
Nonhomogeneous Kleinberg's Small World Model: Cascades and Myopic Routing

Jie Gao, Grant Schoenebeck, **Fang-Yi Yu**

Stony Brook University

UNIVERSITY OF MICHIGAN™

What is a social network?

- Social network models interactions between individuals
 - Individuals behave freely.
 - Society shows special properties.

Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline
- k -Complex Contagions Model

An Experiment by Milgram[1967]

An Experiment by Milgram[1967]

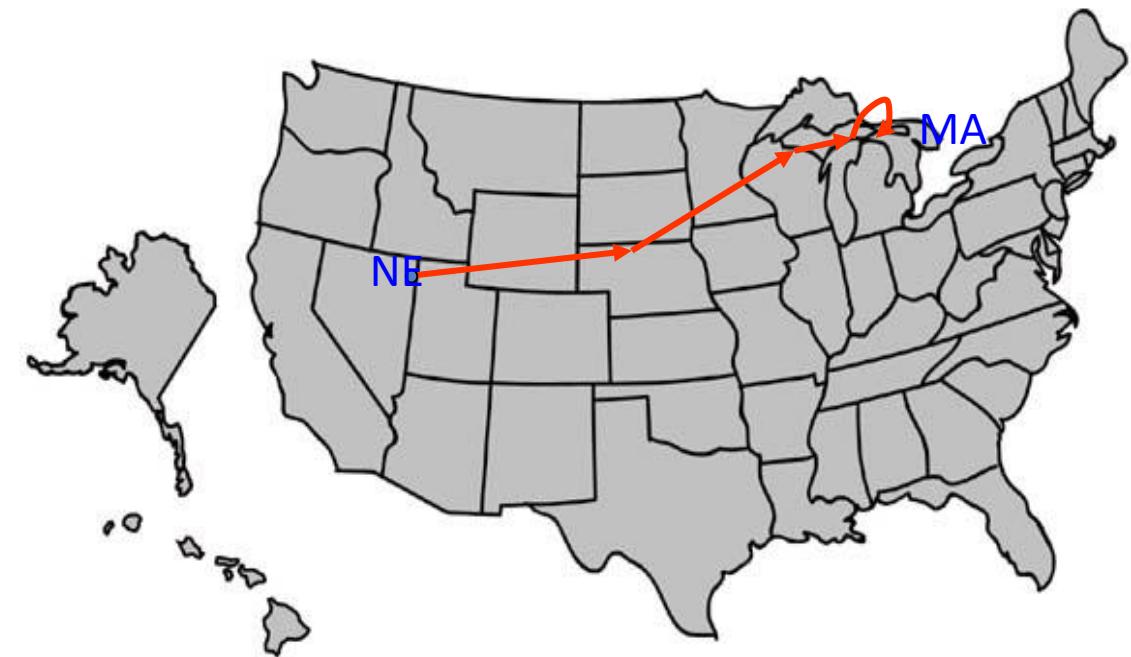
An Experiment by Milgram[1967]

An Experiment by Milgram[1967]

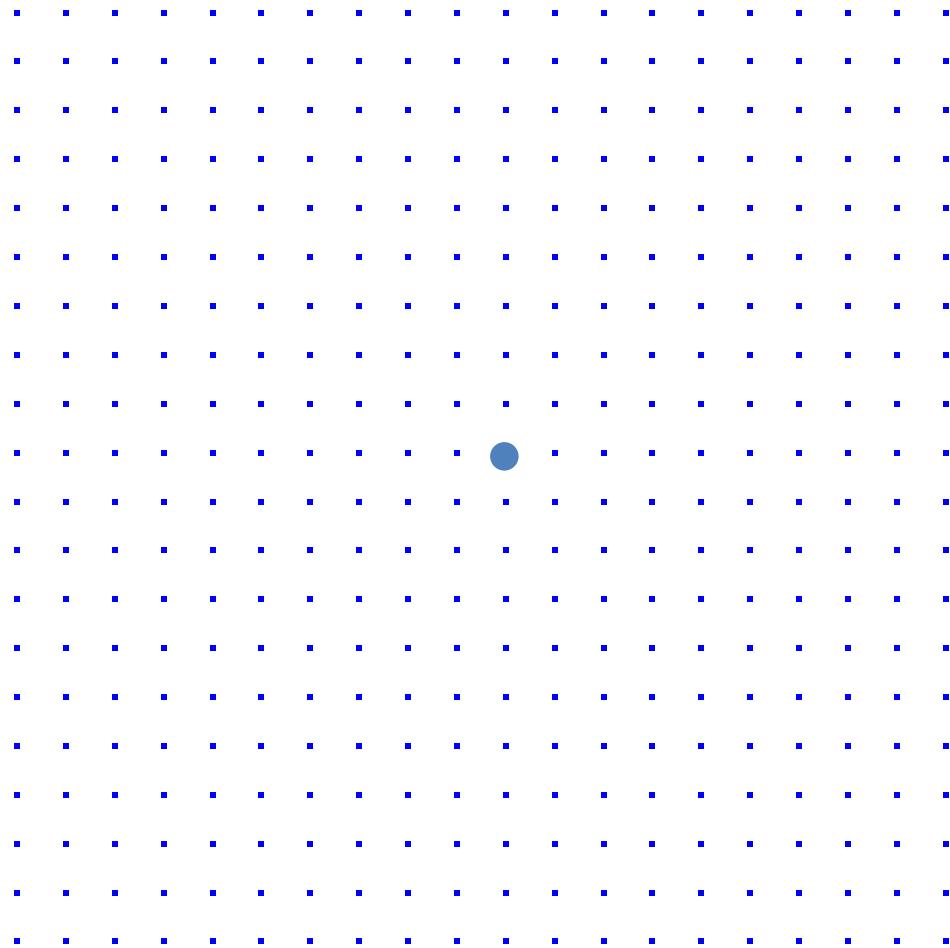
An Experiment by Milgram[1967]

Small World Model

- Six degrees of separation--- very short paths between arbitrary pairs of nodes

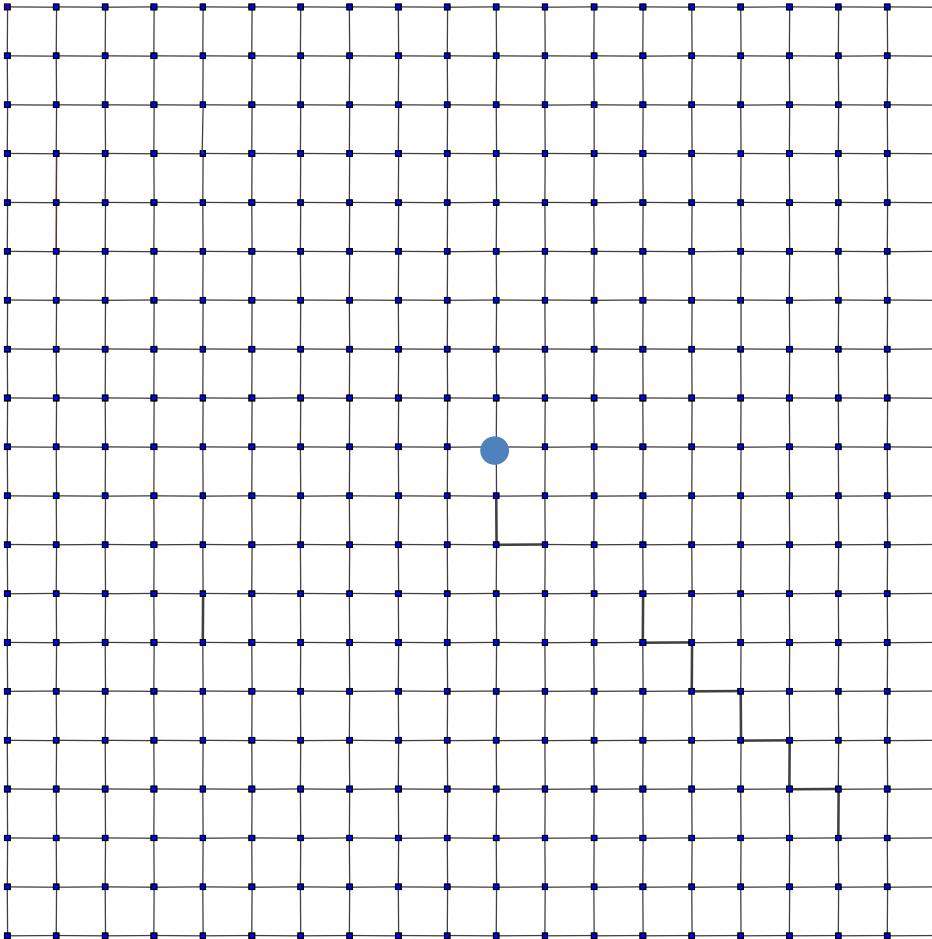


Watts/Strogatz model, Newman–Watts model



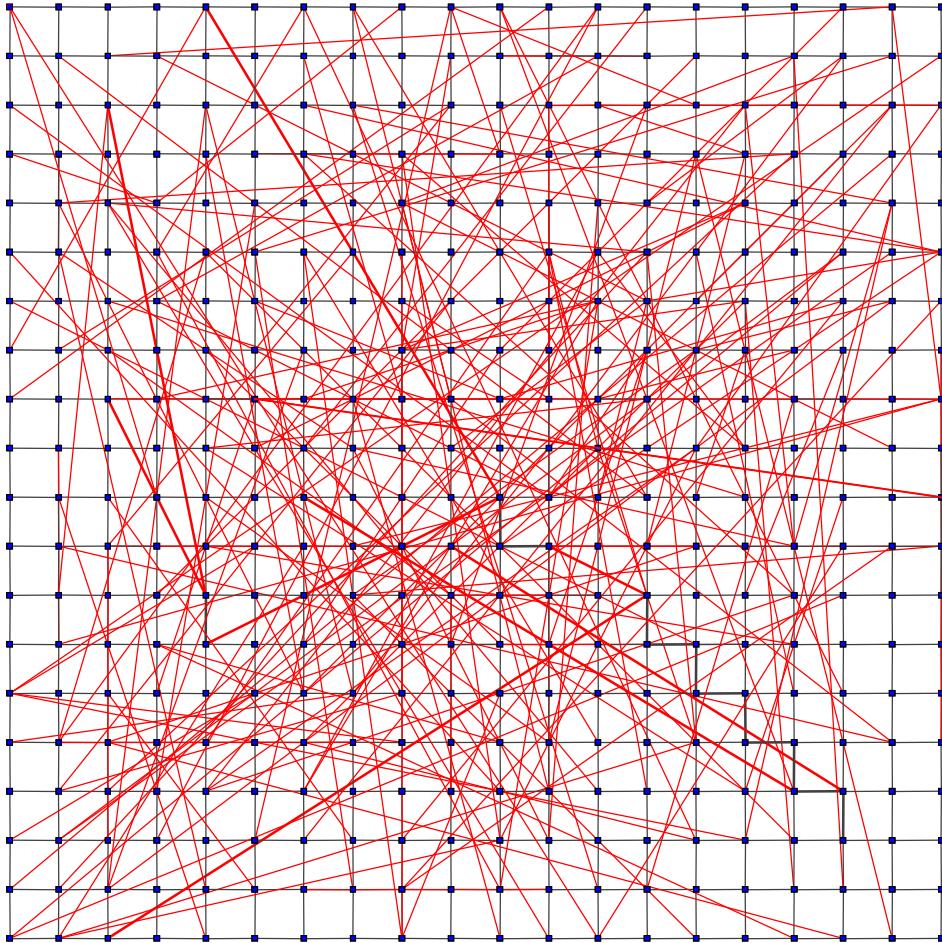
- n people on a ring/ torus

Strong Ties



- n people on a ring/ torus
- Strong ties within distance q

Weak Ties



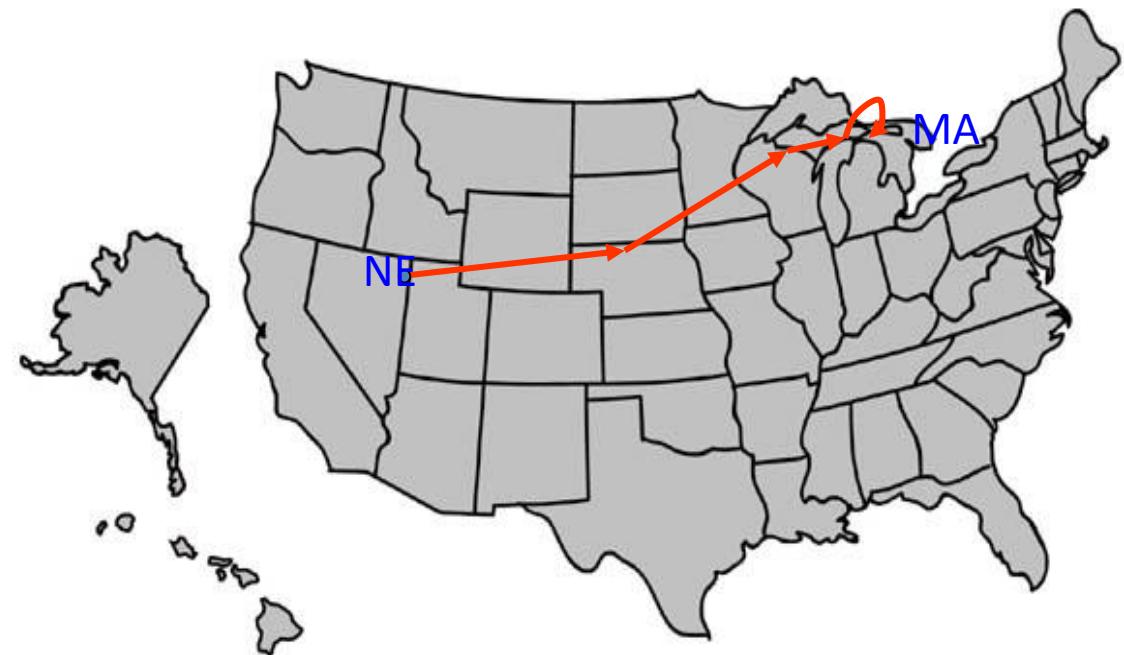
- n people on a ring/ torus
- Strong ties within distance q
- Weak ties: $p_{uv} = p$

