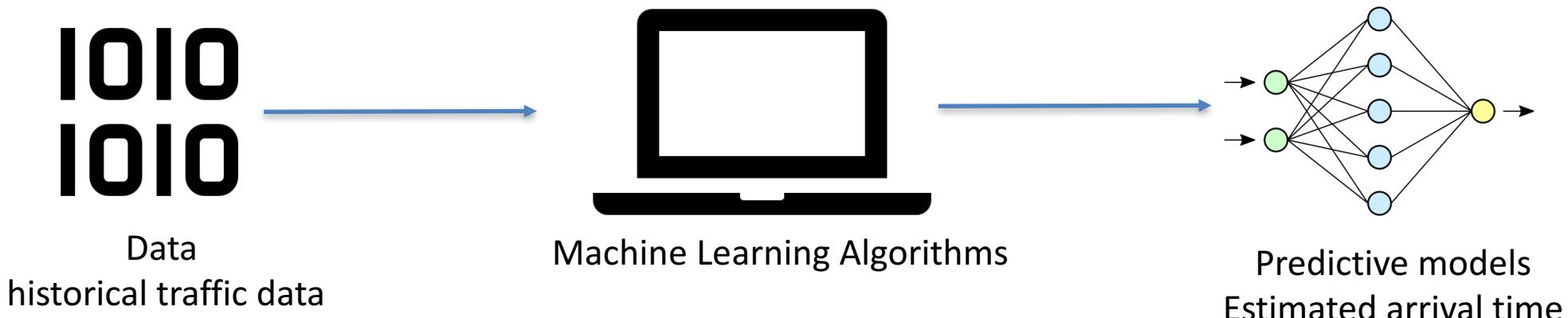

Multi-agent Performative Prediction

From Global Stability and Optimality to Chaos

Georgios Piliouras (Google DeepMind, SUTD)

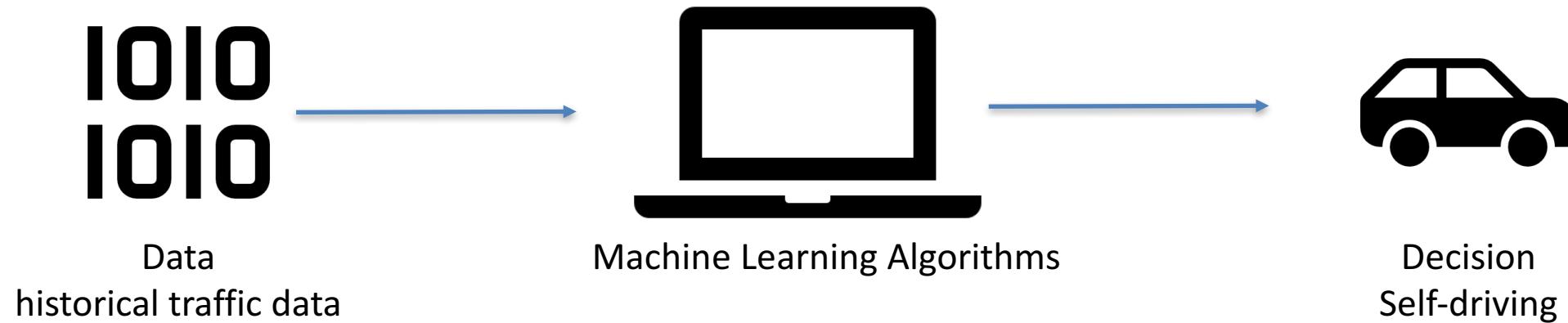
Fang-Yi Yu, (George Mason University)

