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When human master the Bayes rule…
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When we do not know joint distribution 𝜃…
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Prior matters

• If the prior probability of

eruption 𝜇

– Given prediction 𝑥1 and 𝑥2, the 

posterior is

1 − 𝜇 𝑥1𝑥2
1 − 𝜇 𝑥1𝑥2 + 𝜇(1 − 𝑥1)(1 − 𝑥2)

– 0.000001% => far less than the

forecasts => Dangerous!

– 5% => safe

5

10% 1%



Prior Matters

• If the prior probability of

eruption 𝜇

– Given prediction 𝑥1 and 𝑥2, the 

posterior is

1 − 𝜇 𝑥1𝑥2
1 − 𝜇 𝑥1𝑥2 + 𝜇(1 − 𝑥1)(1 − 𝑥2)

– 5% => safe

– 0.000001% => far less than the

forecasts => Dangerous!

6

10% 1%



Aggregating multiple forecasts

• Weather forecast

• Elections

• Investments

• Medical Prognosis
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Outline

• Robust forecast aggregation problem

– An ignorant aggregator 

• does not know the information structure

• aims to minimize the regret in the worst information structures.

• Theoretical results

– FPTAS based on online learning method

– Two challenges

• Numerical results
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Robust Forecast Aggregation Problem [ABS18]

• Inputs

– Binary state of nature Ω = {0,1}

– Two forecasters {1,2} with signal sets 

𝑆1, 𝑆2.

– Information structure 

𝜃 ∈ Δ Ω × 𝑆1 × 𝑆2
– Each forecaster reports the posterior

𝑥𝑖 = Pr
𝜃
𝜔 = 1 𝑠𝑖]

• Output a forecast 𝑓(𝑥1, 𝑥2) where 

𝑓: 0,1 2 → [0,1] is called an 

aggregation scheme
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Measure aggregation schemes

The forecast should be accurate and robust

• Accurate: 

– Squared loss function 𝑙 𝑓, 𝜃 = E𝜃[ 𝑓 − 𝑤 2], 

– Regret against Bayesian aggregator with 𝜃
𝑅 𝑓, 𝜃 = 𝑙 𝑓, 𝜃 − 𝑙 𝑜𝑝𝑡𝜃 , 𝜃 .

• Robust: a set of information structures Θ the worst-case 

performance is small

12

inf
𝑓∈ℱ

sup
𝜃∈Θ

𝑅(𝑓, 𝜃)

𝑥1

𝑥2

𝑓(𝑥1, 𝑥2)

World state 𝜔



Measure aggregation schemes

The forecast should be accurate and robust

• Accurate: 

– Squared loss function 𝑙 𝑓, 𝜃 = E𝜃[ 𝑓 − 𝑤 2], 

– Regret against Bayesian aggregator with 𝜃
𝑅 𝑓, 𝜃 = 𝑙 𝑓, 𝜃 − 𝑙 𝑜𝑝𝑡𝜃 , 𝜃 .

• Robust: a set of information structures Θ the worst-case

performance is small

13

inf
𝑓∈ℱ

sup
𝜃∈Θ

𝑅(𝑓, 𝜃)

𝑥1

𝑥2

𝑓(𝑥1, 𝑥2)

World state 𝜔



Possible Approaches

• Common function, e.g., average

• Delicate designed aggregators [ABS, PNAS 2018]

• An algorithmic and systematic method?
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Outline

• Robust forecast aggregation problem

– An ignorant aggregator 

• does not know the information structure

• aims to minimize the regret in the worst information structures.