Algorithmically Small World

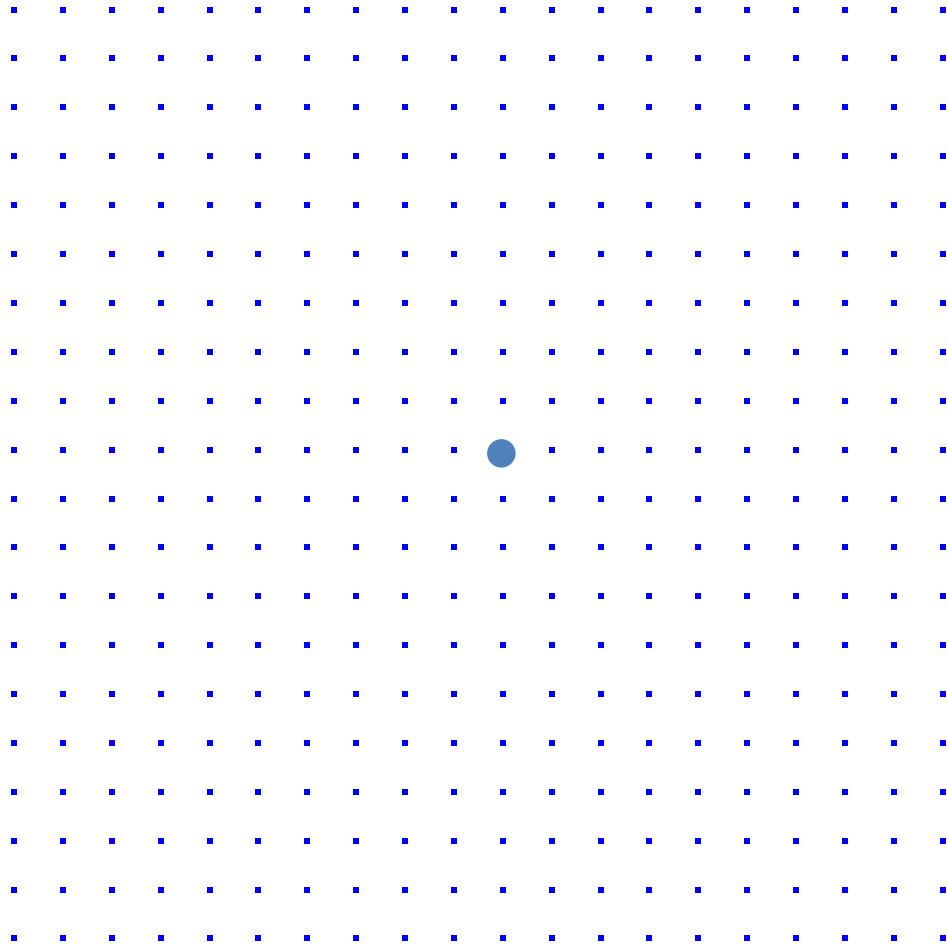


Small World Model 2.0

- Six degrees of separation--- very short paths between arbitrary pairs of nodes
- Decentralized routing--- Individuals with local information are very adept at finding these paths

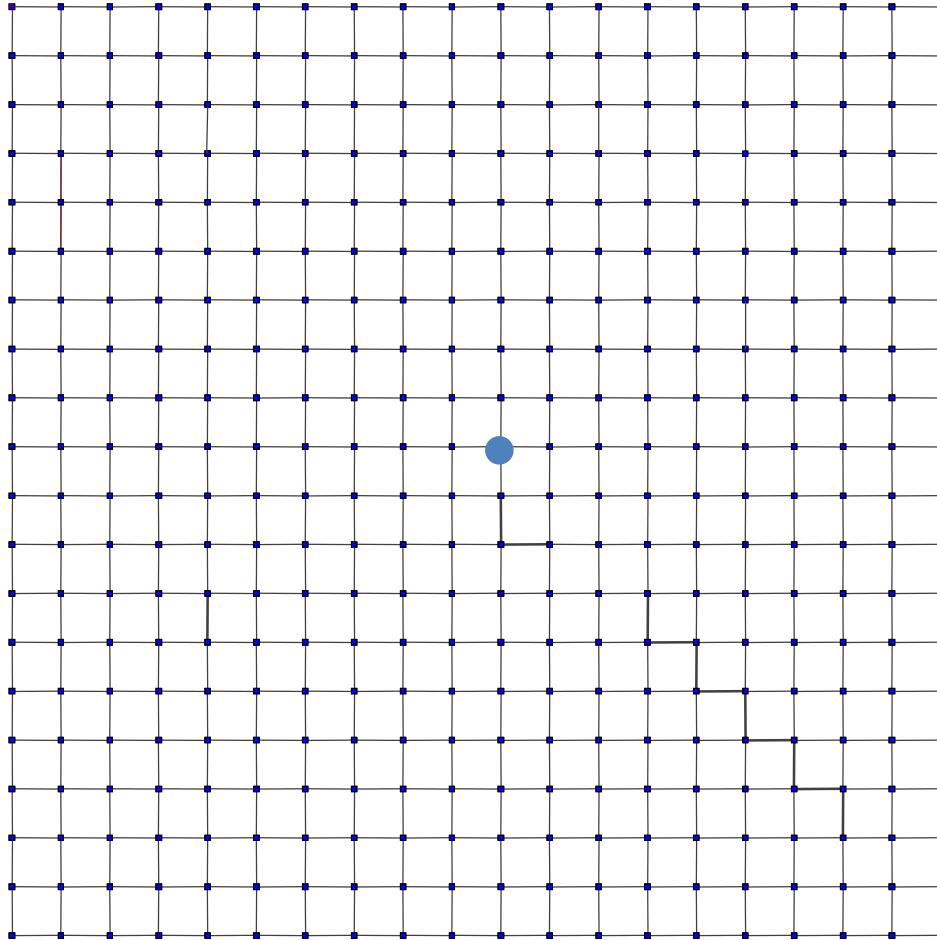


Kleinberg's Small World Model[2000]



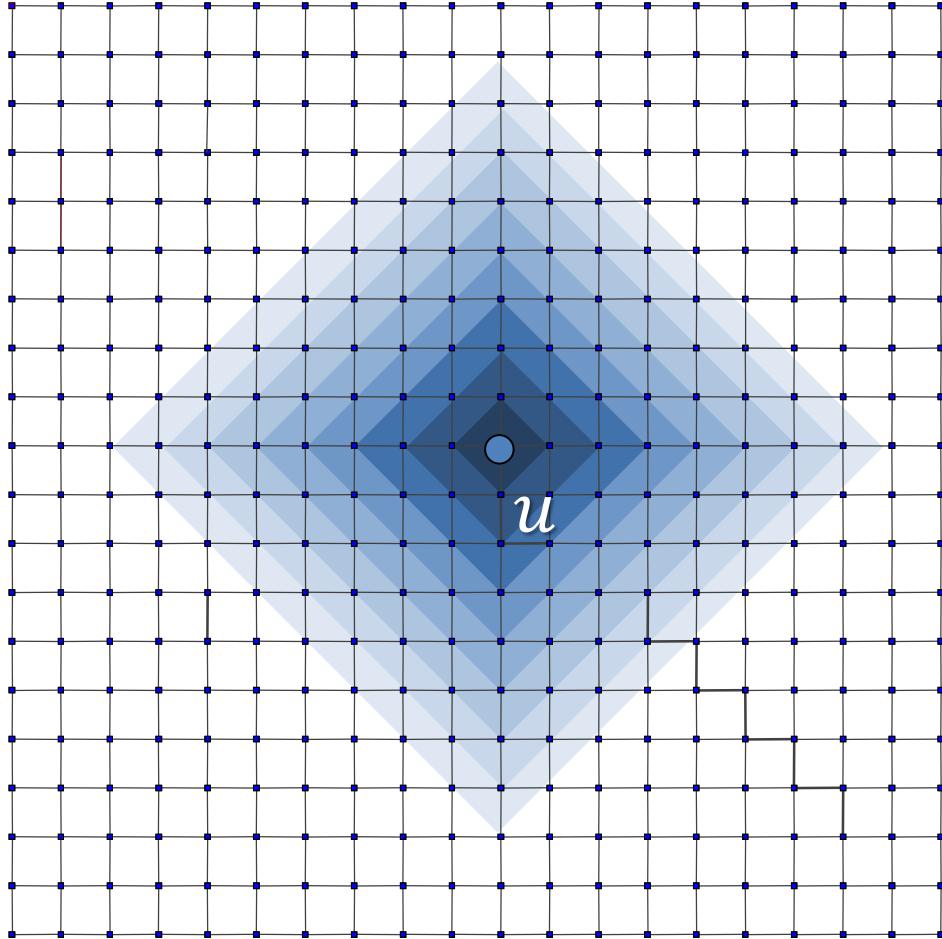
- n people on a k -dimensional grid

Strong Ties



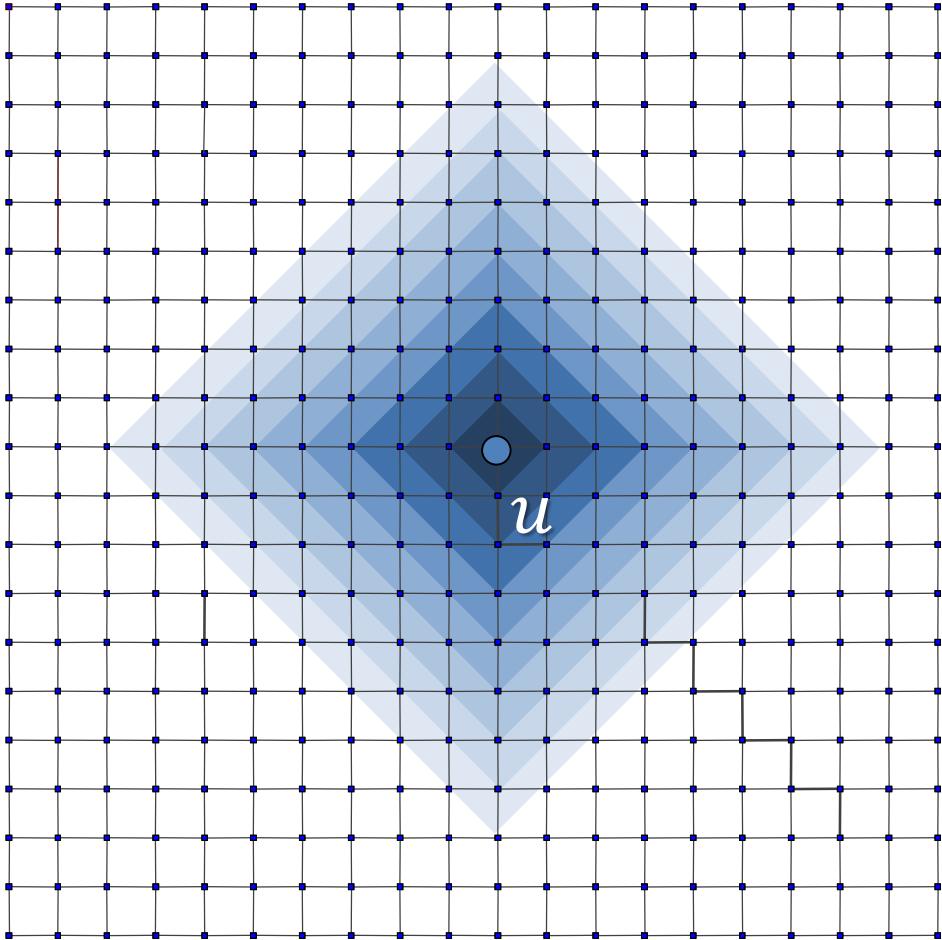
- n people on a k -dimensional grid
- Strong ties within distance q