Pattern recognition/prediction



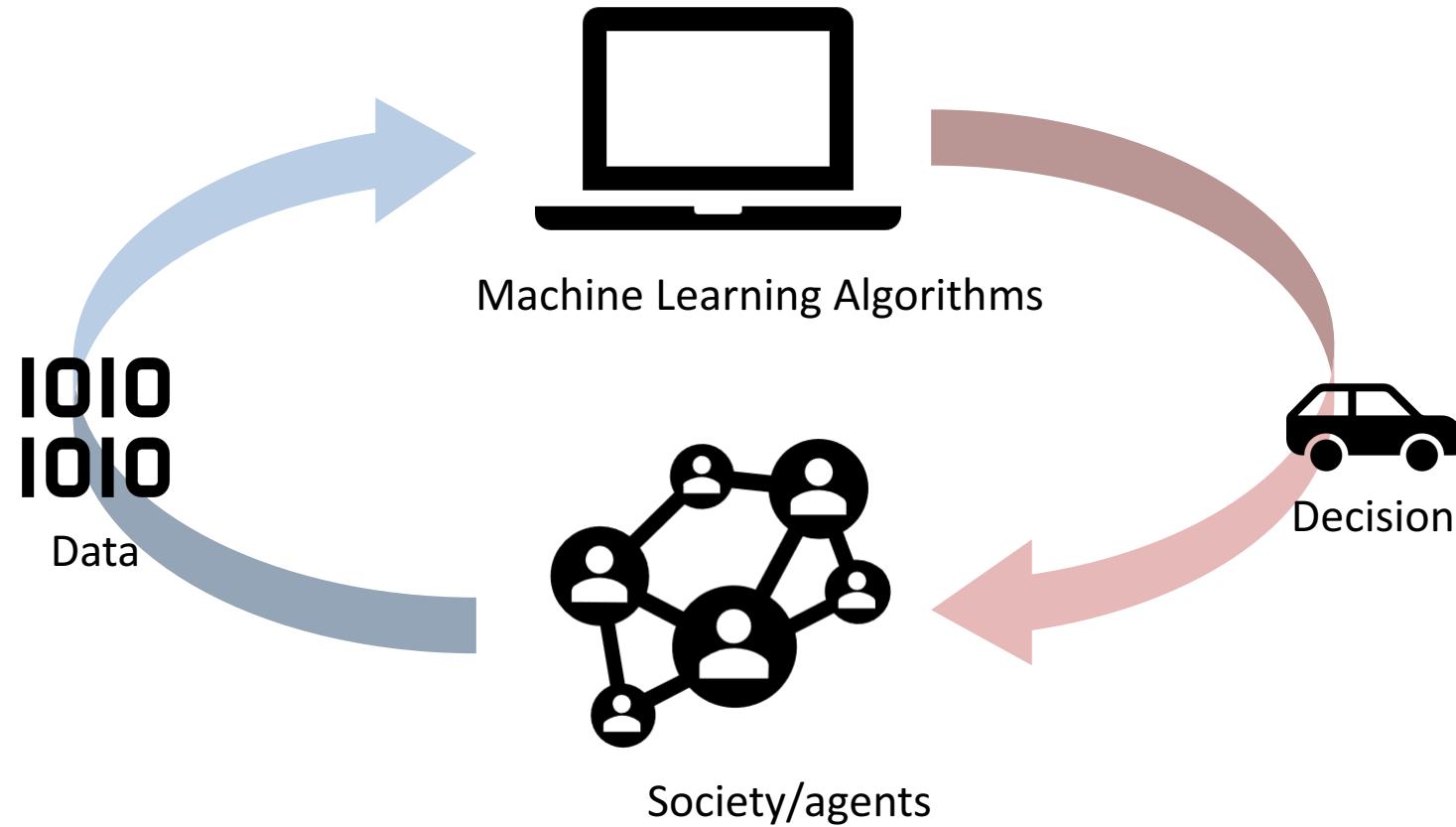
- E.g., Natural language processing, computer vision, traffic prediction
- Learning a model in isolation

