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Pattern recognition/prediction

e [—6~

Data Machine Learning Algorithms Predictive models
historical traffic data Estimated arrival time

 E.g., Natural language processing,
computer vision, traffic prediction
* Learning a model in isolation




Decision-making
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* E.g.,, Recommendation system, self-driving car,
medical diagnosis
* Huge interconnected web of data, agents,

decisions




Machine learning and society
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Prediction is part of a broader system

When predictions support decisions, we fundamentally change
the distribution of future data. [JZMH20]
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Juan Perdomo, Tijana Zrnic, Celestine Mendler-Dunner, and Moritz Hardt. 2020. Performative prediction .



Performative predictions are everywhere

Traffic prediction
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Contributions

* Formalize the concept of multi agent performative predictions
and a novel solution concept, multi agent performative

stability
* Athreshold result on a common learning algorithm

for small learning rate
when too much influence ]
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Outline

* Multi agent performative predictions
— Model
— Contributions
— Simulation




Performative prediction

Supervised learning Performative prediction
« Data (x,y) € XXTUY sampled from a * Given 8 € 0, data (x,y) is sampled
fixed distribution D from a distribution map D(8)

* Expectedloss of a model fywith € O
£(9; D) = E(x,y)~2)[£(f19(x): y)]
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Performative prediction

Supervised learning Performative prediction
« Data (x,y) € XXTUY sampled from a * Given 8 € 0, data (x,y) is sampled
fixed distribution D from a distribution map D(8)
* Expected loss of a model fywithd € ® + Expected loss of a predictive model
£(9; D) = E(xy)~p[f(fo(x),y)] ¥ € ® ondeployed model 6 € ©

£(9;D(9)): = Egxyy~p(o) [ (fo (), Y]
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Dynamics of learning (retraining)

Since the distribution map D(:) is unknown, the learning agent
may iteratively access samples of D(0%)
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Dynamics of learning

Since the distribution map D(:) is unknown, the learning agent
may iteratively access samples of D(6%) and improve the model

tO 8t+1
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Dynamics of learning

 The learning agent iteratively access samples of D(6") and
improve the model to 8+1

* Fixed point: the model is optimal for distribution that it
induces => performative stable point 6~

£(5°D(")) = min £(6D(0"))
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Performative prediction as a game

* The predictive agent is playing a game against himself
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Machine Learning Algorithm (agent)
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Related work

* Convergence of learning dynamics

— Naive retraining with smoothness/convexity assumption

* Repeated empirical risk minimization [JZMH20, DCRMF23]
* Stochastic gradient descent [MPZH21, DX 20]

— Learning with partial knowledge of D(+)
* Stochastic gradient descent with known D(+) [IYZ21]
* Regret minimization with performative feedback [JZM22]
* Plug-in estimator with a proxy D'(-) [LZ23]
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Related work

* Convergence of learning dynamics

— Naive retraining with smoothness/convexity assumption
* Repeated empirical risk minimization [JZMH20, DCRMF23]
* Stochastic gradient descent [MPZH21, DX 20]
— Learning with partial knowledge of D(+)
* Stochastic gradient descent with known D(+) [IYZ21]
* Regret minimization with performative feedback [JZM22]
* Plug-in estimator with a proxy D'(-) [LZ23]

When does learning fail?
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Contributions

* Formalize the concept of multi agent performative predictions
and a novel solution concept, multi agent performative

stability
* Main result: a threshold result on online learning algorithms

for small learning rate

when too much influence _D_DQ—E—
M—LAIgorithms oy
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Performative prediction as a game

* The predictive agent is playing a game against himself
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Multi-agent performative prediction

* Multiple predictive agents making decisions that collectively
influence the distribution of future data.
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Multi-agent performative prediction

Performative prediction

* Deployf €0

* DistributionmapD: 0 — Ay
* Predicty €0

Loss Eqp o) [£(fo(x),¥)]
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Multi-agent performative prediction