Weak Ties

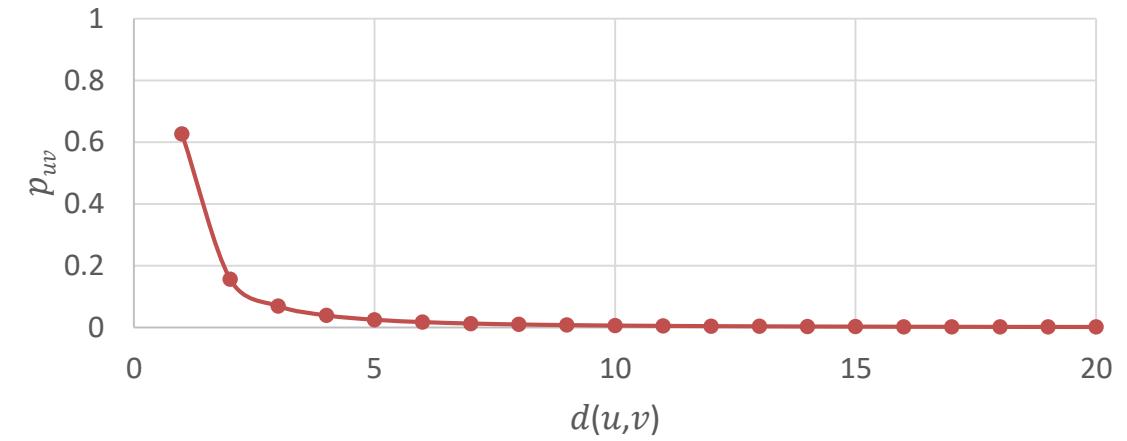


- n people on a k -dimensional grid
- Strong ties within distance q
- Weak ties: $p_{uv} \sim \frac{1}{d(u,v)^\gamma}$

Weak Ties

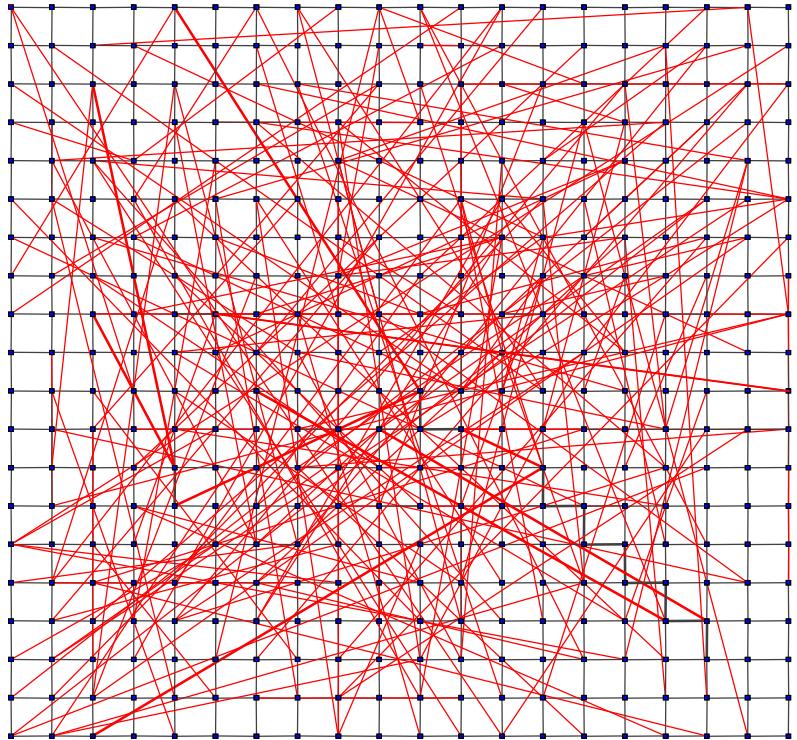


- n people on a k -dimensional grid
- **Strong ties** within distance q
- **Weak ties:** $p_{uv} \sim \frac{1}{d(u,v)^\gamma}$

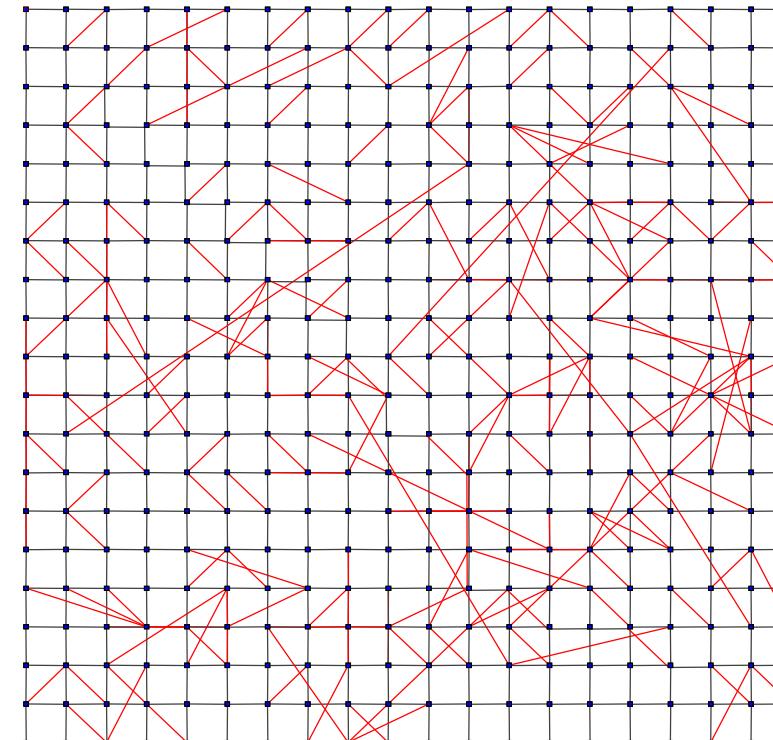


Weak Ties with Different γ

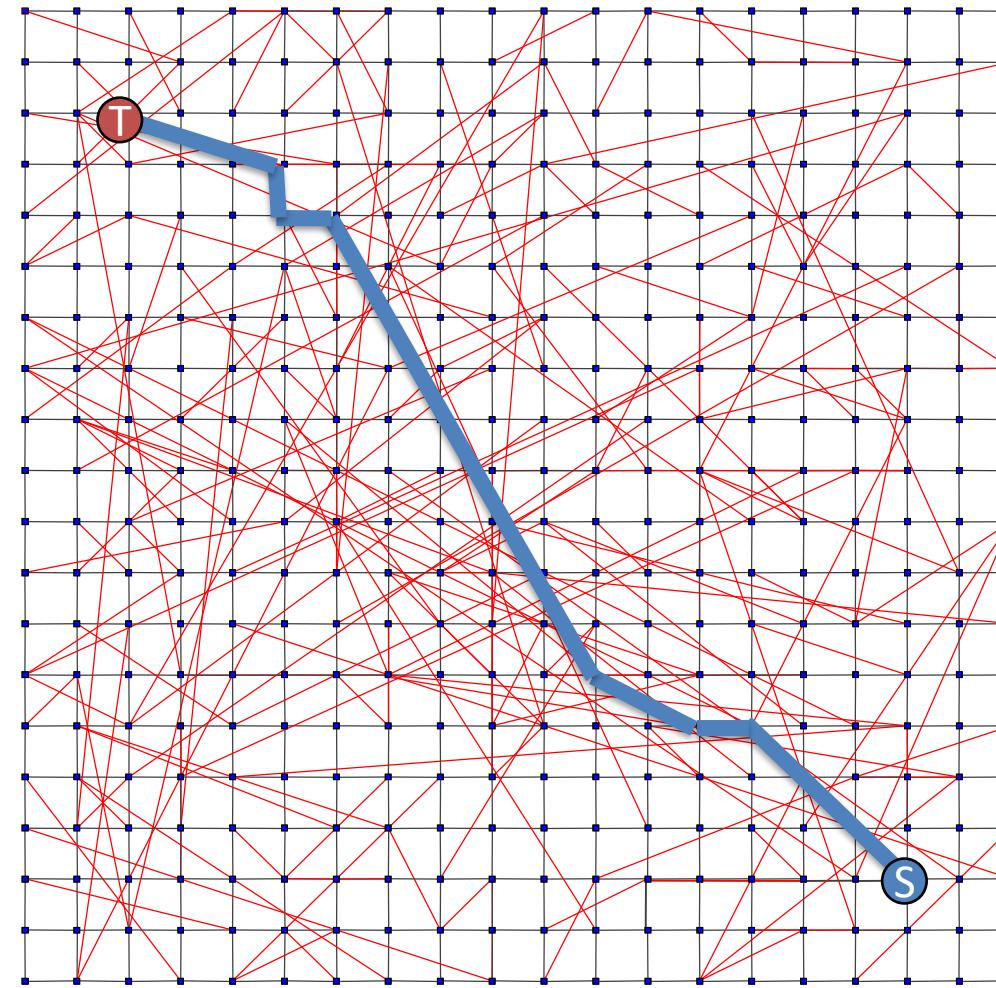
Small γ



Large γ



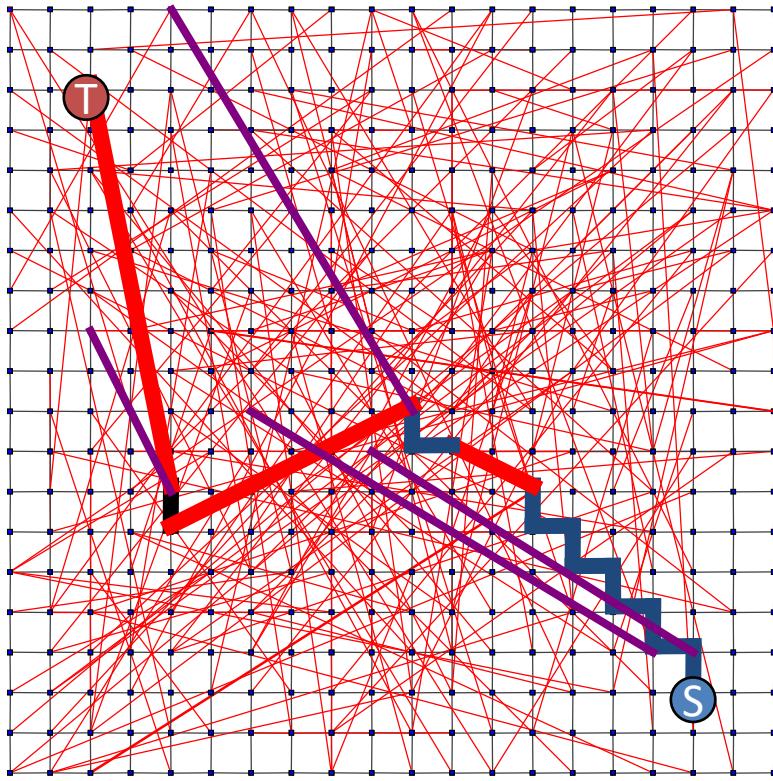
Decentralized Routing on Kleinberg's Model