Decision-making



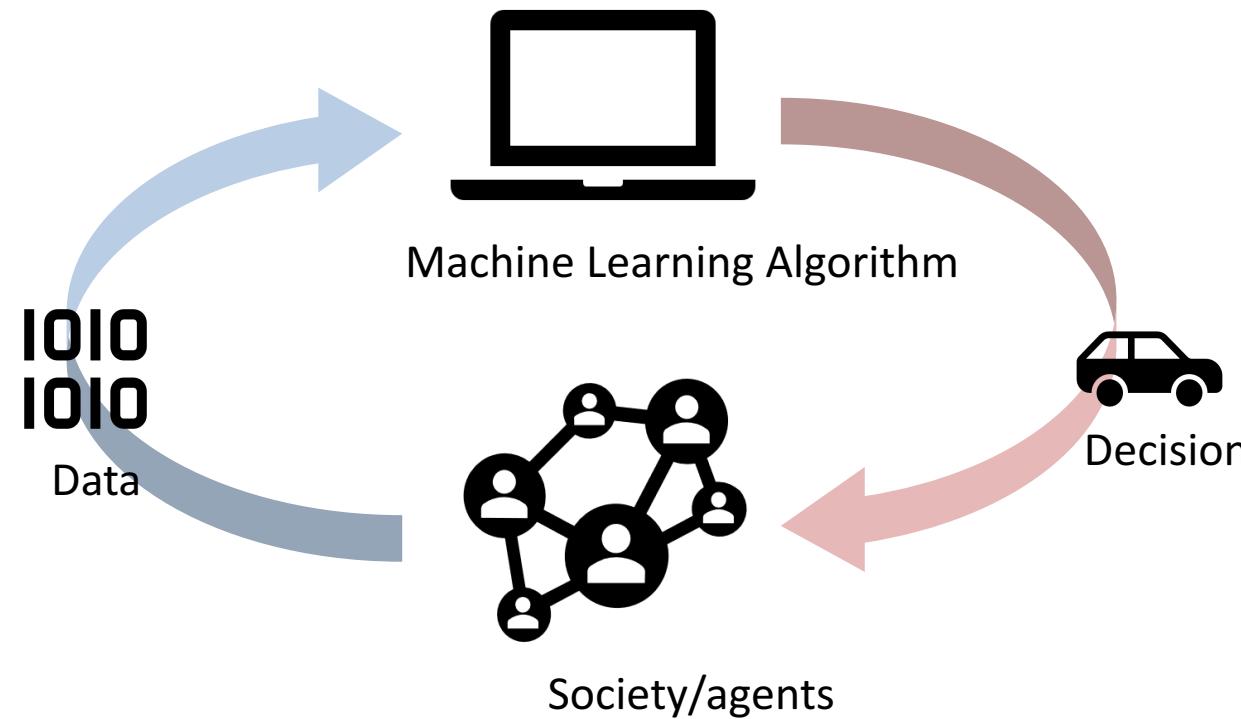
- E.g., Recommendation system, self-driving car, medical diagnosis
- Huge interconnected web of data, agents, decisions

