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What is a social network?

e Social network models interactions between individuals
— Individuals behave freely.
— Society shows special properti.es &y bl ,:,wéiw -
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An Experiment by Milgram[1967]
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Small World Model

* Sixdegrees of separation--- very

short paths between arbitrary
pairs of nodes
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Watts/Strogatz model, Newman-Watts model

... .......... * npeopleonaring/torus




StrongTies

* n people onaring/torus

+ Strong ties within distance q




Weak Ties

* n people onaring/torus

| + Strong ties within distance q
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Algorithmically Small World
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Small World Model 2.0

* Sixdegrees of separation--- very
short paths between arbitrary

hairs of nodes

* Decentralized routing---

ndividuals with local
information are very adept at
finding these paths A




Kleinberg’s Small World Model[2000]

e ........... * npeopleonak-dimensional grid




StrongTies

* n people ona k-dimensional grid

+ Strong ties within distance q




Weak Ties

* n people ona k-dimensional grid

+ Strong ties within distance g
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* Weak ties: py,~ d(u,v)Y




Weak Ties

* n people ona k-dimensional grid

+ Strong ties within distance g

1

* Weak ties: py,~ d(u,v)Y
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Weak Ties with Different y

Large y
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Decentralized Routing on Kleinberg’s Model
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Weak Ties with Different y

Wheny < 2 Wheny > 2
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Threshold Property

Ify = 2and p,q = 1, thereisa If y # 2, thereis a constant § > 0,
decentralized algorithm A, sothat ~ so that the delivery time of any

the delivery time of Ais O(log”n).  decentralized algorithm is Q.(n%).
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Threshold Property

Histogram of y
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Small World Model 2.0.1

* Sixdegrees of separation--- very

short paths between arbitrary

hairs of nodes

* Decentralized routing---

ndividuals with local
information are very adept at
finding these paths A
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Recall: Kleinberg’s Small World Model

* n people ona k-dimensional grid

+ Strong ties within distance q

» Weak ties: p,,~d(u, v)™?




Nonhomogeneous Kleinberg's HetK, , p(n)

* n people ona k-dimensional grid

+ Strong ties within distance q

* Weak ties: u has y,, from D, and

p ties sample from py,~d, 2"
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Theorems

Upper bounds Lower bounds
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Wheny = 2

Dlogn
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When y < 2, weak ties are too random

Dlogn




When y > 2, weak ties are too short




Mixture of Both




Mixture of Both




Mixture of Both

. -
\\\Mm?@mﬁm&ﬁ




Outline

Background

— Milgram’s Experiment

— Kleinberg's Small World Model

Nonhomogeneous Kleinberg’s Small World Model
Myopic Routing

— Theorem

— Proof Outline

k-Complex Contagions Model




Thanks for your listening
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Upper Bound — Non-negligible Mass Near 2

* Fixed a distribution D with constant a = o where Fp(2 + €) —
Fr(2 —€) = Q(e%) forany integer k > 0 and n > o, there exists
¢ = 3+a+k, such that a k-complex contagion
CC(HetKy g peny, k, I) starting from a k-seed cluster | and

wherep > k,q?/2 =k takes at most O( logén) time to
spread to the whole network with probability atleast1 — n —

n over the randomness of HetK,, ; pn)-




Upper Bound — Fixed k

* Given a distribution D and an integer k > o, such that Pl;) ly €
'}/(—

|2, 8k)] > Owhere 3, = 2(k+ 1), foralln > 0there
exists & > 0 depending on D and k such that, the speed of a k-

complex contagion CC(HetKy, 4 pn)y, k, I) starting from a k-

seed clusterlandp > k,q2/2 > kisat most O(logén) with
probability atleast1 — n™" .




Lower Bound

* Given distribution D, constant integersk,p,q > 0,ande>o
suchthat Fp(2 + €) — Fp(2 — €) = 0, then there exist
constants ¢, > 0 depending on D and k, such that the time
it takes a k-contagion starting at seed-cluster|,
CC(HetKy g peny, k, I), to infect all nodes is at least ns with
probability at least 1 — O(n™") over the randomness of
Heth,q,D (n)-




ldea of Myopic Routing Upper Bound

Dlogn




ldea of Complex Contagion Lower Bound




* Number of nodes within region D;
221

* Probability of node u connectingto anode v € D;
1

Kz+ed

* Probability for node u entering region D;
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* Probability entering region D;
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Proof Sketch for lower bound

* ¥ > 2 the weak ties will be too short (concentrated edges)
* ¥ < 2 the weak ties will be too random (diffuse edges)




A Very Brief Summary — History

Kleinberg’'s small world model models social networks with
ooth strong and weak ties, and the distribution of weak-ties,
narameterized by vy.

— He showed how value of y influences the efficacy of myopic routing
on the network.

— Recent work on social influence by k-complex contagion models
discovered that the value of y also impacts the spreading rate




A Very Brief Summary — Our Work

* A natural generalization of Kleinberg’s small world model to
allow node heterogeneity is proposed, and

— We show this model enables myopic routing and k-complex
contagions on a large range of the parameter space.

— Moreover, we show that our generalization is supported by real-
world data.
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