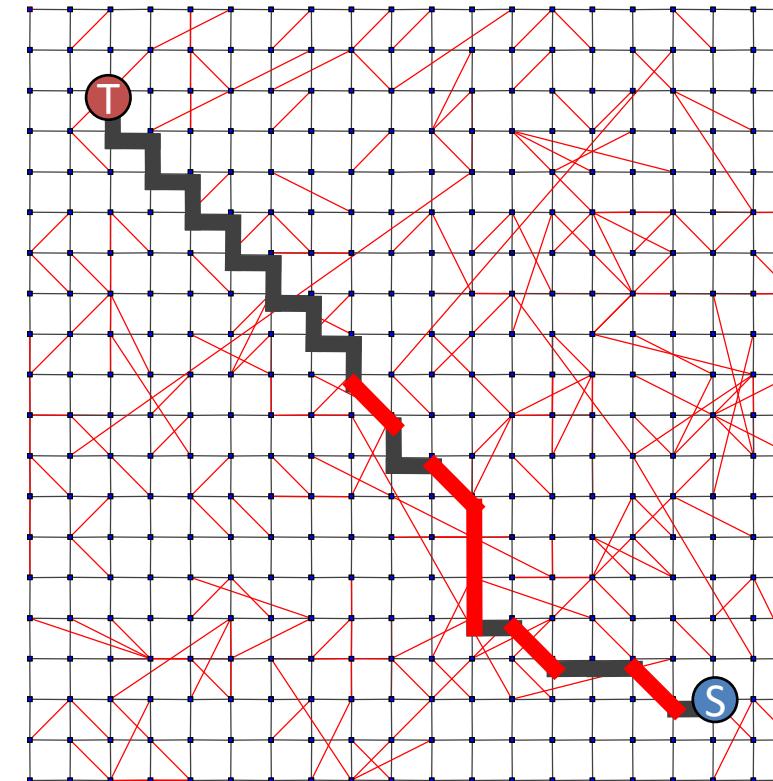
When $\gamma = 2$

Weak Ties with Different γ

When $\gamma < 2$

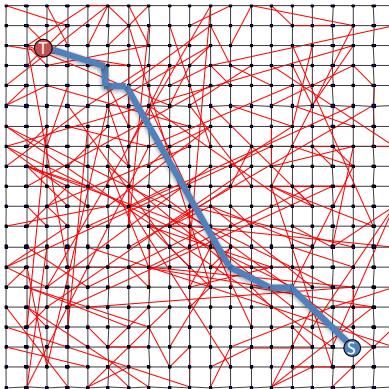


When $\gamma > 2$

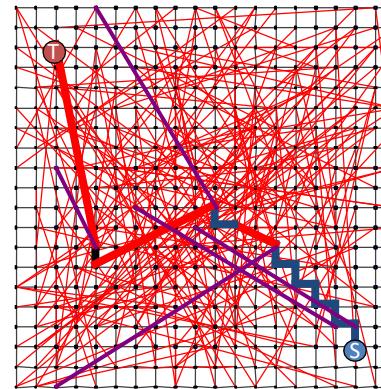
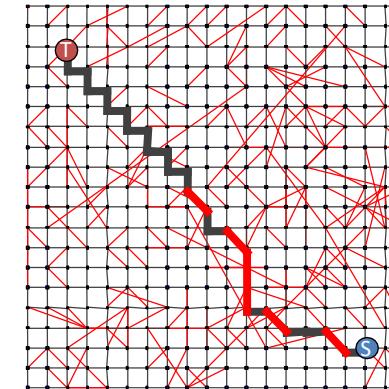


Threshold Property

If $\gamma = 2$ and $p, q \geq 1$, there is a decentralized algorithm A, so that the delivery time of A is $O(\log^2 n)$.

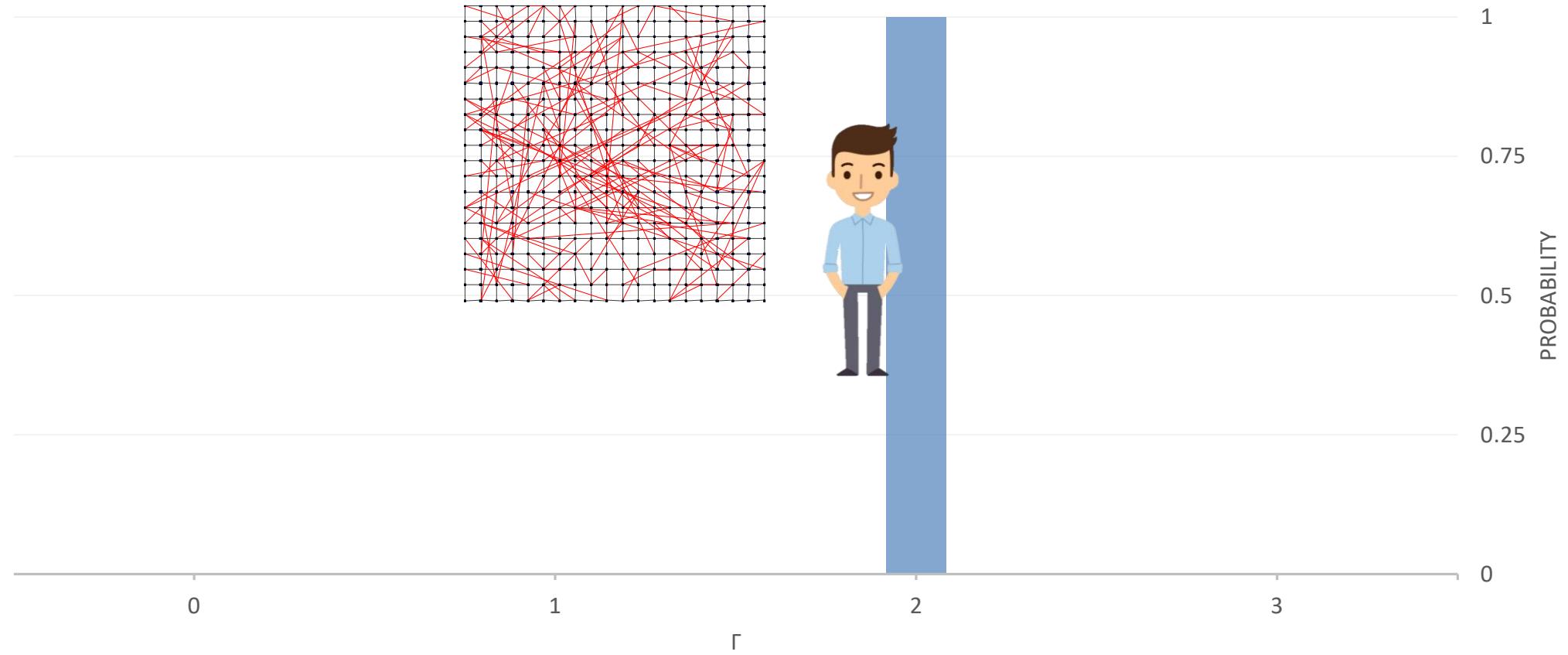


If $\gamma \neq 2$, there is a constant $\xi > 0$, so that the delivery time of any decentralized algorithm is $\Omega(n^\xi)$.



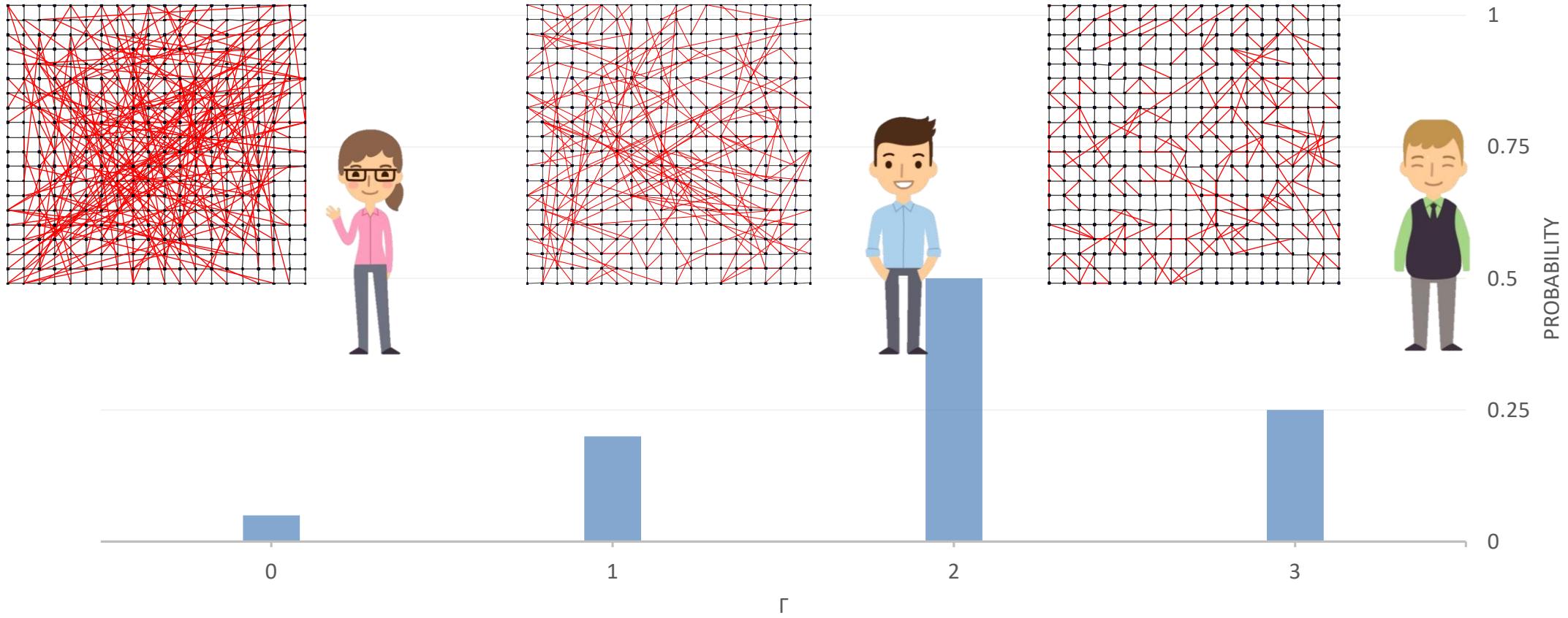
Threshold Property

Histogram of γ



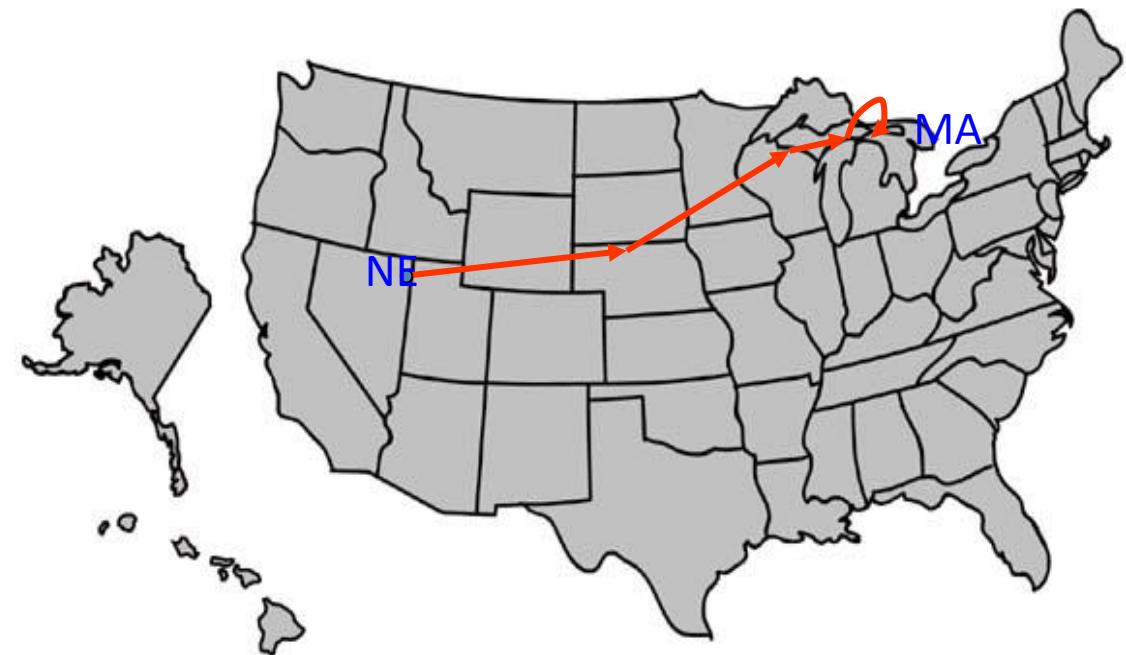
Diversity

Histogram of γ



Small World Model 2.0.1

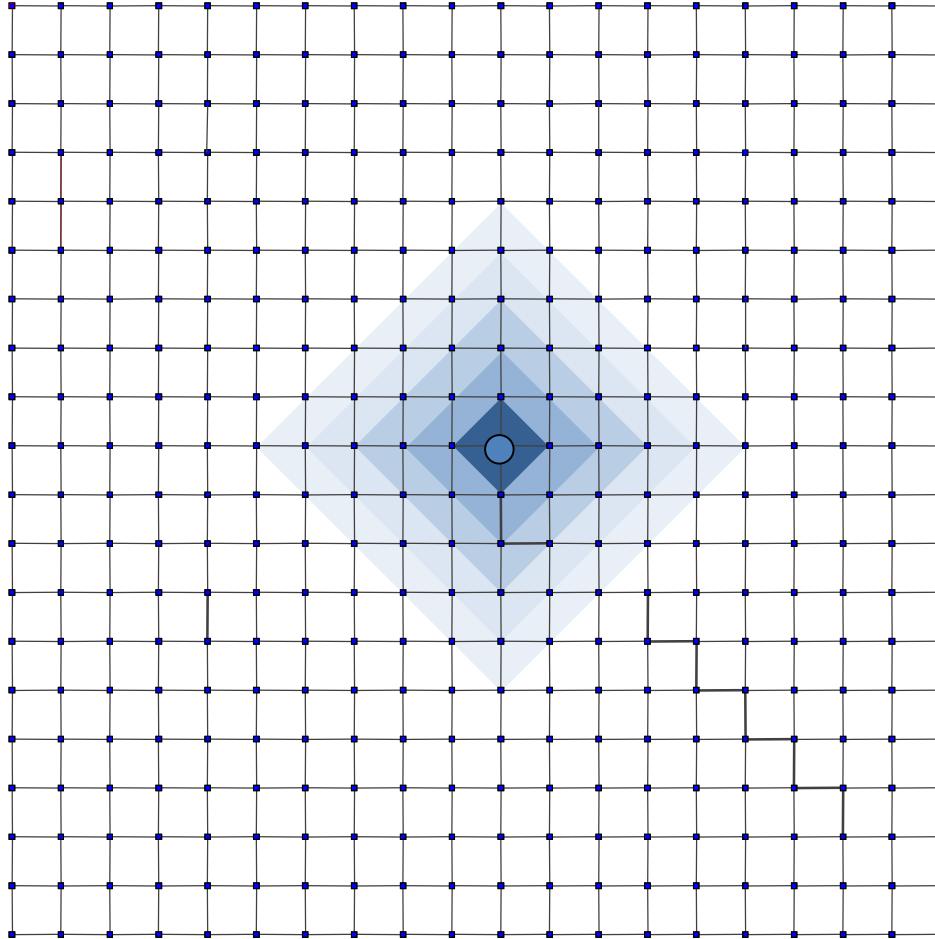
- Six degrees of separation--- very short paths between arbitrary pairs of nodes
- Decentralized routing--- Individuals with local information are very adept at finding these paths