Machine learning and society



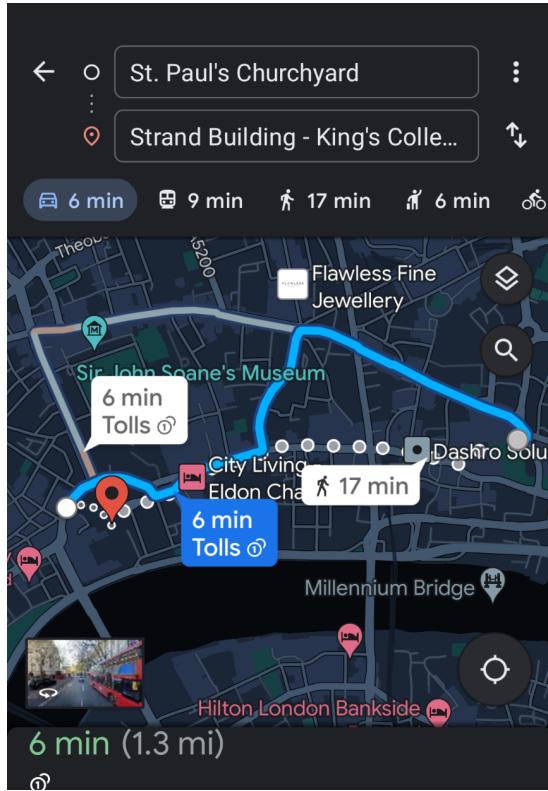
Prediction is part of a broader system

When predictions support decisions, we fundamentally change the distribution of future data. [JZMH20]

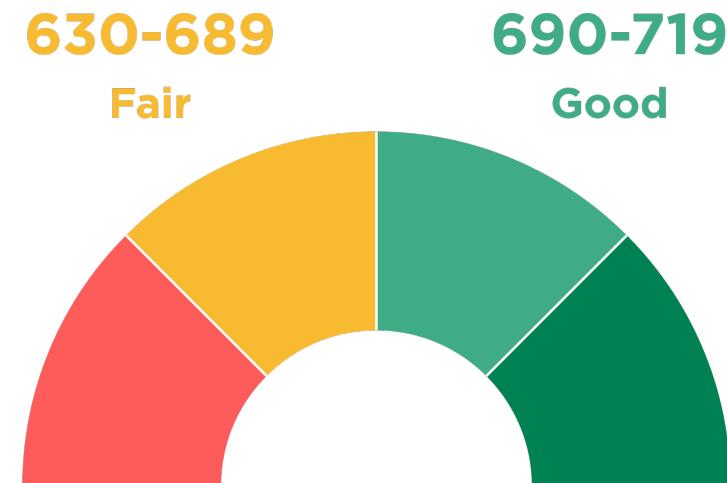


Performative predictions are everywhere

Traffic prediction



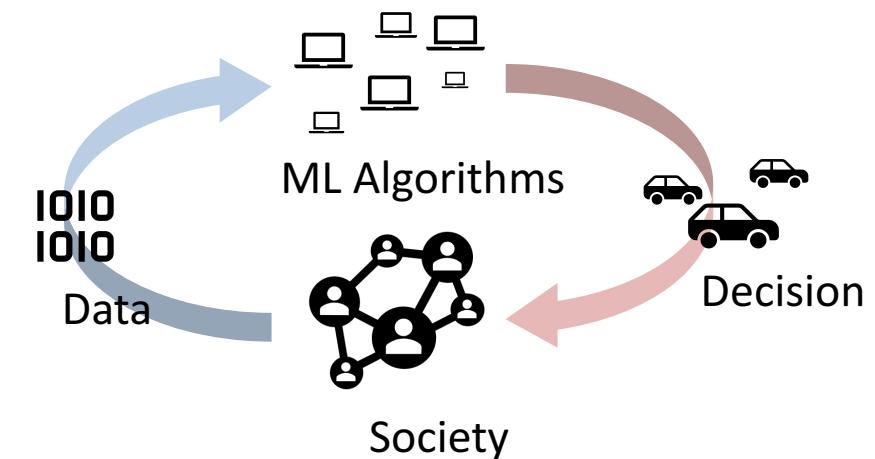
Credit score



Policy patrol with predictions

Contributions

- Formalize the concept of **multi agent performative predictions** and a novel solution concept, **multi agent performative stability**
- A threshold result on a common learning algorithm
 - **Convergence** for small learning rate
 - **Li-Yorke chaos** when too much influence