• Theoretical results

– FPTAS based on online learning method

– Two challenges

• Numerical results

15



FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an 𝜖-optimal 

aggregator for inf
𝑓∈ℱ

sup
𝜃∈Θ

𝑅(𝑓, 𝜃) if one of the following holds

1. Θ is finite

2. Θ consists of conditional independent information 

structures and ℱ is the collection of 𝐿-Lipschitz aggregators
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Algorithm: equilibrium computation

inf
𝑓∈ℱ

sup
𝜃∈Θ

𝑅(𝑓, 𝜃) as a zero-sum game
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Nature
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𝜃3

…

𝜃𝑛
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Aggregator
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𝑓𝑚(𝒙)
…

∞



Online Learning: Efficient Best Response

No-regret vs Best response
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Nature

E𝜃~𝒘[𝑅(𝑓, 𝜃)]
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arg min
𝑓

E𝜃~𝒘[𝑅(𝑓, 𝜃)]

Best Response



Online Learning: Learn Mixed Strategy

No-regret vs Best response
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Online Learning: Optimal Solution
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Nature

E𝜃~𝒘∗[𝑅(𝑓∗, 𝜃)]

Aggregator

𝑓∗ =
σ𝑡=1
𝑇 𝑓𝑡

𝑇
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σ𝑡=1
𝑇 𝒘𝑡

𝑇

≈ inf
𝑓∈ℱ

sup
𝜃∈Θ

𝑅(𝑓, 𝜃)



FPTAS for optimal forecasts aggregation

There is an efficient algorithm outputting an 𝜖-optimal 

aggregator for inf
𝑓∈ℱ
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Two challenges

• The dimension of Θ ⊂ Δ(Ω × 𝑆1 × 𝑆2) is high.

– Dimension reduction
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Two challenges

• The dimension of Θ ⊂ Δ(Ω × 𝑆1 × 𝑆2) is high.

– Dimension reduction

• Θ and ℱ are continuous.

– Discretize Θ to finite information structure Θ𝑓𝑖𝑛 and show 

𝑅 Θ,ℱ ≈ 𝑅 Θ𝑓𝑖𝑛, ℱ
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Control the Regret 𝑅 Θ,ℱ ≈ 𝑅 Θ𝑓𝑖𝑛, ℱ

• (𝜖, 𝑑)-Covering

– For any 𝜃 ∈ Θ, we can find 𝜃′ ∈ Θ′ such that 𝑑 𝜃, 𝜃′ ≤ 𝜖.

– Use the nearest information structure in the Euclidean space.

– Prove they are close in the TVD(EMD) metric.

• Discretize in two steps:

– Discrete reports (EMD)

– Discrete prior (TVD)
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Control the Regret 𝑅 Θ,ℱ ≈ 𝑅 Θ𝑓𝑖𝑛, ℱ

𝑅 𝑓𝑡, 𝜃 = 𝑙 𝑓𝑡, 𝜃 − 𝑙 opt𝜃 , 𝜃

• Bayesian aggregator opt𝜃 is not smooth

– Find a smooth one to approximate opt𝜃
– Trimming the non-smooth area.

– Extend the smooth regret to the full space.

• Best-response 𝑓𝑡 is not smooth

– Restrict 𝑓𝑡 to smooth function.

– Calculate the best smooth response by Ellipsoid method.
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Two solutions

• Reduce dimension 

– The dimension of Θ ⊂ Δ(Ω × 𝑆1 × 𝑆2) is high.

• Discretize Θ and run no regret+best response

– Calculate the best response 𝑓 in ℱ.

– Control the regret 𝑅 Θ,ℱ ≈ 𝑅 Θ𝑓𝑖𝑛, ℱ
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Our Results (Numerical)
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Our Results (Numerical)
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• Extremization

• Uniform loss



Conclusion and Future Work

• Conclusion

– An algorithmic framework for robust information aggregation

– Automatic design of aggregators, even in scenarios with complex 
report formats

• Future work using partial knowledge Θ
– Aggregation

• Higher order reports

• Decision

– Elicitation

• Proper scoring rule
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Additive vs. Ratio vs. Absolute

• 𝑙 𝑓𝑡, 𝜔 − 𝑙 opt𝜃 , 𝜔


