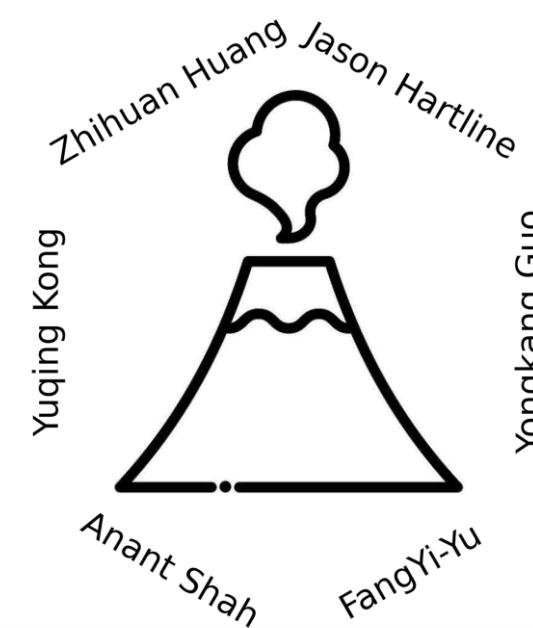
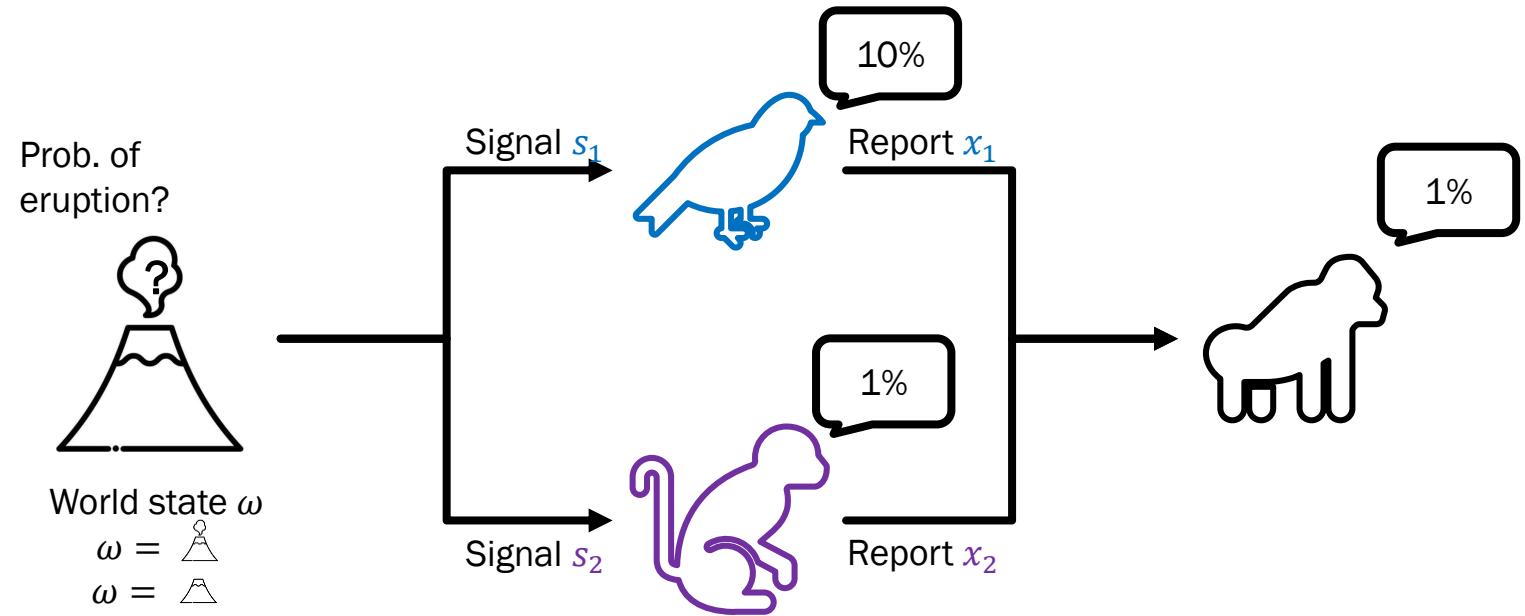


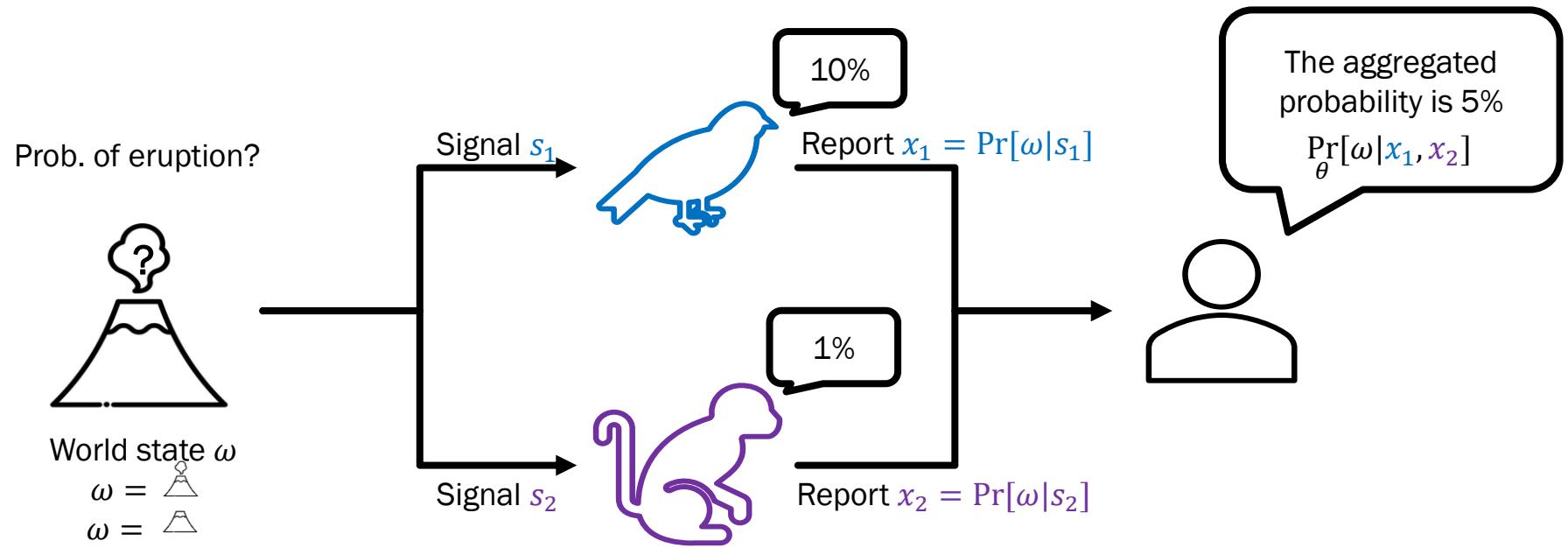
# Algorithmic Robust Forecast Aggregation



