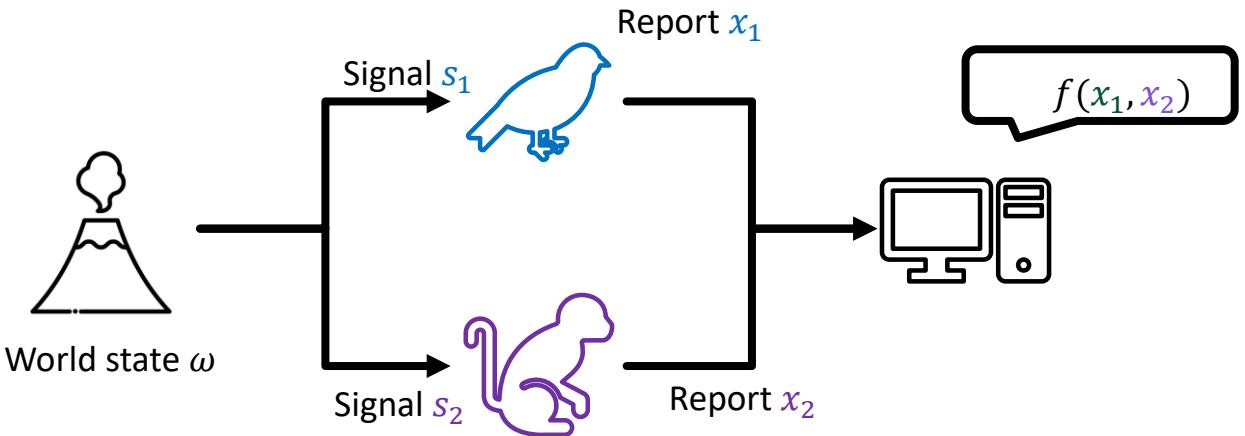
Robust Forecast Aggregation Problem [ABS18]

- Inputs
 - Binary state of nature $\Omega = \{0,1\}$
 - Two forecasters $\{1,2\}$ with signal sets S_1, S_2 .
 - Information structure $\theta \in \Delta(\Omega \times S_1 \times S_2)$
 - Each forecaster reports the posterior $x_i = \Pr_{\theta}[\omega = 1 | s_i]$



Robust Forecast Aggregation Problem

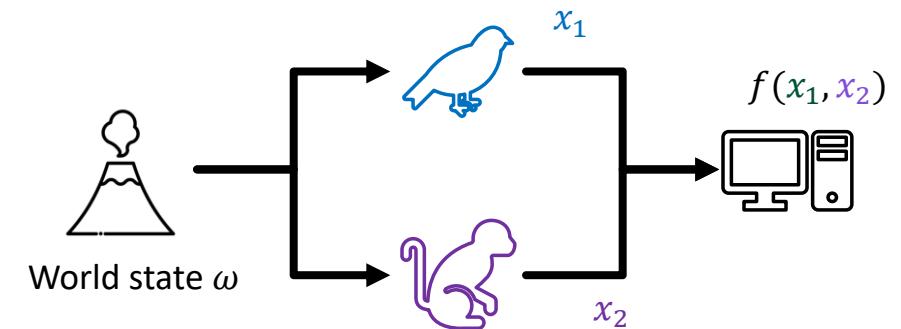
- Inputs
 - Binary state of nature $\Omega = \{0,1\}$
 - Two forecasters $\{1,2\}$ with signal sets S_1, S_2 .
 - Information structure
 $\theta \in \Delta(\Omega \times S_1 \times S_2)$
 - Each forecaster reports the posterior
 $x_i = \Pr_{\theta}[\omega = 1 | s_i]$
- Output a forecast $f(x_1, x_2)$ where
 $f: [0,1]^2 \rightarrow [0,1]$ is called an
aggregation scheme



Measure aggregation schemes

The forecast should be accurate and robust

- **Accurate:**
 - Squared loss function $l(f, \theta) = \mathbb{E}_\theta[(f - w)^2]$,
 - Regret against Bayesian aggregator with θ
$$R(f, \theta) = l(f, \theta) - l(opt_\theta, \theta).$$