Outline

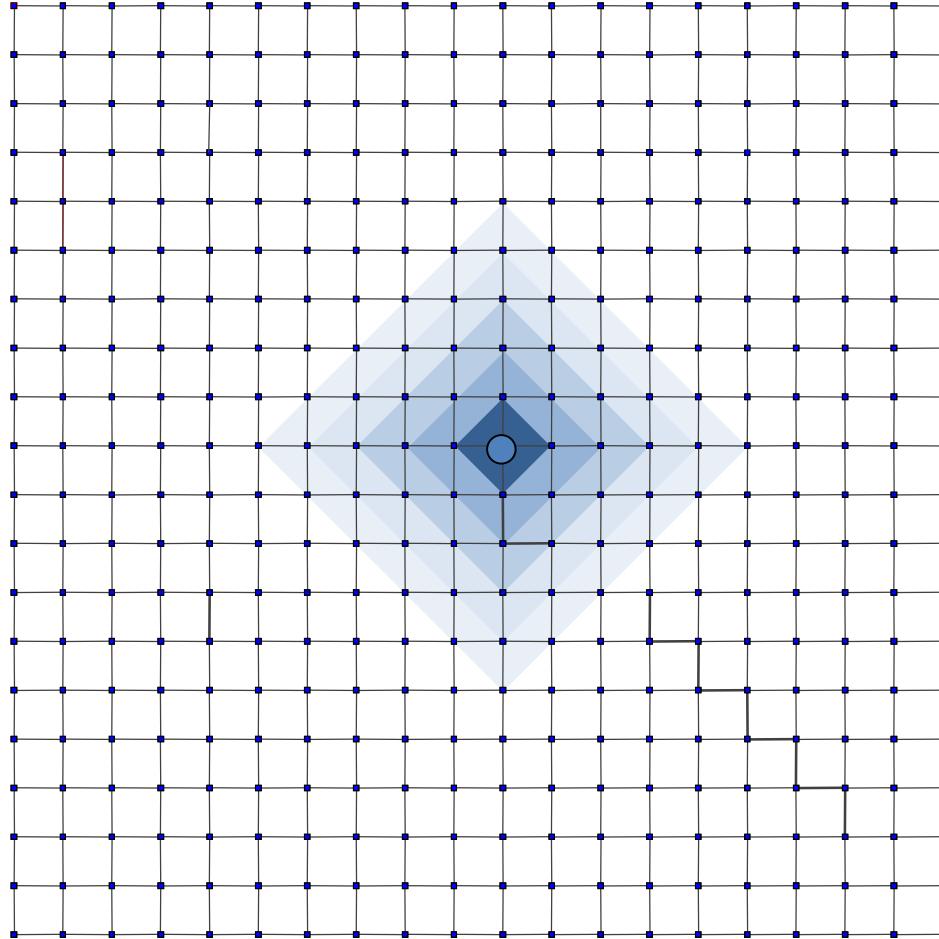
- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- **Nonhomogeneous Kleinberg's Small World Model**
- Myopic Routing
 - Theorem
 - Proof Outline
- k -Complex Contagions Model

Recall: Kleinberg's Small World Model



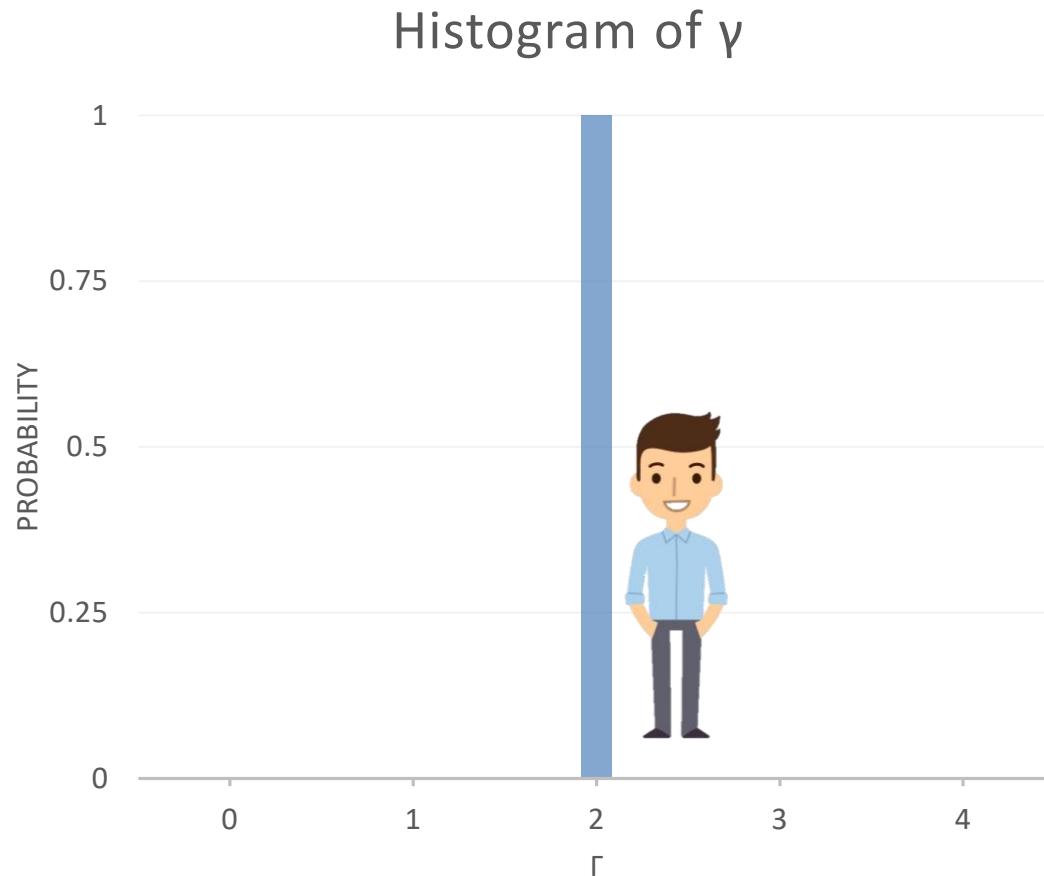
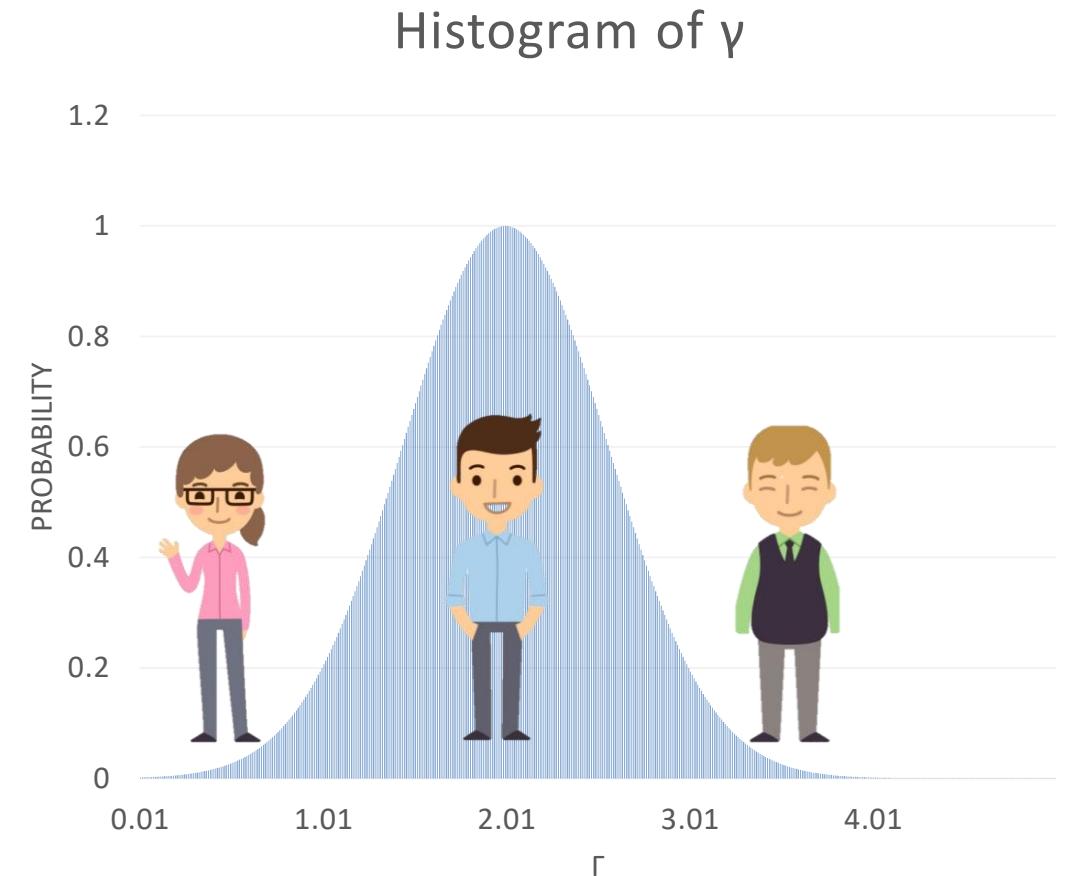
- n people on a k -dimensional grid
- Strong ties within distance q
- Weak ties: $p_{uv} \sim d(u, v)^{-\gamma}$

Nonhomogeneous Kleinberg's $HetK_{p,q,D}(n)$



- n people on a k -dimensional grid
- Strong ties within distance q
- Weak ties: u has γ_u from D , and p ties sample from $p_{uv} \sim d_{uv}^{-\gamma_u}$.