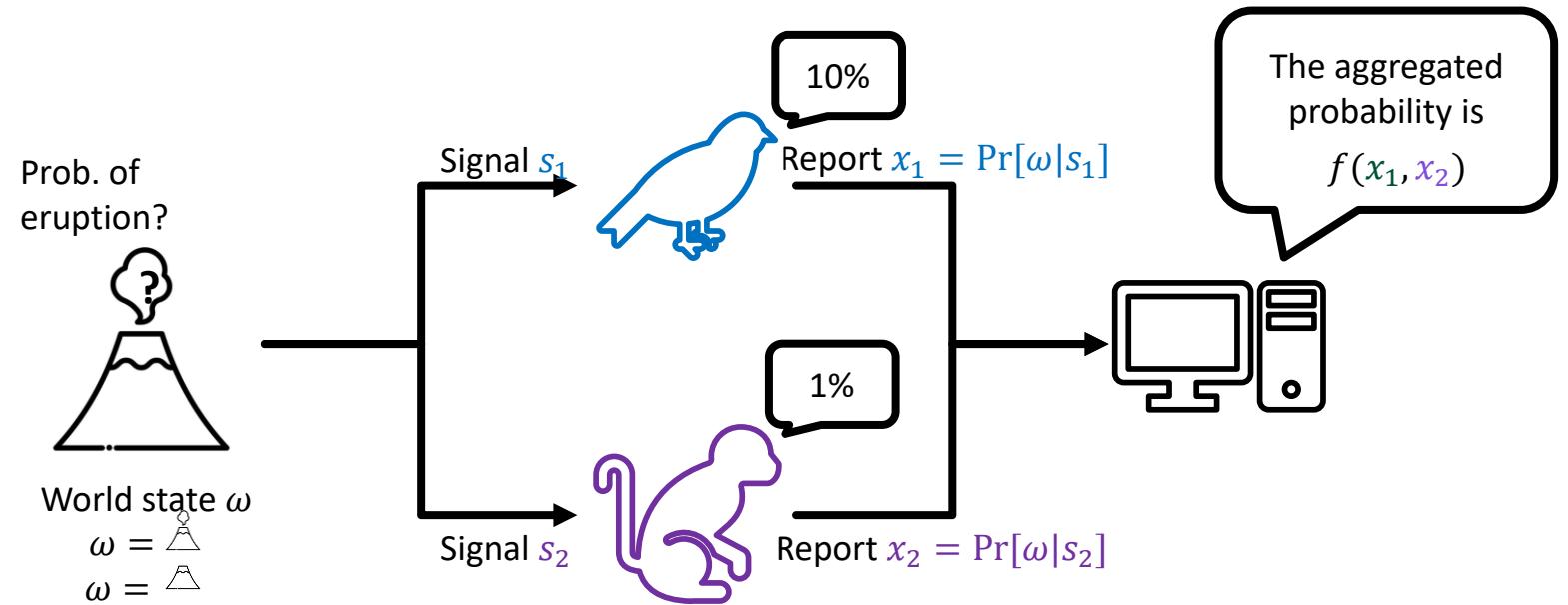
# Long time ago...



# When human master the Bayes rule...



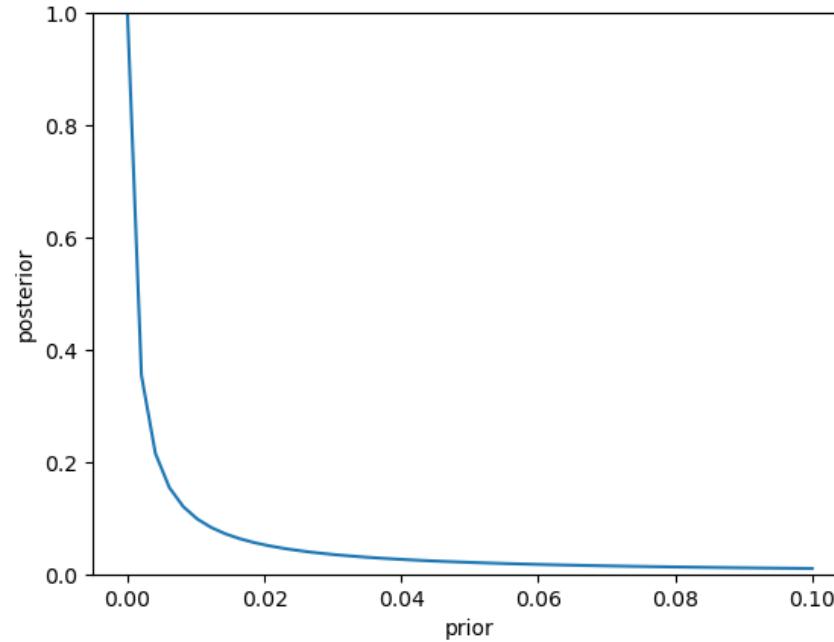
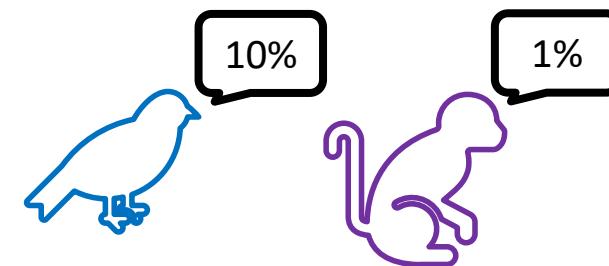
# When we do not know joint distribution $\theta...$