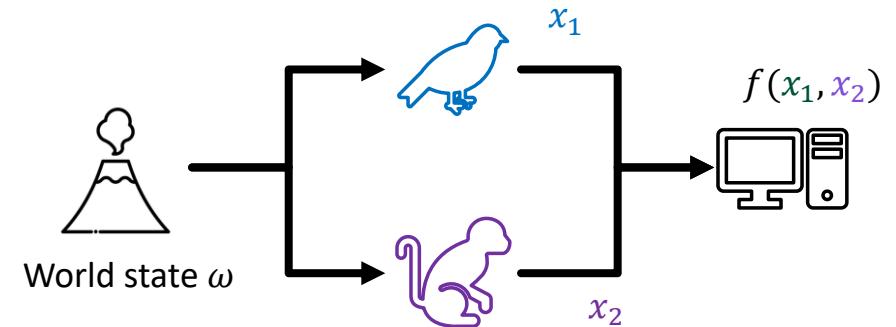


Measure aggregation schemes

The forecast should be accurate and robust

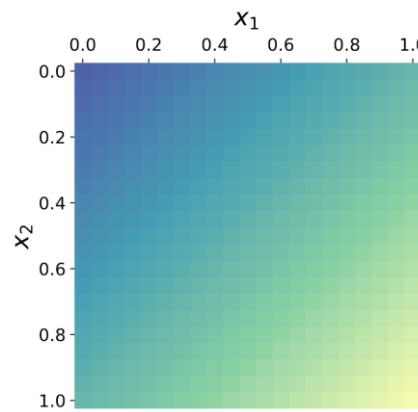
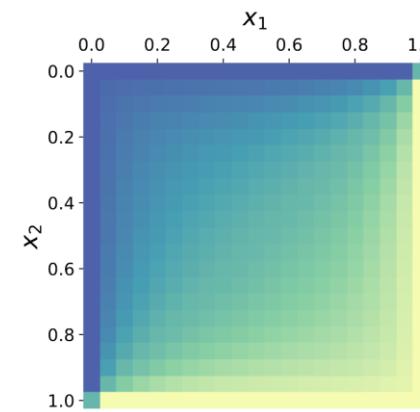
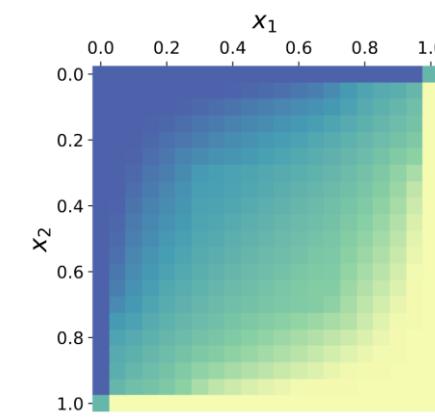
- **Accurate:**
 - Squared loss function $l(f, \theta) = \mathbb{E}_\theta[(f - w)^2]$,
 - Regret against Bayesian aggregator with θ
$$R(f, \theta) = l(f, \theta) - l(opt_\theta, \theta).$$
- **Robust:** a set of information structures Θ the **worst-case** performance is small

$$\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$$



Possible Approaches

- Common function, e.g., average
- Delicate designed aggregators [ABS, PNAS 2018]
- An algorithmic and systematic method?



Outline

- Robust forecast aggregation problem
 - An ignorant aggregator
 - does not know the information structure
 - aims to minimize the regret in the worst information structures.
- Theoretical results
 - FPTAS based on online learning method
 - Two challenges
- Numerical results

FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an ϵ -optimal aggregator for $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$ if one of the following holds

1. Θ is finite
2. Θ consists of conditional independent information structures and \mathcal{F} is the collection of L -Lipschitz aggregators