A More Natural Histogram

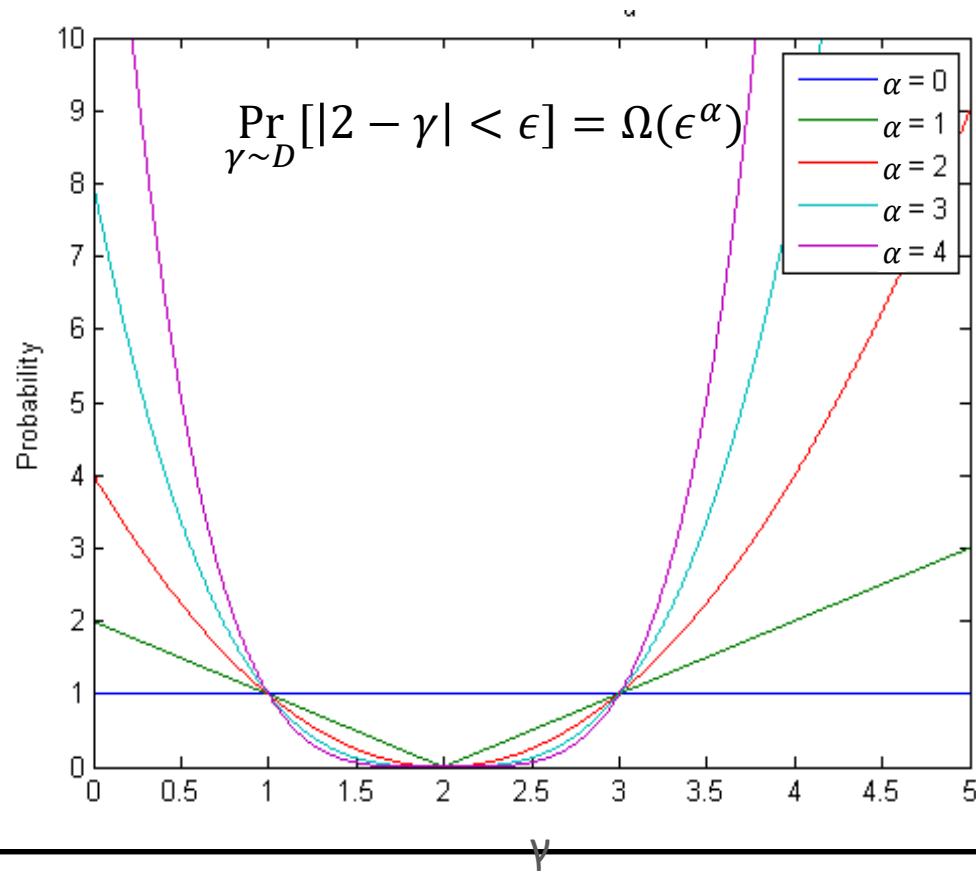


Outline

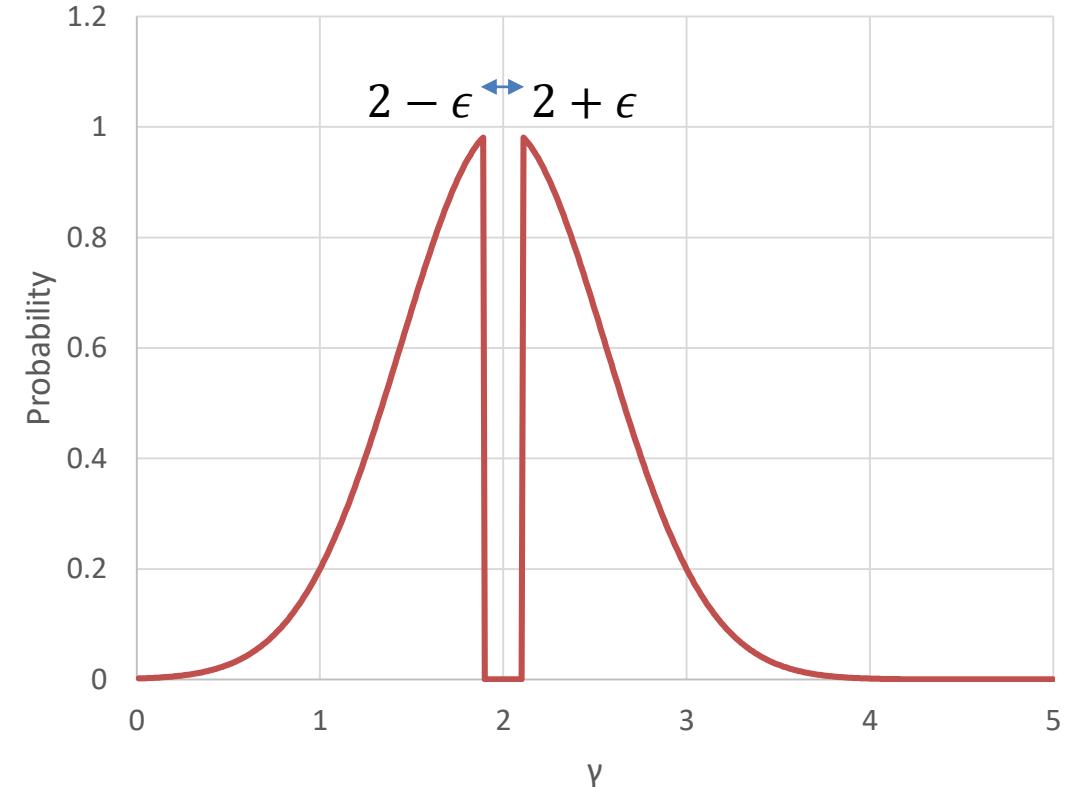
- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - **Theorems**
 - Proof Outline
- k -Complex Contagions Model

Theorems

Upper bounds



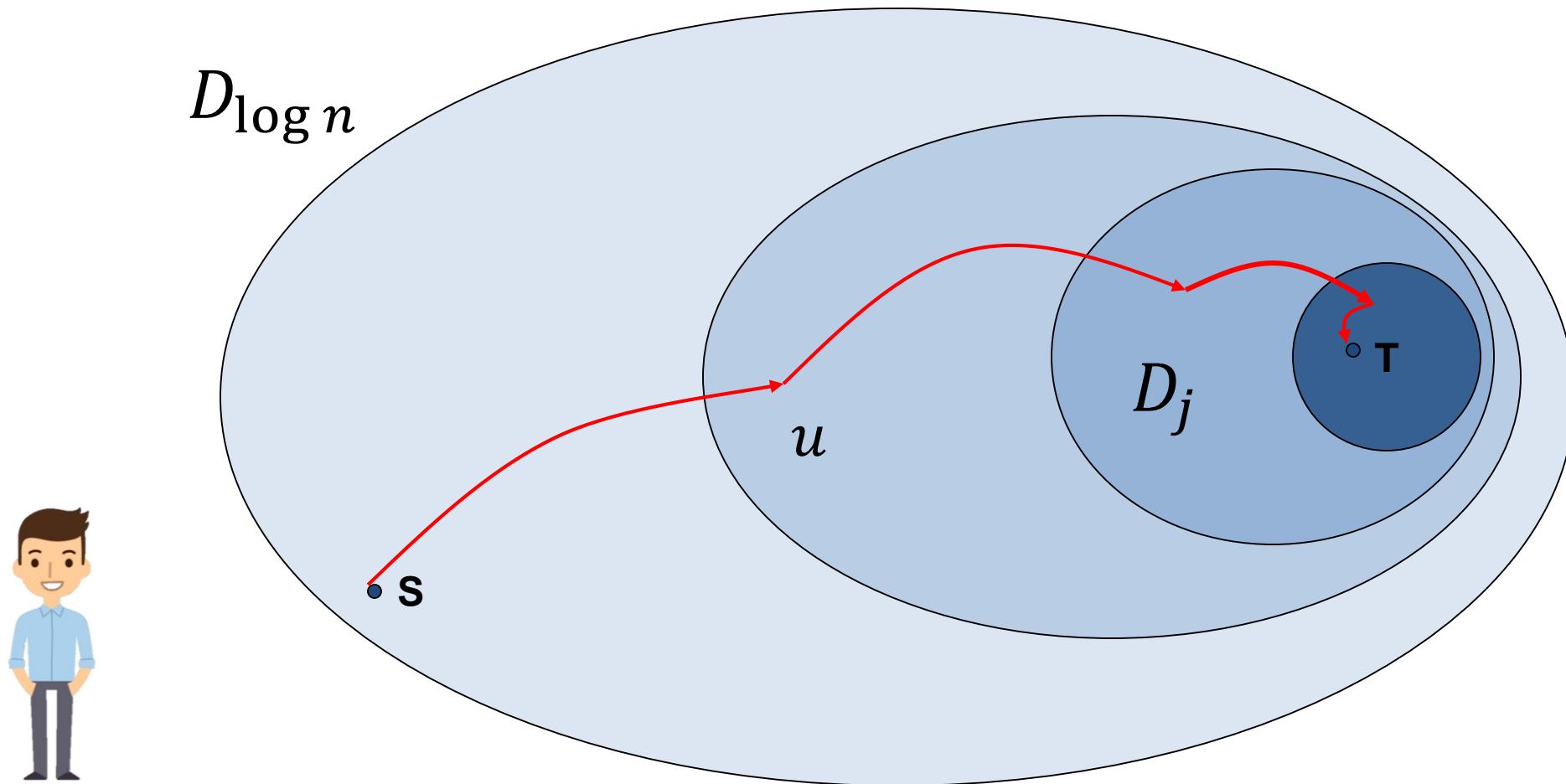
Lower bounds



Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - **Proof Outline (upper bound)**
- k -Complex Contagions Model