# Prior matters

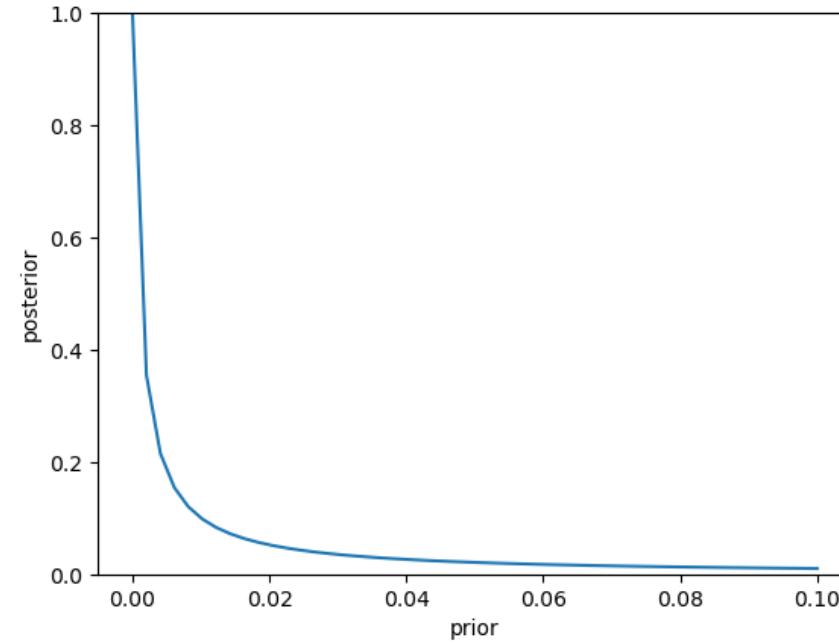
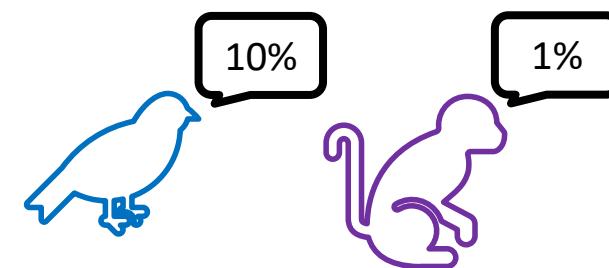
---

- If the prior probability of eruption  $\mu$ 
  - Given prediction  $x_1$  and  $x_2$ , the posterior is



# Prior Matters

- If the prior probability of eruption  $\mu$ 
  - Given prediction  $x_1$  and  $x_2$ , the posterior is
$$\frac{(1 - \mu)x_1x_2}{(1 - \mu)x_1x_2 + \mu(1 - x_1)(1 - x_2)}$$
  - 5% => safe
  - 0.000001% => far less than the forecasts => Dangerous!



# Aggregating multiple forecasts

---

- Weather forecast
- Elections
- Investments
- Medical Prognosis

# Outline

---

- Robust forecast aggregation problem
  - An ignorant aggregator
    - does not know the information structure
    - aims to minimize the regret in the worst information structures.
- Theoretical results
  - FPTAS based on online learning method
  - Two challenges
- Numerical results

---

# Outline

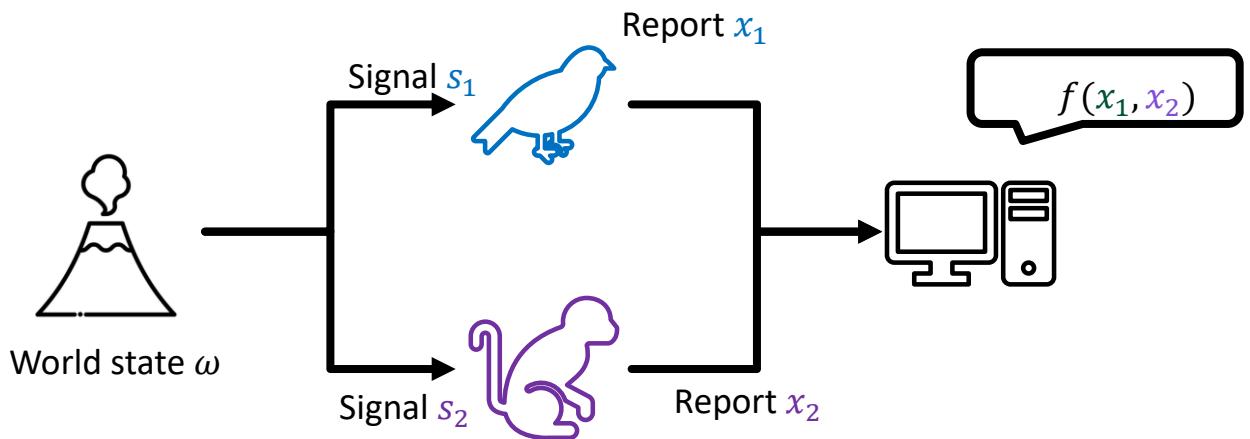
---

- Robust forecast aggregation problem
  - An ignorant aggregator
    - does not know the information structure
    - aims to minimize the regret in the worst information structures.
- Theoretical results
  - FPTAS based on online learning method
  - Two challenges
- Numerical results