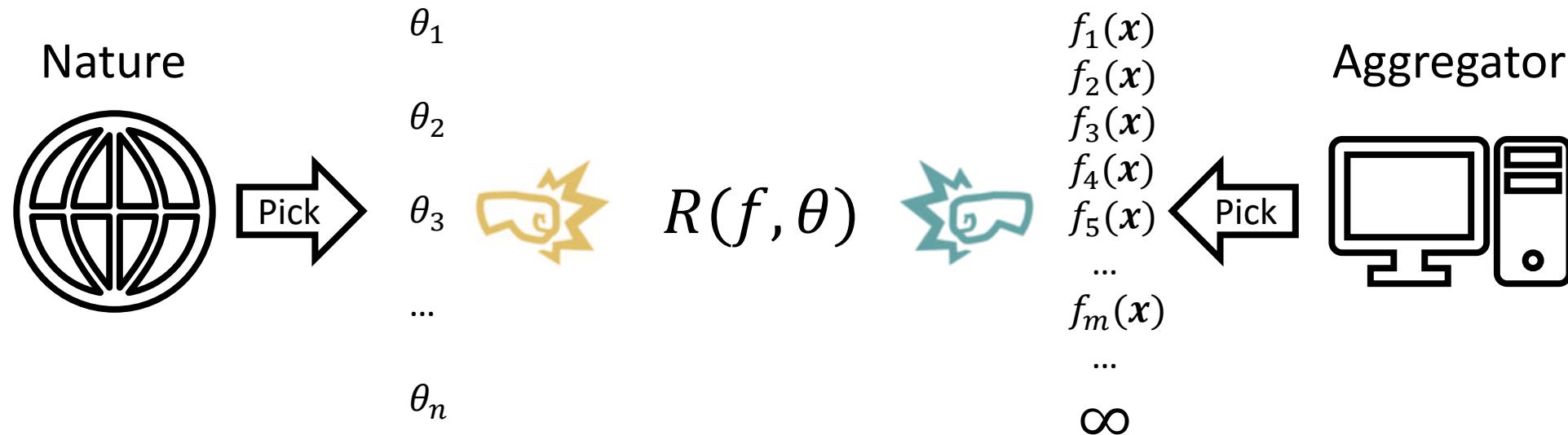
FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an ϵ -optimal aggregator for $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$ if one of the following holds

1. Θ is finite
2. Θ consists of conditional independent information structures and \mathcal{F} is the collection of L -Lipschitz aggregators