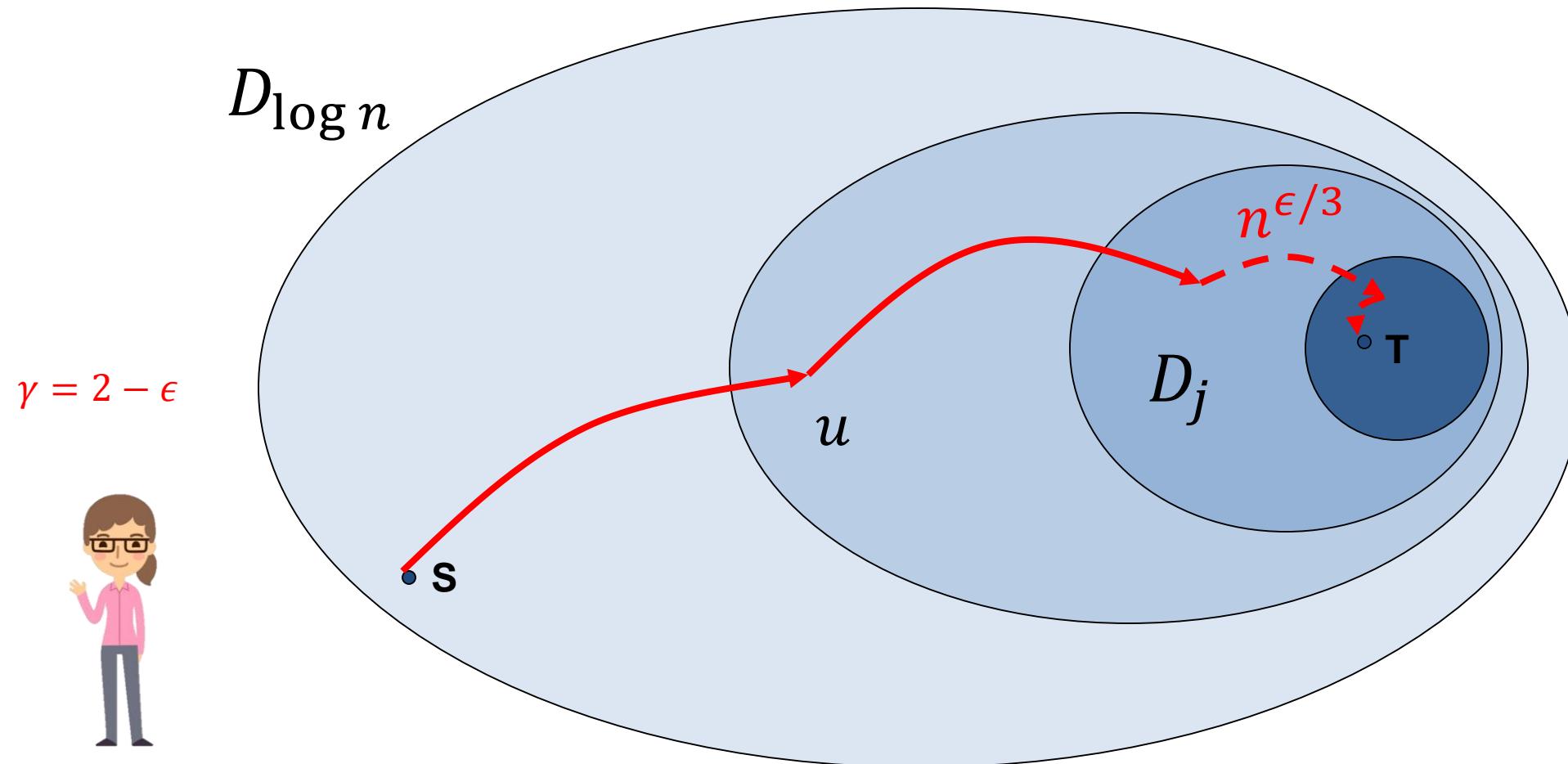
When $\gamma = 2$



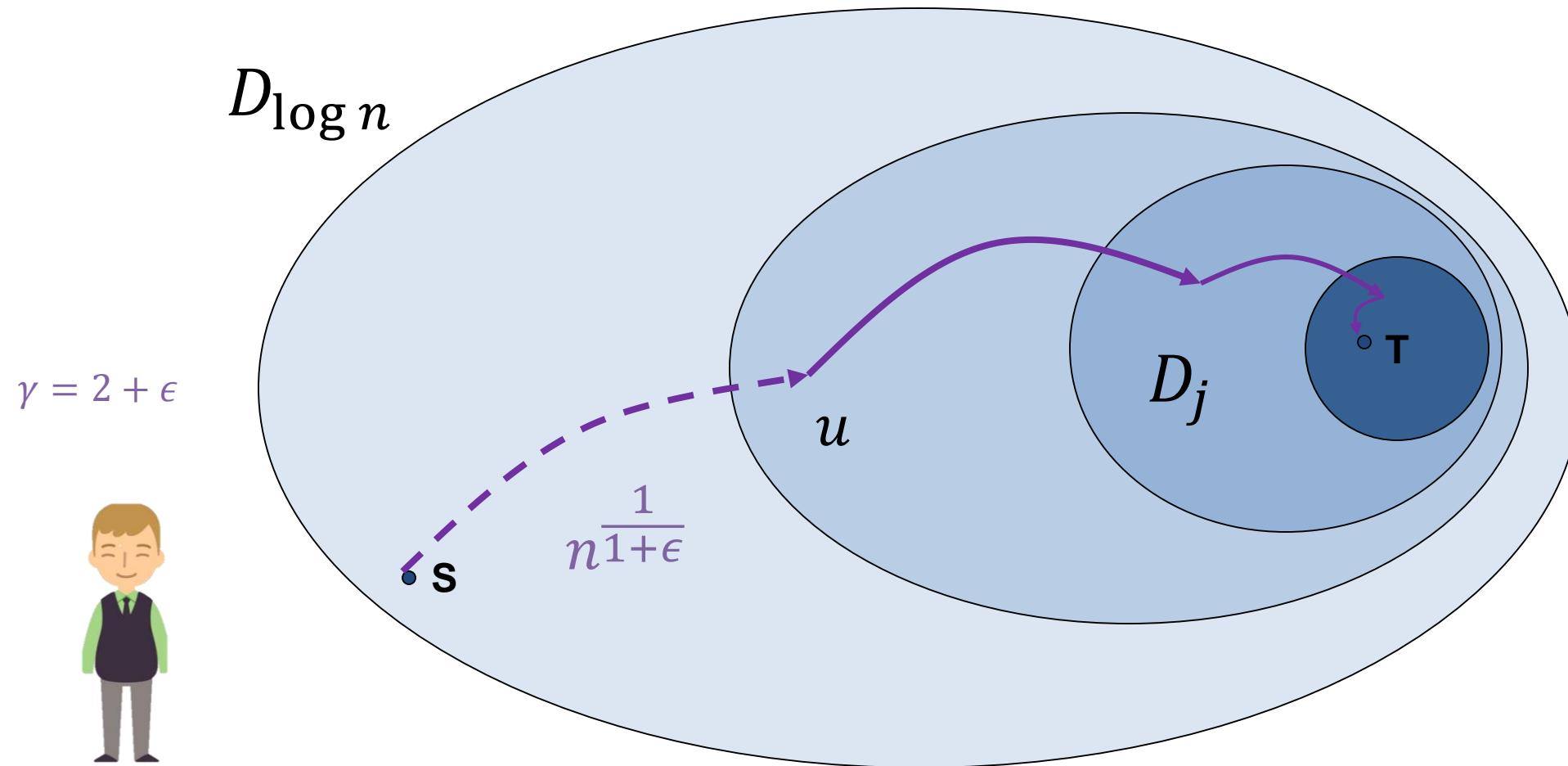
Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - **Proof Outline (lower bound)**
- k -Complex Contagions Model

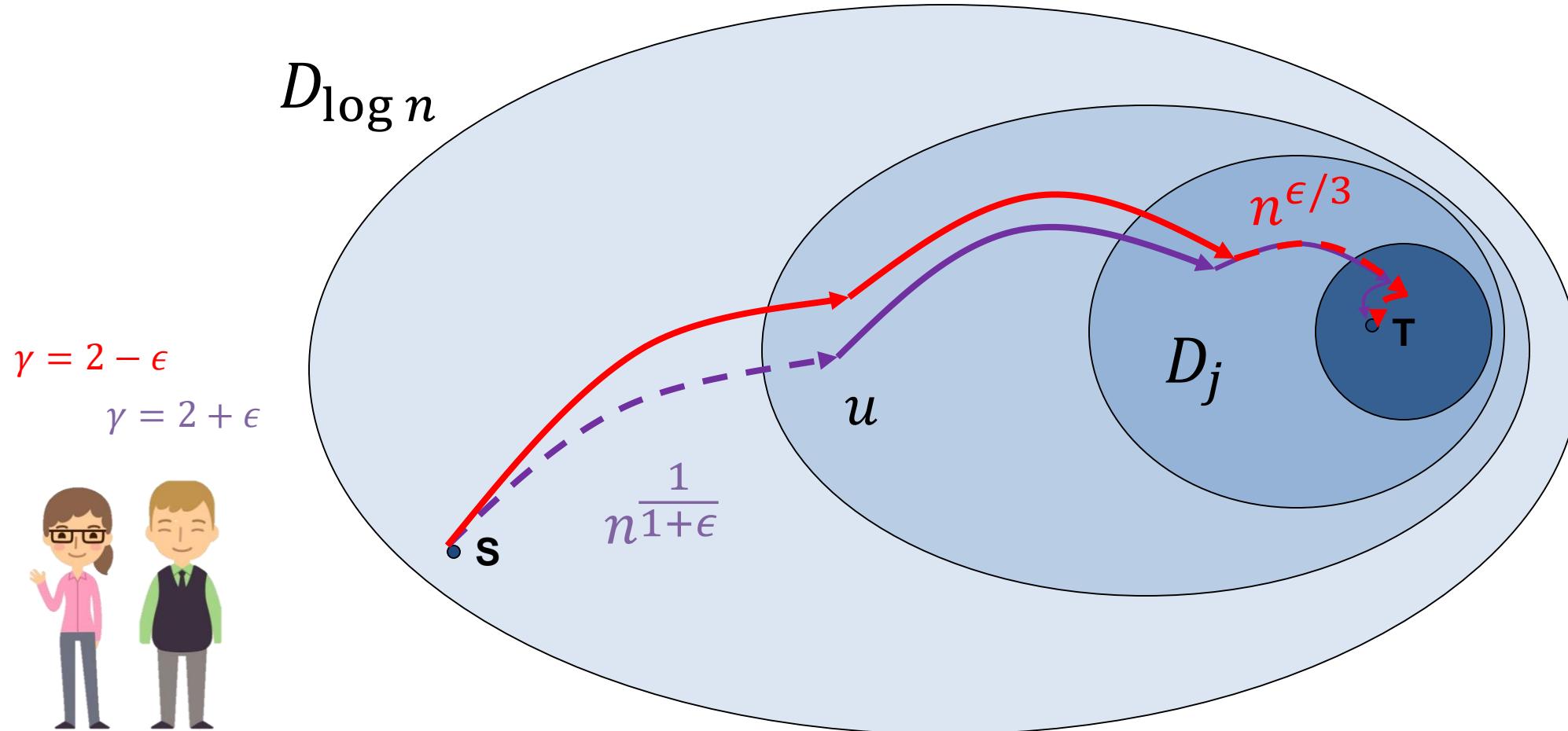
When $\gamma < 2$, weak ties are too random



When $\gamma > 2$, weak ties are too short

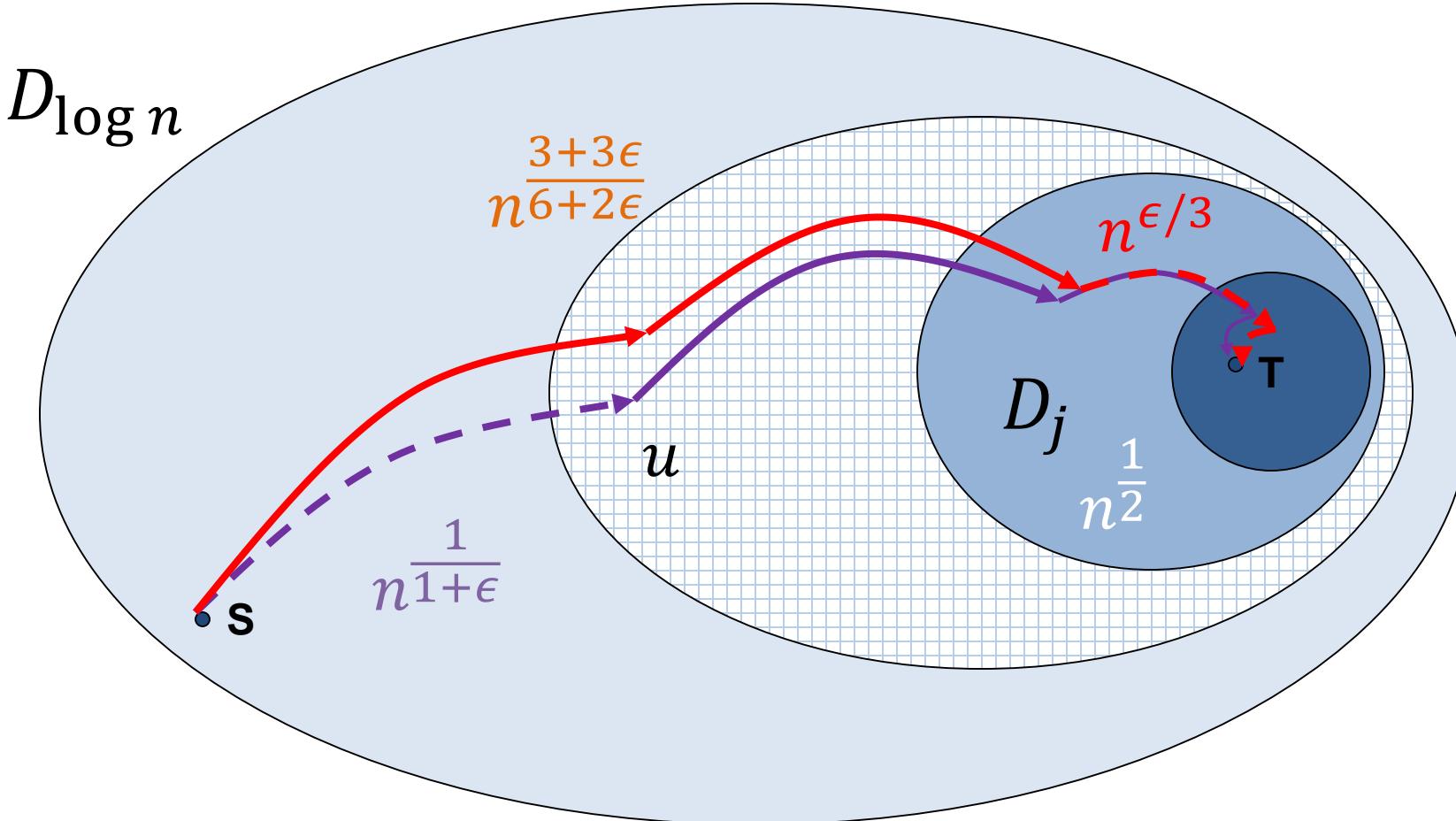


Mixture of Both

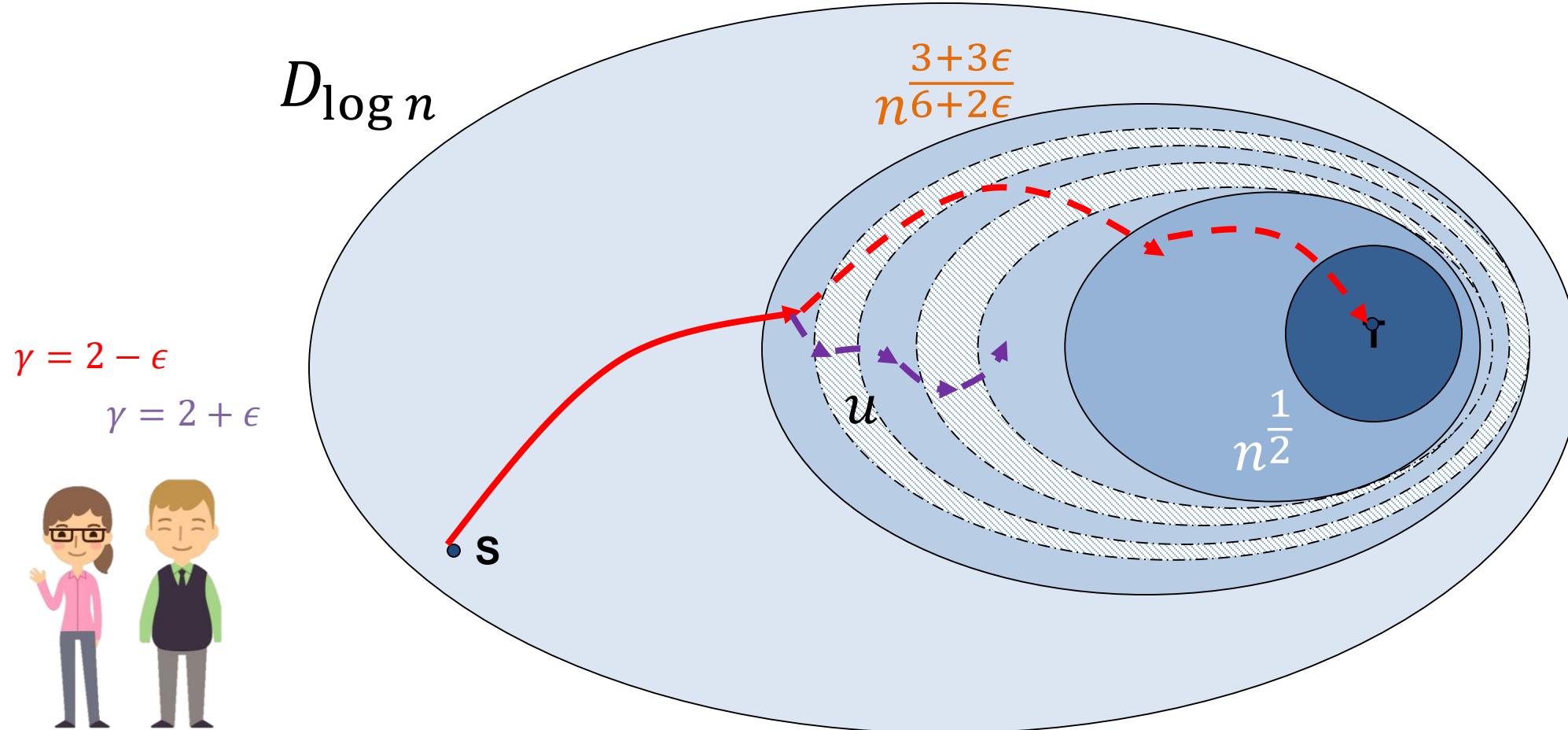


Mixture of Both

$$\begin{aligned} D_{\log n} \\ \gamma = 2 - \epsilon \\ \gamma = 2 + \epsilon \end{aligned}$$