---

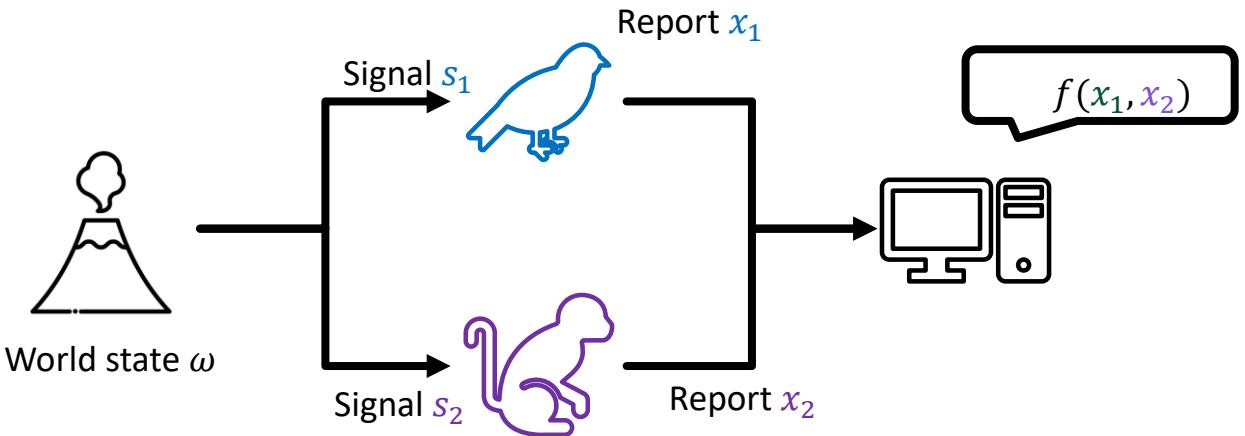
# Robust Forecast Aggregation Problem [ABS18]

- Inputs
  - Binary state of nature  $\Omega = \{0,1\}$
  - Two forecasters  $\{1,2\}$  with signal sets  $S_1, S_2$ .
  - Information structure  $\theta \in \Delta(\Omega \times S_1 \times S_2)$
  - Each forecaster reports the posterior  $x_i = \Pr_{\theta}[\omega = 1 | s_i]$



# Robust Forecast Aggregation Problem

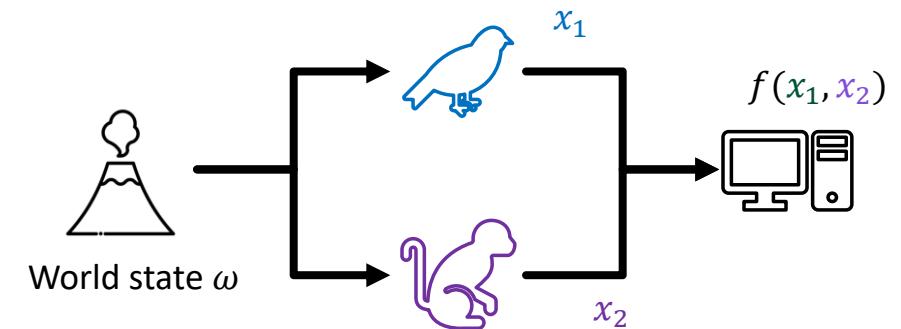
- Inputs
  - Binary state of nature  $\Omega = \{0,1\}$
  - Two forecasters  $\{1,2\}$  with signal sets  $S_1, S_2$ .
  - Information structure  
 $\theta \in \Delta(\Omega \times S_1 \times S_2)$
  - Each forecaster reports the posterior  
 $x_i = \Pr_{\theta}[\omega = 1 | s_i]$
- Output a forecast  $f(x_1, x_2)$  where  
 $f: [0,1]^2 \rightarrow [0,1]$  is called an  
aggregation scheme



# Measure aggregation schemes

The forecast should be accurate and robust

- **Accurate:**
  - Squared loss function  $l(f, \theta) = \mathbb{E}_\theta[(f - w)^2]$ ,
  - Regret against Bayesian aggregator with  $\theta$   
$$R(f, \theta) = l(f, \theta) - l(opt_\theta, \theta).$$

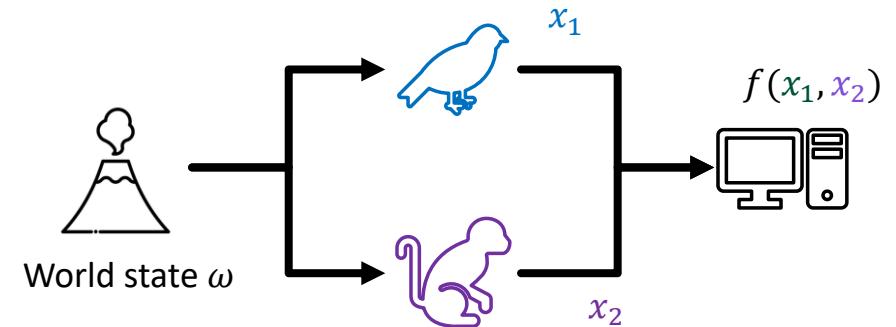


# Measure aggregation schemes

The forecast should be accurate and robust

- **Accurate:**
  - Squared loss function  $l(f, \theta) = \mathbb{E}_\theta[(f - w)^2]$ ,
  - Regret against Bayesian aggregator with  $\theta$   
$$R(f, \theta) = l(f, \theta) - l(opt_\theta, \theta).$$
- **Robust:** a set of information structures  $\Theta$  the **worst-case** performance is small

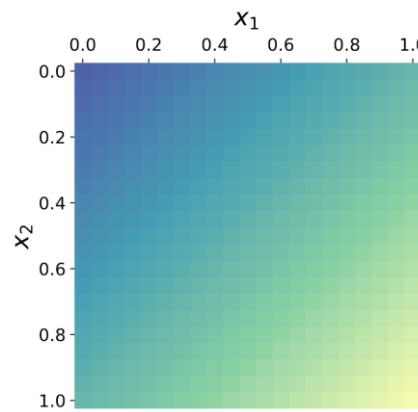
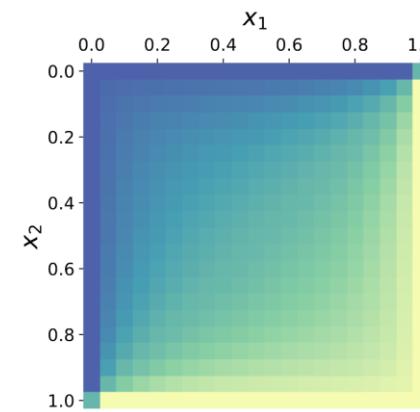
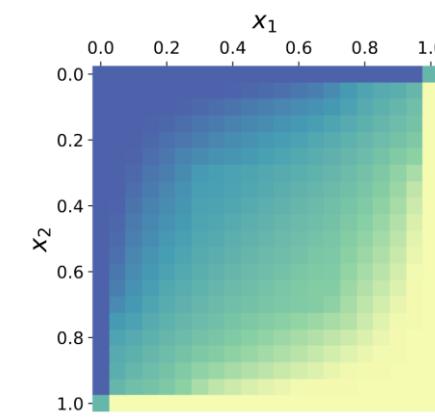
$$\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$$