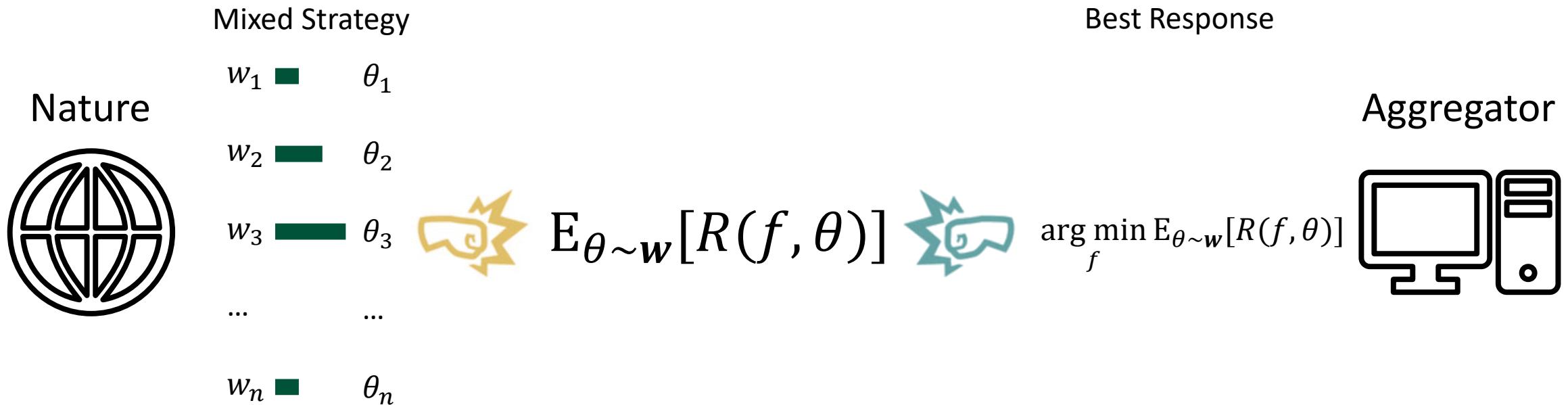
Algorithm: equilibrium computation

$\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$ as a zero-sum game



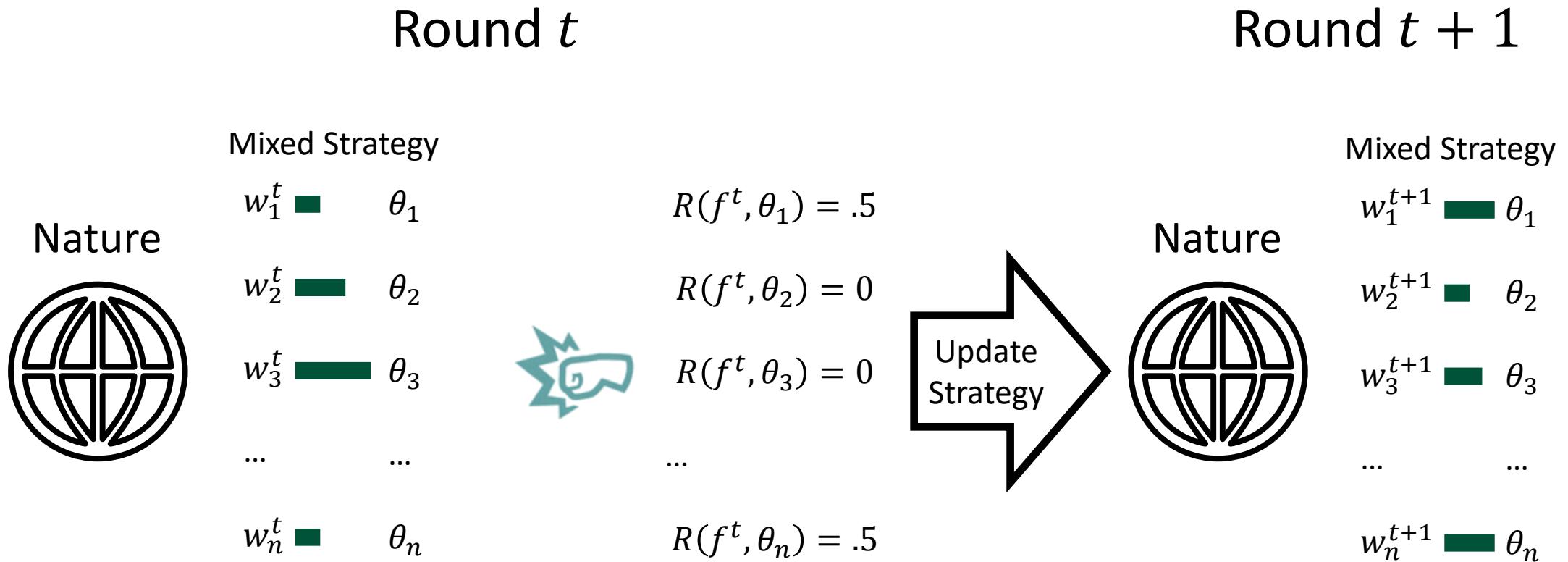
Online Learning: Efficient Best Response

No-regret vs Best response



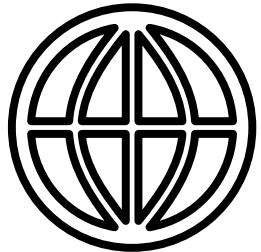
Online Learning: Learn Mixed Strategy

No-regret vs Best response



Online Learning: Optimal Solution

Nature

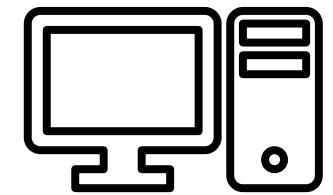


$$\mathbf{w}^* = \frac{\sum_{t=1}^T \mathbf{w}^t}{T}$$

$$\mathbb{E}_{\theta \sim \mathbf{w}^*} [R(f^*, \theta)]$$

$$f^* = \frac{\sum_{t=1}^T f^t}{T}$$

Aggregator



$$\approx \inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$$

FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an ϵ -optimal aggregator for $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$ if one of the following holds