Mixture of Both



Outline

- Background
 - Milgram's Experiment
 - Kleinberg's Small World Model
- Nonhomogeneous Kleinberg's Small World Model
- Myopic Routing
 - Theorem
 - Proof Outline
- k -Complex Contagions Model

Thanks for your listening

Upper Bound — Non-negligible Mass Near 2

- Fixed a distribution D with constant $\alpha \geq 0$ where $F_D(2 + \epsilon) - F_D(2 - \epsilon) = \Omega(\epsilon^\alpha)$ for any integer $k > 0$ and $\eta > 0$, there exists $\xi = 3 + \alpha + k$, such that a k -complex contagion $CC(HetK_{p,q,D(n)}, k, I)$ starting from a k -seed cluster I and where $p > k, q^2/2 \geq k$ takes at most $O(\log^\xi n)$ time to spread to the whole network with probability at least $1 - n - \eta$ over the randomness of $HetK_{p,q,D(n)}$.

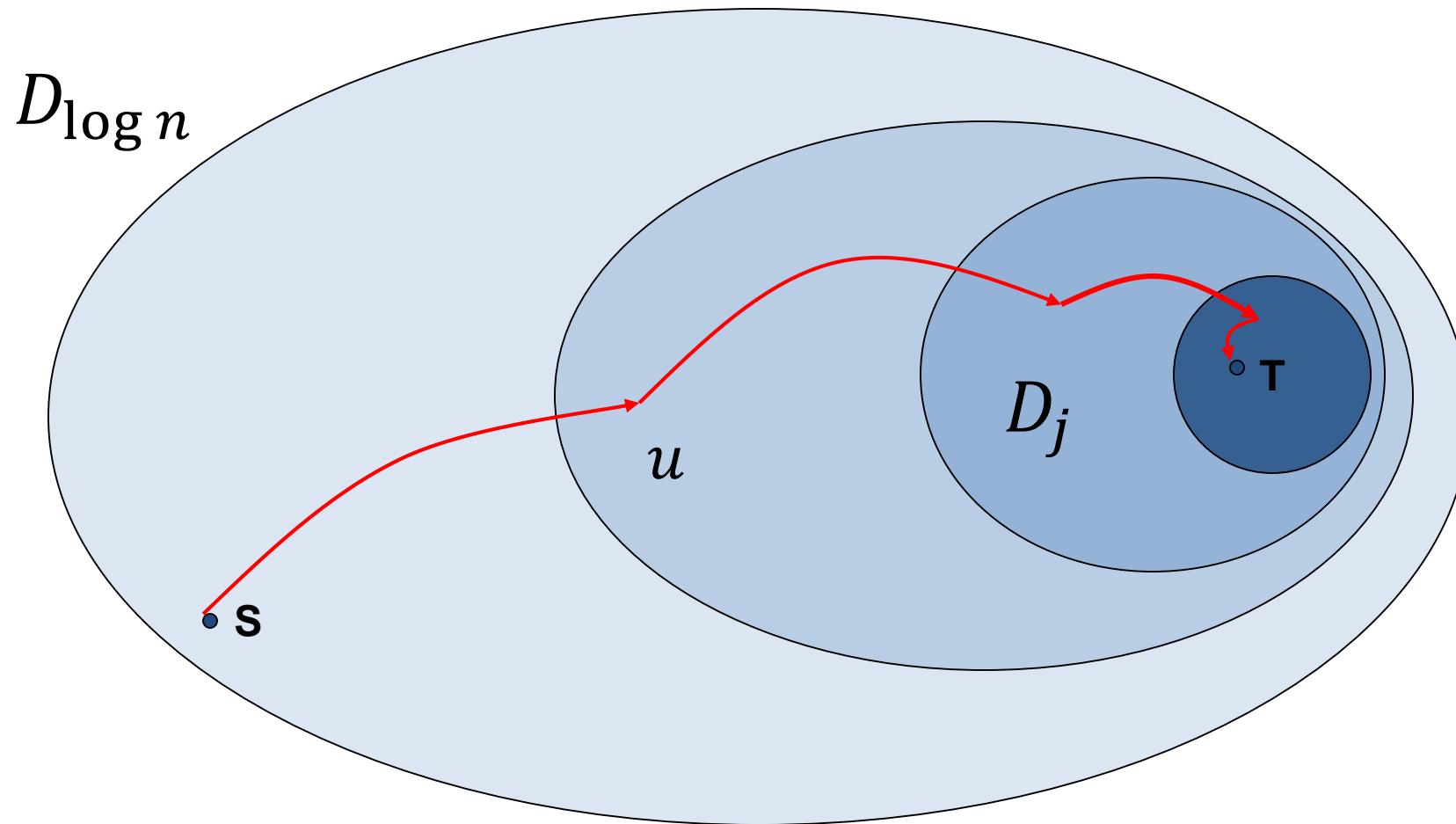
Upper Bound – Fixed k

- Given a distribution D and an integer $k > 0$, such that $\Pr_{\gamma \leftarrow D} [\gamma \in [2, \beta k]] > 0$ where $\beta_k = 2(k + 1)$, for all $\eta > 0$ there exists $\xi > 0$ depending on D and k such that, the speed of a k -complex contagion $CC(HetK_{p,q,D(n)}, k, I)$ starting from a k -seed cluster I and $p > k, q/2 \geq k$ is at most $O(\log^\xi n)$ with probability at least $1 - n^{-\eta}$.

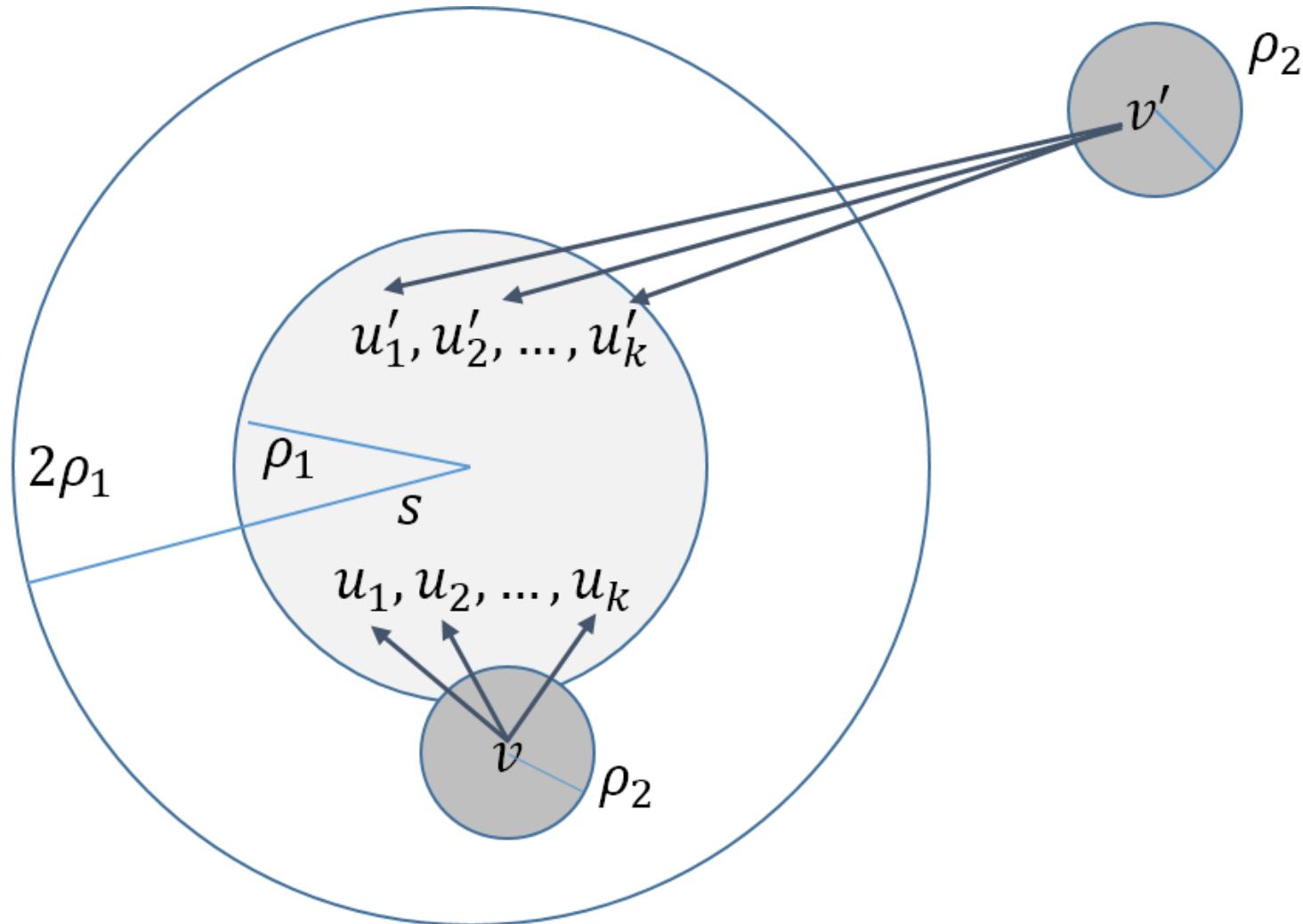
Lower Bound

- Given distribution D , constant integers $k, p, q > 0$, and $\varepsilon > 0$ such that $F_D(2 + \varepsilon) - F_D(2 - \varepsilon) = 0$, then there exist constants $\xi, \eta > 0$ depending on D and k , such that the time it takes a k -contagion starting at seed-cluster I , $CC(HetK_{p,q,D(n)}, k, I)$, to infect all nodes is at least n^ξ with probability at least $1 - O(n^{-\eta})$ over the randomness of $HetK_{p,q,D(n)}$.

Idea of Myopic Routing Upper Bound



Idea of Complex Contagion Lower Bound



- Number of nodes within region D_j

$$2^{2j}$$

- Probability of node u connecting to a node $v \in D_j$

$$\frac{1}{K_{2+\epsilon} d_{uv}^{2+\epsilon_u}}$$

- Probability for node u entering region D_j

$$\Omega\left(\frac{\epsilon}{2^{j\epsilon}}\right) \text{ if } \epsilon > 0 \text{ and } \Omega\left(\frac{|\epsilon|}{2^{(\log n - j)\epsilon}}\right) \text{ if } \epsilon < 0$$

- Probability entering region D_j

$$\Omega\left(\int_0^{\epsilon_0} \frac{\epsilon}{2^{j\epsilon}} \epsilon^{\alpha-1} d\epsilon\right)$$

or

$$\Omega\left(\int_0^{\epsilon_0} \frac{\epsilon}{2^{(\log n-j)\epsilon}} \epsilon^{\alpha-1} d\epsilon\right)$$

Proof Sketch for lower bound

- $\gamma > 2$ the weak ties will be too short (concentrated edges)
- $\gamma < 2$ the weak ties will be too random (diffuse edges)

A Very Brief Summary — History

- Kleinberg's small world model models social networks with both strong and weak ties, and the distribution of weak-ties, parameterized by γ .
 - He showed how value of γ influences the efficacy of **myopic routing** on the network.
 - Recent work on social influence by **k-complex contagion** models discovered that the value of γ also impacts the spreading rate

A Very Brief Summary — Our Work

- A natural generalization of Kleinberg's small world model to allow node heterogeneity is proposed, and
 - We show this model enables myopic routing and k -complex contagions on a large range of the parameter space.
 - Moreover, we show that our generalization is supported by real-world data.