# Possible Approaches

---

- Common function, e.g., average
- Delicate designed aggregators [ABS, PNAS 2018]
- An algorithmic and systematic method?



# Outline

---

- Robust forecast aggregation problem
  - An ignorant aggregator
    - does not know the information structure
    - aims to minimize the regret in the worst information structures.
- Theoretical results
  - FPTAS based on online learning method
  - Two challenges
- Numerical results

---

# FPTAS for optimal forecasts aggregation

---

There is an efficient algorithm outputting an  $\epsilon$ -optimal aggregator for  $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$  if one of the following holds

1.  $\Theta$  is finite
2.  $\Theta$  consists of conditional independent information structures and  $\mathcal{F}$  is the collection of  $L$ -Lipschitz aggregators

# FPTAS for optimal forecasts aggregation

---

There is an efficient algorithm outputting an  $\epsilon$ -optimal aggregator for  $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$  if one of the following holds

1.  $\Theta$  is finite
2.  $\Theta$  consists of conditional independent information structures and  $\mathcal{F}$  is the collection of  $L$ -Lipschitz aggregators

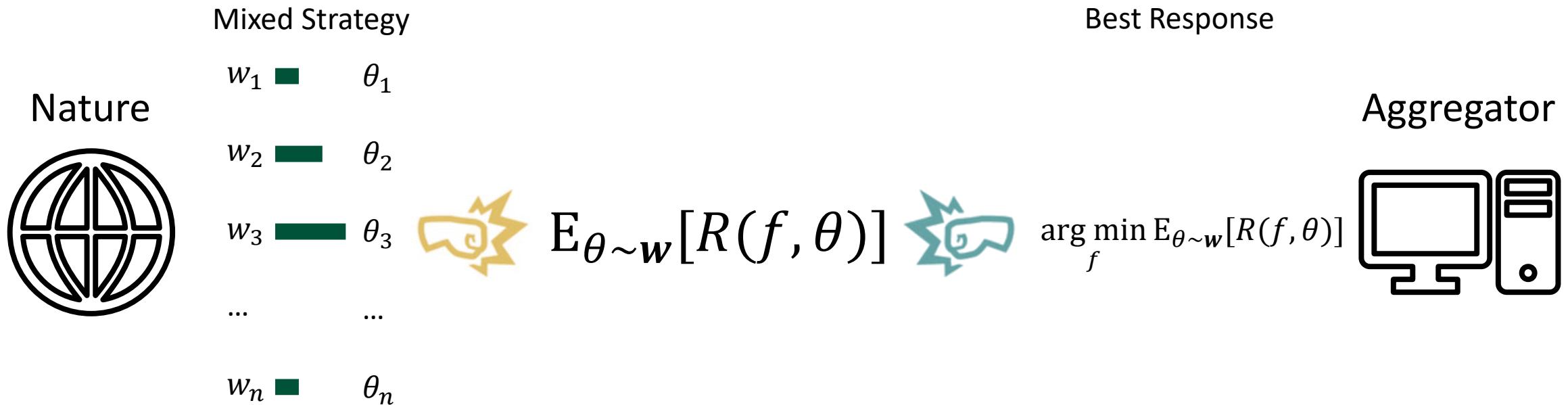
# Algorithm: equilibrium computation

$\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$  as a zero-sum game



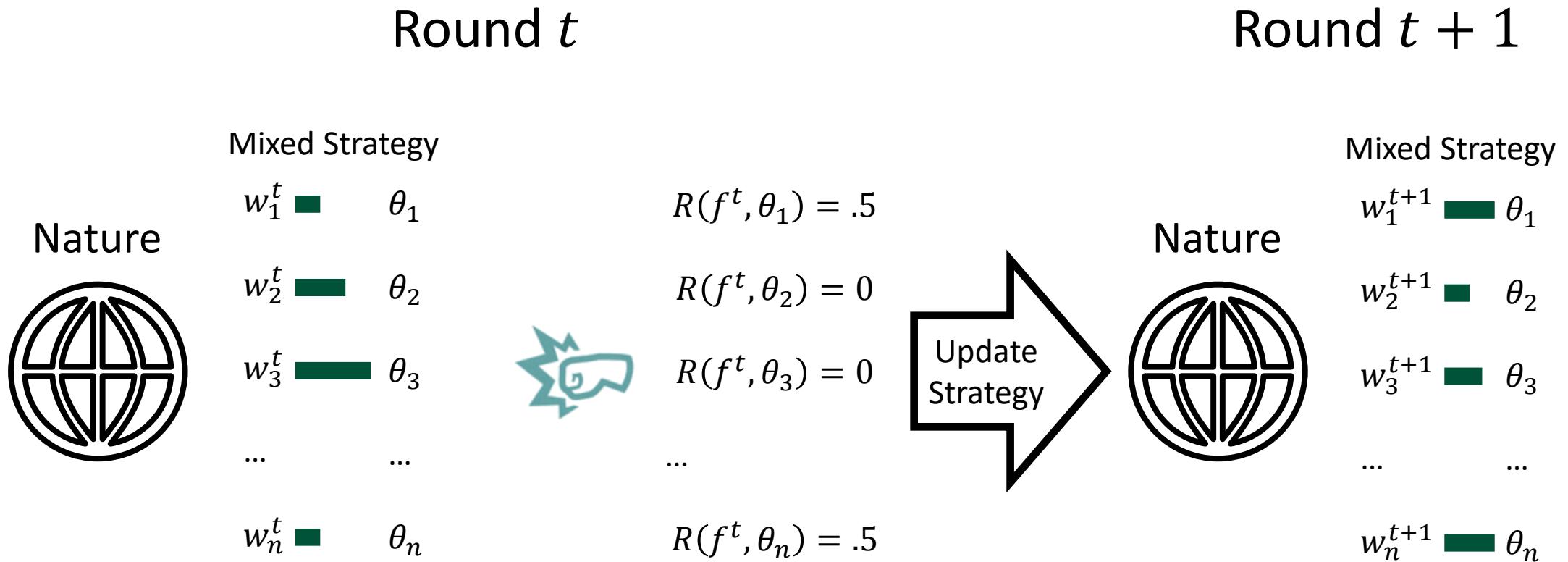
# Online Learning: Efficient Best Response