1. Θ is finite
2. Θ consists of conditional independent information structures and \mathcal{F} is the collection of L -Lipschitz aggregators

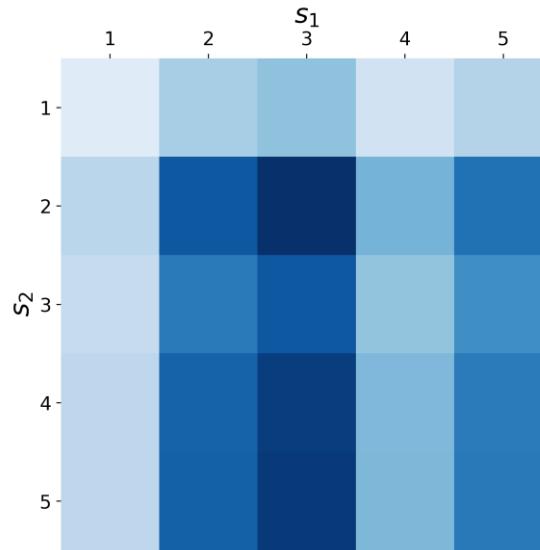
Two challenges

- The dimension of $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$ is high.

Two challenges

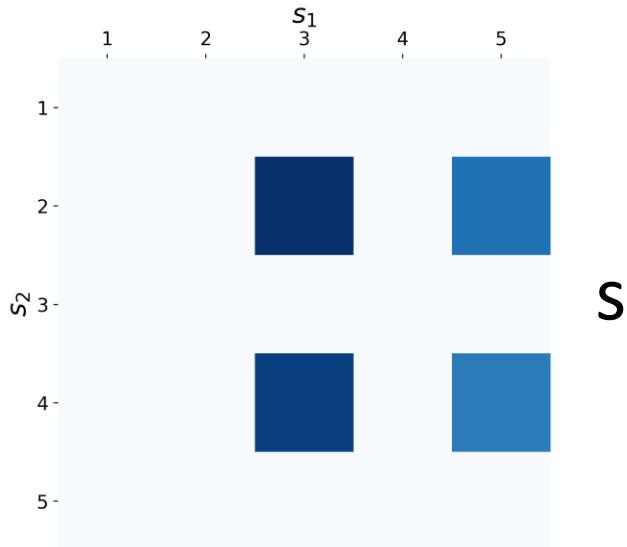
- The dimension of $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$ is high.
 - Dimension reduction

Multiple signals



= Linear Combination of

Binary signals



Two challenges

- The dimension of $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$ is high.
 - Dimension reduction
- Θ and \mathcal{F} are continuous.
 - Discretize Θ to finite information structure Θ^{fin} and show $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

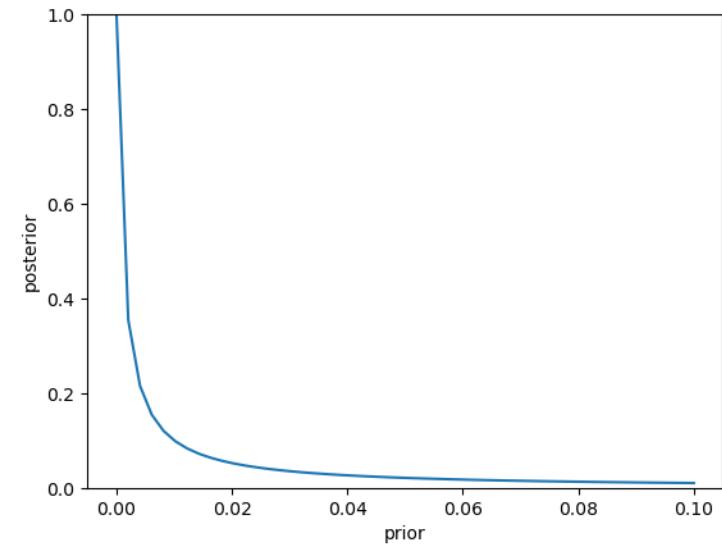
Control the Regret $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