Performative prediction

* Deployf €0

* DistributionmapD: 0 — Ay
* Predicty € 0

Loss IED(Q) [’g(fﬁ (X), y)]
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Multi-agent performative prediction
Deploy o= (64,...,0,) € O"
Distribution map D: 0™ — Ayyy
Predicty € ©

Agent i's loss Ey, ) [£:(fs, (), ¥))
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Multi-agent performative prediction

Performative prediction Multi-agent performative prediction
* Performative stable, 6™ € © » Multi-agent performative stable, 6* €
2(6%;D(6%)) = mein 2(0;D(6)) O™ foralli € [n],
?; (91*,1)(5*)) = min ?; (Hi;l)(é*))
Loss Eqp o) [£(f (x), ¥)] Agent i’s loss IE (f19 (), y)]
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A toy learning dynamics 61 92, ...
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A toy learning dynamics 61 92 .. 6t ...

* Linear distribution mapping, D(é): given parameters, Dy, 0,,
and influence parameter A

x ~Dy,andy = x' (90 — AZ 9i> + noise
le[n]

1010

i0i0 ~2(6) g & fo,, fo, -

Linear dist. map D(+)

24



Learning dynamics 6° g1 .. 6t ...

* Linear distribution mapping, 2)(5): given Dy, 6y, and 4, x ~
Dyandy =x"(0, —1Y;0;) + noise

* Exponentiated gradient descent w/ learning rate 77 and initial
conditions §°[KWg7]

EGD w/ learning rate n
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Jyrki Kivinen and Manfred K Warmuth. Exponentiated gradient versus gradient descent for linear
predictors. information and computation, 132(1):1-63, 1997.
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A threshold result on MAPP

Consider n learning agents with
influence parameter 4 using
exponentiated GD with learning

rate 7.
1. Fixingn and 4, if 77 is small
enough, lim 6¢ is performative

t— o0

stable.
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Learning rate 1
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A threshold result on MAPP

Consider n learning agents with
influence parameter 4 using
exponentiated GD with learning

rate 7.
1. Fixingn and 4, if 77 is small
enough, lim gt is performative

stable.

2. Fixingn, if nAislarge enough,
gt is Li-Yorke chaotic.
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A threshold result on MAPP

Consider n learning agents with
influence parameter 4 using
exponentiated GD with learning

rate 7.
1. Fixingn and 4, if 77 is small
enough, lim gt is performative

stable.

2. Fixingn, if nAislarge enough,
gt is Li-Yorke chaotic.
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Proof idea

Connection of Hedge learning on congestion game with linear
cost
* Convergence
— Replicator dynamics (n — 0) on congestion game [KPTog]
— Linear MWU with constant  on congestion game [PPP 17]
* LiYorke chaos
— Large learning rate in Hedge [CFMP 20]

Robert Kleinberg, Georgios Piliouras, and Eva Tardos. 2009. Multiplicative updates outperform generic no-regret learning in congestion games.
Gerasimos Palaiopanos, loannis Panageas, and Georgios Piliouras. 2017. Multiplicative weights update with constant step-size in congestion games: Convergence, limit cycles and chaos.
Thiparat Chotibut, Fryderyk Falniowski, Michat Misiurewicz, and Georgios Piliouras. 2020. The route to chaos in routing games: When is Price of Anarchy too optimistic?
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Traffic prediction
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More drivers follow=> large A=> chaos
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More banks=> large n=> chaos

Policy patrol with predictions

More dependency => large A=> chaos
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Open questions

* Multi agent performative prediction

— How can we learn and avoid chaos?
* Algorithm
* Mechanism

— Competition between learning agents
* When are predictions performative?
— Strategic classification

— Price competition
— Recommendation system
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Some thoughts

* Which is performative?
— Decision
— Prediction
_ Policy reward D Parameter/policy/rule 6;

* Examples of 6; —

— Navigation app’s recommendation
algorithms

prediction

— College’s acceptance rule

— Hedge fund’s automatic bidder Data
Decision (acceptance/rejection)
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Some thoughts

Control theory/RL Performative prediction

Parameter
reward D Parameter reward D

prediction prediction

Data Decision

Data Decision
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Simulation
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