No-regret vs Best response



# Online Learning: Learn Mixed Strategy

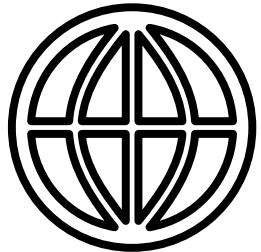
No-regret vs Best response



# Online Learning: Optimal Solution

---

Nature



$$\mathbf{w}^* = \frac{\sum_{t=1}^T \mathbf{w}^t}{T}$$

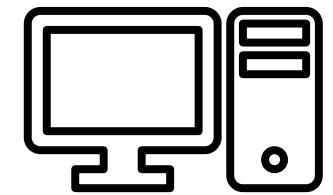


$$\mathbb{E}_{\theta \sim \mathbf{w}^*} [R(f^*, \theta)]$$



$$f^* = \frac{\sum_{t=1}^T f^t}{T}$$

Aggregator



$$\approx \inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$$

# FPTAS for optimal forecasts aggregation

---

There is an efficient algorithm outputting an  $\epsilon$ -optimal aggregator for  $\inf_{f \in \mathcal{F}} \sup_{\theta \in \Theta} R(f, \theta)$  if one of the following holds

1.  $\Theta$  is finite
2.  $\Theta$  consists of conditional independent information structures and  $\mathcal{F}$  is the collection of  $L$ -Lipschitz aggregators

# Two challenges

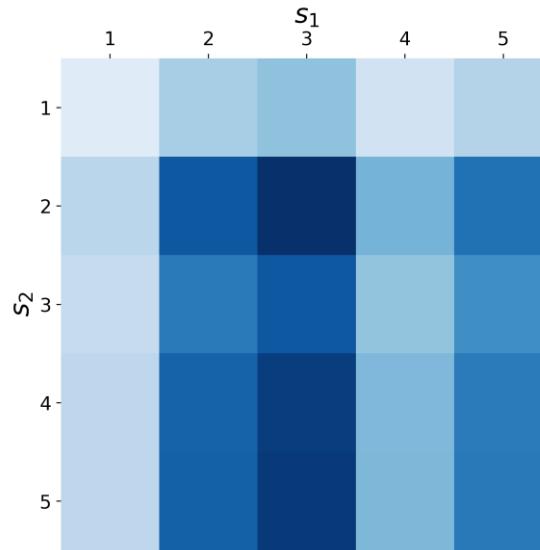
---

- The dimension of  $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$  is high.

# Two challenges

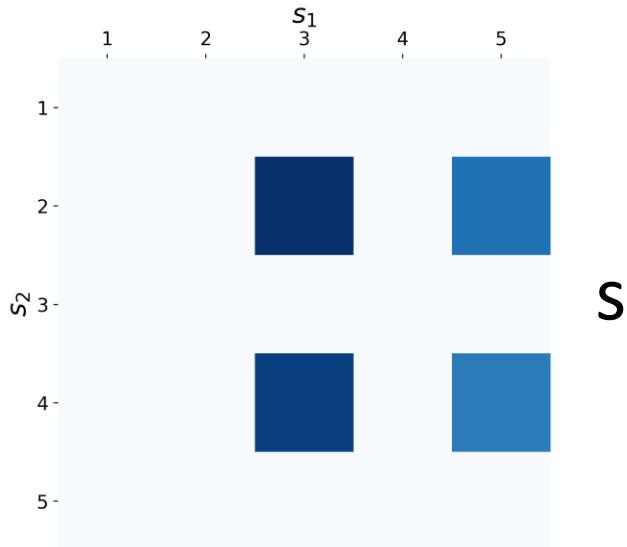
- The dimension of  $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$  is high.
  - Dimension reduction

Multiple signals



= Linear Combination of

Binary signals



# Two challenges

---

- The dimension of  $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$  is high.
  - Dimension reduction
- $\Theta$  and  $\mathcal{F}$  are continuous.
  - Discretize  $\Theta$  to finite information structure  $\Theta^{fin}$  and show  $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

# Control the Regret $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

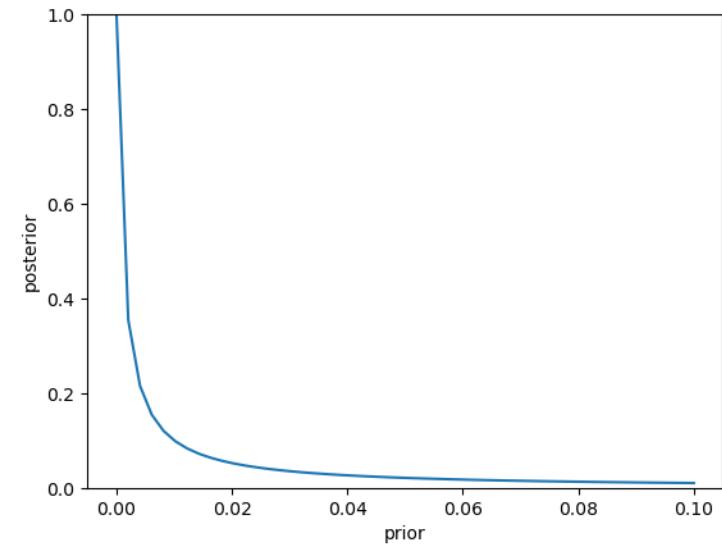
---

- $(\epsilon, d)$ -Covering
  - For any  $\theta \in \Theta$ , we can find  $\theta' \in \Theta'$  such that  $d(\theta, \theta') \leq \epsilon$ .
  - Use the nearest information structure in the Euclidean space.
  - Prove they are close in the TVD(EMD) metric.
- Discretize in two steps:
  - Discrete reports (EMD)
  - Discrete prior (TVD)