- (ϵ, d) -Covering
 - For any $\theta \in \Theta$, we can find $\theta' \in \Theta'$ such that $d(\theta, \theta') \leq \epsilon$.
 - Use the nearest information structure in the Euclidean space.
 - Prove they are close in the TVD(EMD) metric.
- Discretize in two steps:
 - Discrete reports (EMD)
 - Discrete prior (TVD)

Control the Regret $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

$$R(f^t, \theta) = l(\mathbf{f}^t, \theta) - l(\mathbf{opt}_\theta, \theta)$$

- Bayesian aggregator \mathbf{opt}_θ is not smooth
 - Find a smooth one to approximate \mathbf{opt}_θ
 - Trimming the non-smooth area.
 - Extend the smooth regret to the full space.
- Best-response \mathbf{f}^t is not smooth
 - Restrict f^t to smooth function.
 - Calculate the best smooth response by Ellipsoid method.



Two solutions

- Reduce dimension
 - The dimension of $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$ is high.
- Discretize Θ and run no regret+best response
 - Calculate the best response f in \mathcal{F} .
 - Control the regret $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

Outline

- Robust forecast aggregation problem
 - An ignorant aggregator
 - does not know the information structure
 - aims to minimize the regret in the worst information structures.
- Theoretical results
 - FPTAS based on online learning method
 - Two challenges
- Numerical results

Our Results (Numerical)

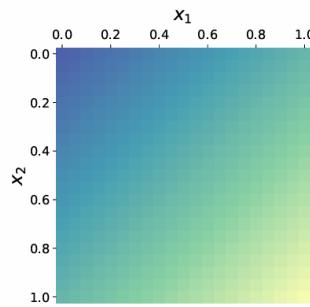
Aggregator	Formula	Regret
Simple average	$\frac{x_1+x_2}{2}$	0.0625
Average prior	$\frac{x_1 x_2 (1 - \frac{x_1+x_2}{2})}{x_1 x_2 (1 - \frac{x_1+x_2}{2}) + (1-x_1)(1-x_2) \frac{x_1+x_2}{2}}$	0.0260
State-of-the-art	$\frac{x_1 x_2 (1 - ep(x_1, x_2))}{x_1 x_2 (1 - ep(x_1, x_2)) + (1-x_1)(1-x_2) ep(x_1, x_2)}$	0.0250
Our	-	0.0227

Table 1: Regret of different aggregators.

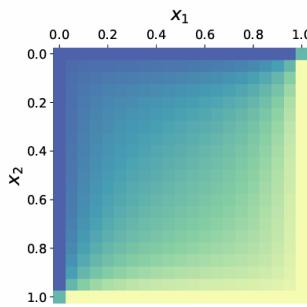
Here $ep(x_1, x_2) = \begin{cases} 0.49x_1 + 0.49x_2, & \text{if } x_1 + x_2 \leq 1 \\ 0.49x_1 + 0.49x_2 + 0.02, & \text{otherwise} \end{cases}$

Our Results (Numerical)

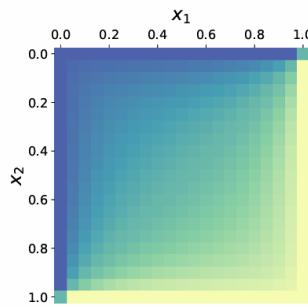
- Extremization



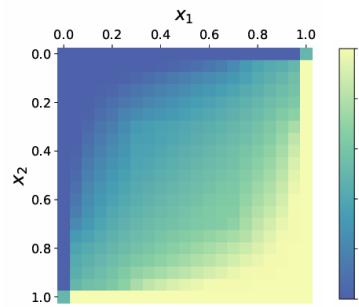
(a) Simple averaging



(b) Average prior

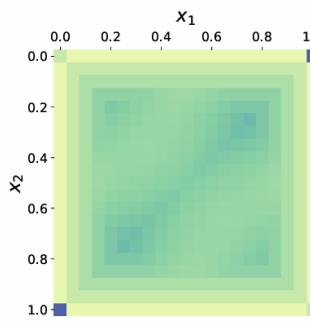


(c) State-of-the-art

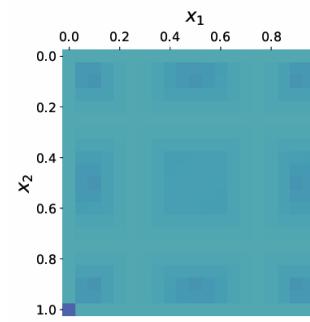


(d) Our aggregator

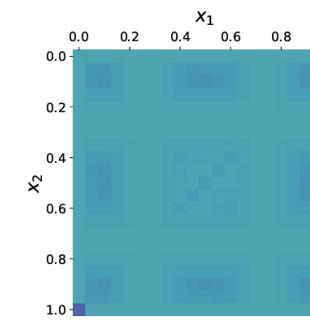
- Uniform loss



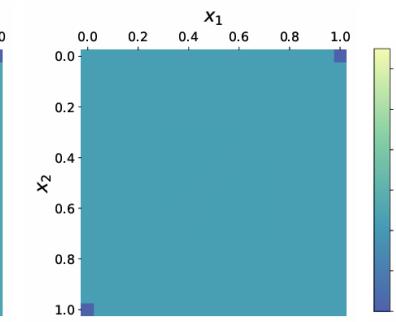
(a) Simple averaging



(b) Average prior



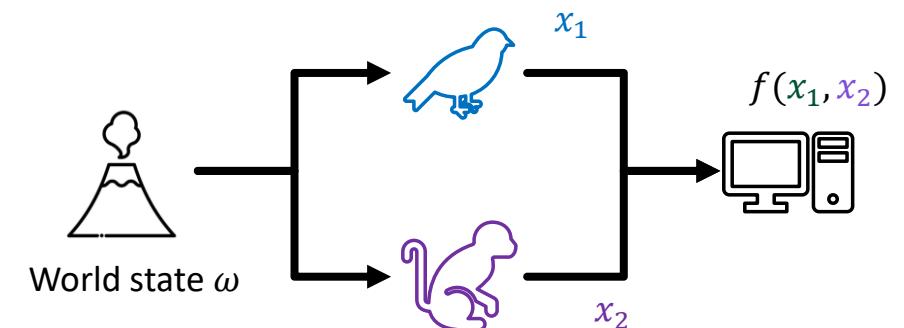
(c) State-of-the-art



(d) Our aggregator

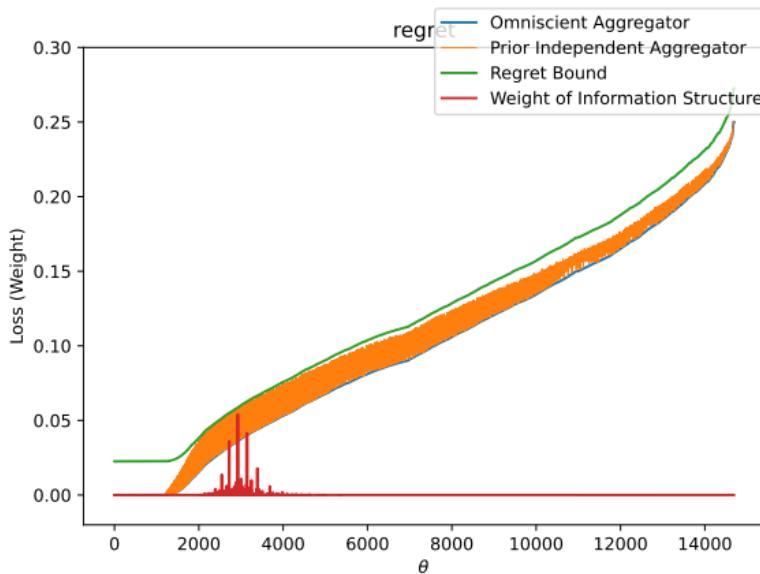