# Control the Regret $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

$$R(f^t, \theta) = l(\mathbf{f}^t, \theta) - l(\mathbf{opt}_\theta, \theta)$$

- Bayesian aggregator  $\mathbf{opt}_\theta$  is not smooth
  - Find a smooth one to approximate  $\mathbf{opt}_\theta$
  - Trimming the non-smooth area.
  - Extend the smooth regret to the full space.
- Best-response  $\mathbf{f}^t$  is not smooth
  - Restrict  $f^t$  to smooth function.
  - Calculate the best smooth response by Ellipsoid method.



# Two solutions

---

- Reduce dimension
  - The dimension of  $\Theta \subset \Delta(\Omega \times S_1 \times S_2)$  is high.
- Discretize  $\Theta$  and run no regret+best response
  - Calculate the best response  $f$  in  $\mathcal{F}$ .
  - Control the regret  $R(\Theta, \mathcal{F}) \approx R(\Theta^{fin}, \mathcal{F})$

# Outline

---

- Robust forecast aggregation problem
  - An ignorant aggregator
    - does not know the information structure
    - aims to minimize the regret in the worst information structures.
- Theoretical results
  - FPTAS based on online learning method
  - Two challenges
- Numerical results

---

# Our Results (Numerical)

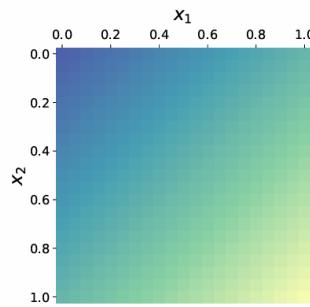
| Aggregator       | Formula                                                                                                      | Regret        |
|------------------|--------------------------------------------------------------------------------------------------------------|---------------|
| Simple average   | $\frac{x_1+x_2}{2}$                                                                                          | 0.0625        |
| Average prior    | $\frac{x_1 x_2 (1 - \frac{x_1+x_2}{2})}{x_1 x_2 (1 - \frac{x_1+x_2}{2}) + (1-x_1)(1-x_2) \frac{x_1+x_2}{2}}$ | 0.0260        |
| State-of-the-art | $\frac{x_1 x_2 (1 - ep(x_1, x_2))}{x_1 x_2 (1 - ep(x_1, x_2)) + (1-x_1)(1-x_2) ep(x_1, x_2)}$                | 0.0250        |
| Our              | -                                                                                                            | <b>0.0227</b> |

Table 1: Regret of different aggregators.

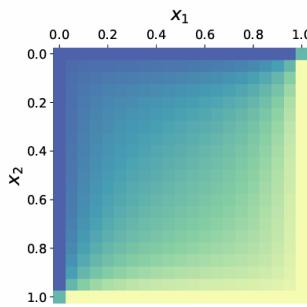
Here  $ep(x_1, x_2) = \begin{cases} 0.49x_1 + 0.49x_2, & \text{if } x_1 + x_2 \leq 1 \\ 0.49x_1 + 0.49x_2 + 0.02, & \text{otherwise} \end{cases}$