Conclusion and Future Work

- Conclusion
 - An algorithmic framework for robust information aggregation
 - Automatic design of aggregators, even in scenarios with complex report formats
- Future work using partial knowledge Θ
 - Aggregation
 - Higher order reports
 - Decision
 - Elicitation
 - Proper scoring rule

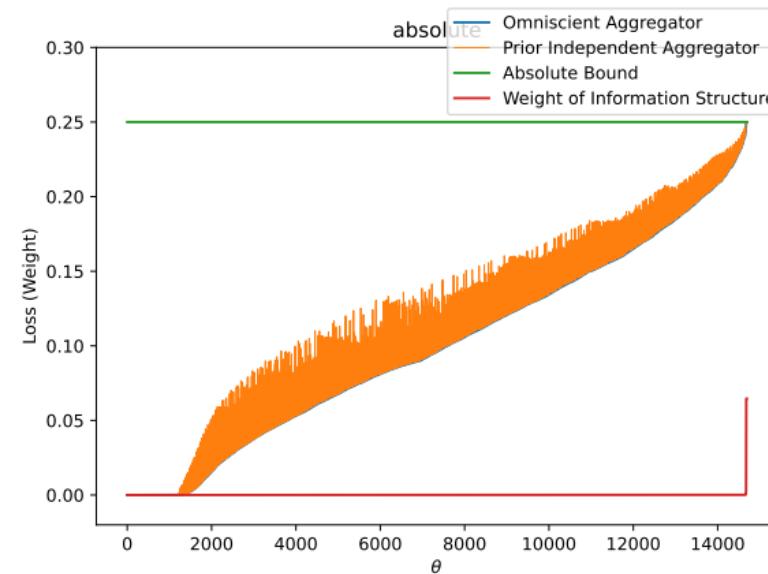


Additive vs. Ratio vs. Absolute

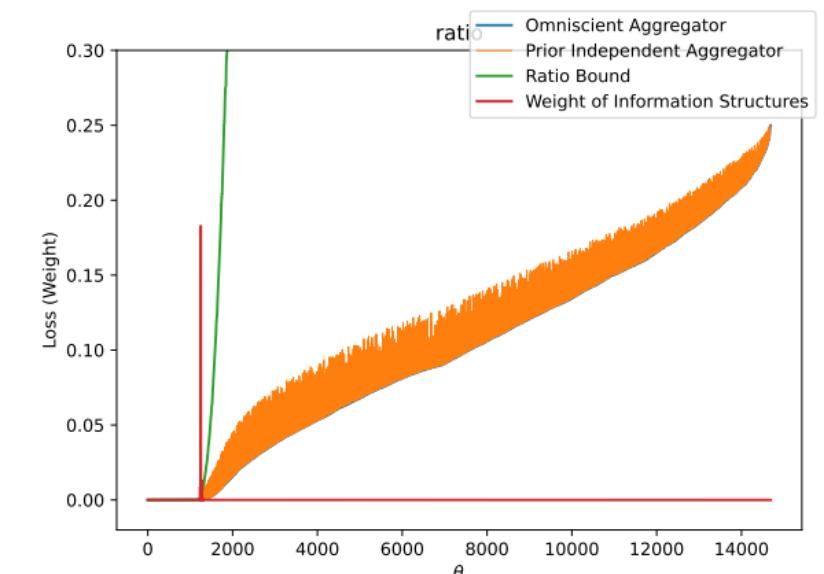
- $l(f^t, \omega) - l(\text{opt}_\theta, \omega)$



(a) Additive



(b) Absolute



(c) Ratio