# Our Results (Numerical)

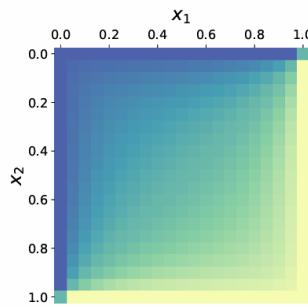
- Extremization



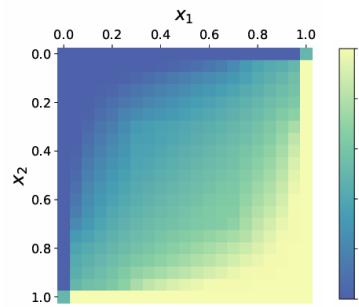
(a) Simple averaging



(b) Average prior

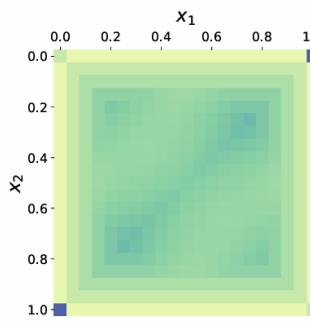


(c) State-of-the-art

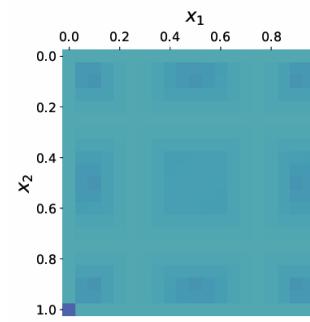


(d) Our aggregator

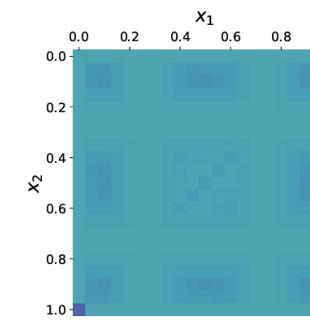
- Uniform loss



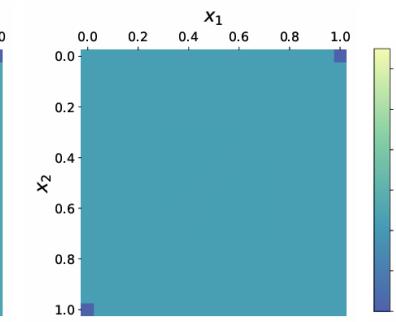
(a) Simple averaging



(b) Average prior



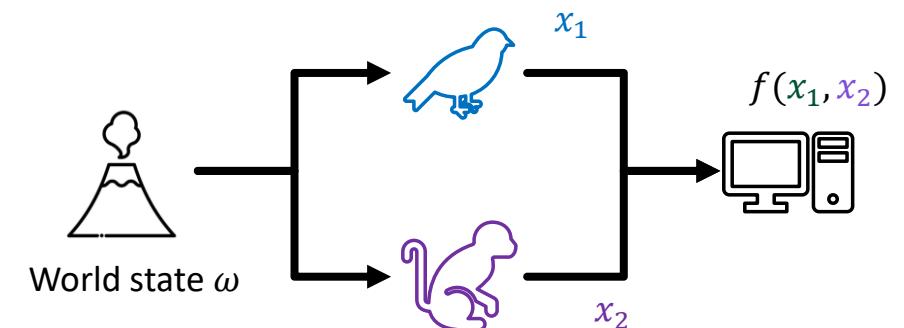
(c) State-of-the-art



(d) Our aggregator

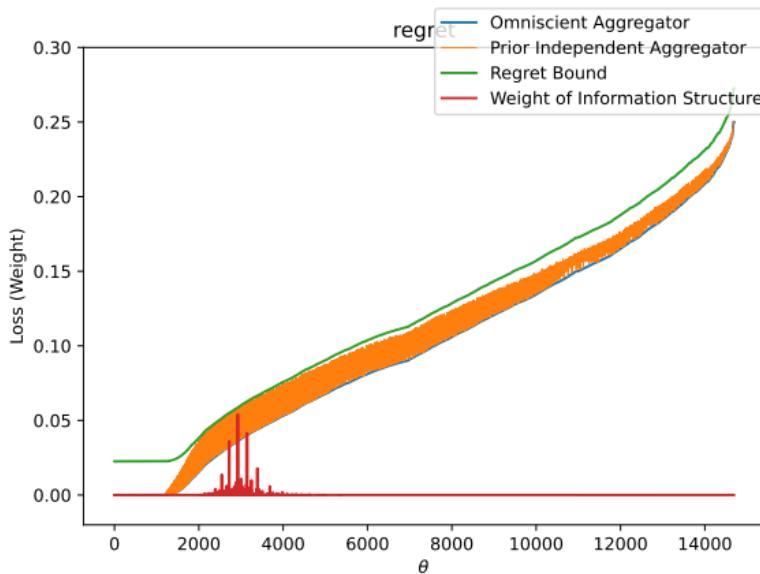
# Conclusion and Future Work

- Conclusion
  - An algorithmic framework for robust information aggregation
  - Automatic design of aggregators, even in scenarios with complex report formats
- Future work using partial knowledge  $\Theta$ 
  - Aggregation
    - Higher order reports
    - Decision
  - Elicitation
    - Proper scoring rule

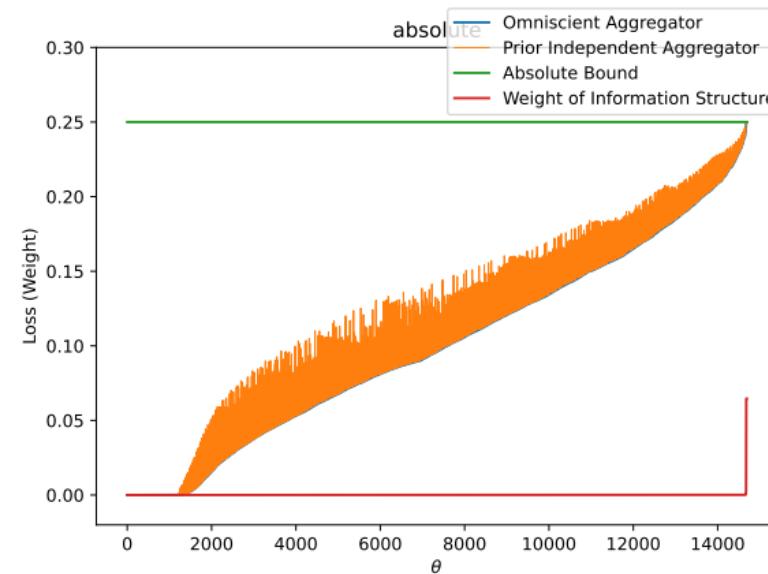


# Additive vs. Ratio vs. Absolute

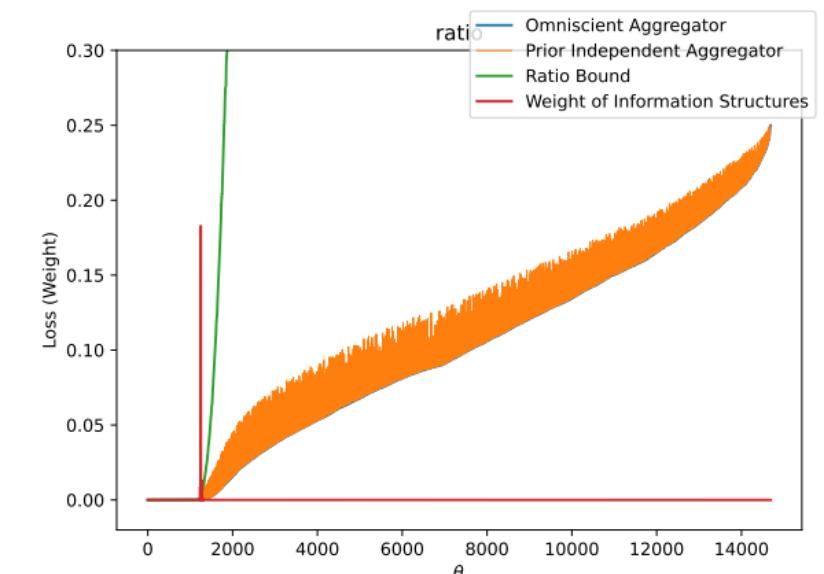
- $l(f^t, \omega) - l(\text{opt}_\theta, \omega)$



(a) Additive



(b) Absolute



(c) Ratio