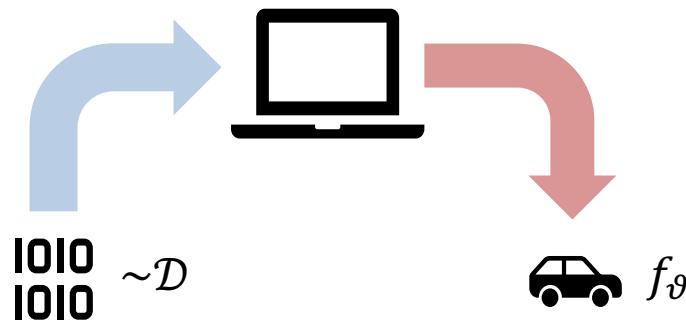
Outline

- Data from strategic agents
- Multi agent performative predictions
 - Model
 - Contributions
 - Simulation
- Future directions

Performative prediction

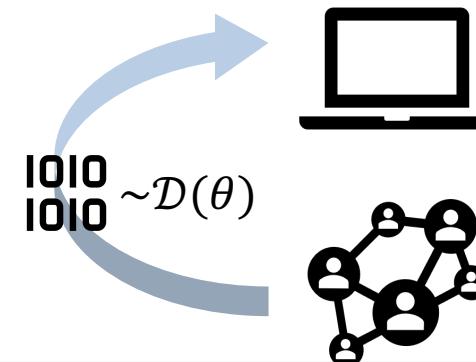
Supervised learning

- Data $(x, y) \in \mathcal{X} \times \mathcal{Y}$ sampled from a fixed distribution \mathcal{D}
- Expected loss of a model f_ϑ with $\vartheta \in \Theta$
$$\ell(\vartheta; \mathcal{D}) := \mathbb{E}_{(x, y) \sim \mathcal{D}} [\ell(f_\vartheta(x), y)]$$



Performative prediction

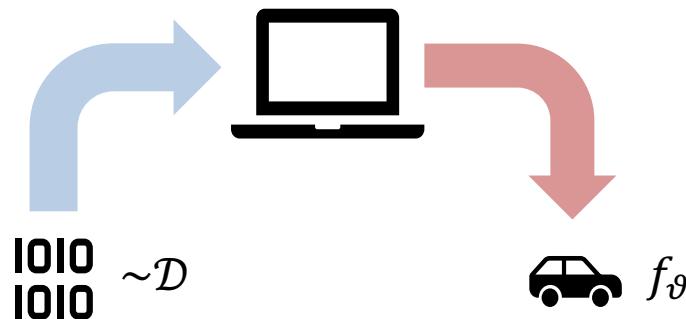
- Given $\theta \in \Theta$, data (x, y) is sampled from a distribution map $\mathcal{D}(\theta)$



Performative prediction

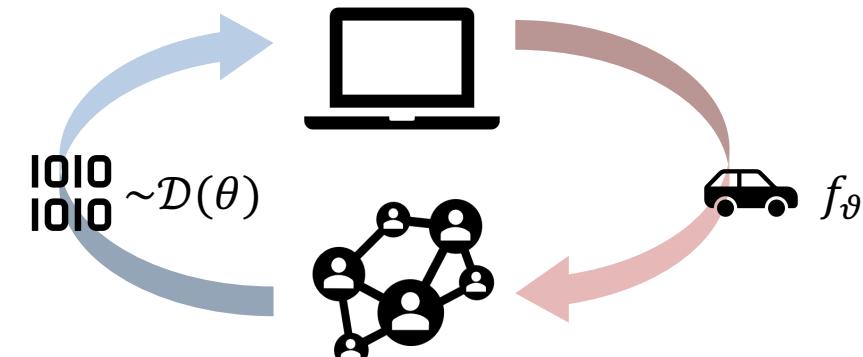
Supervised learning

- Data $(x, y) \in \mathcal{X} \times \mathcal{Y}$ sampled from a fixed distribution \mathcal{D}
- Expected loss of a model f_ϑ with $\vartheta \in \Theta$
$$\ell(\vartheta; \mathcal{D}) := \mathbb{E}_{(x,y) \sim \mathcal{D}} [\ell(f_\vartheta(x), y)]$$



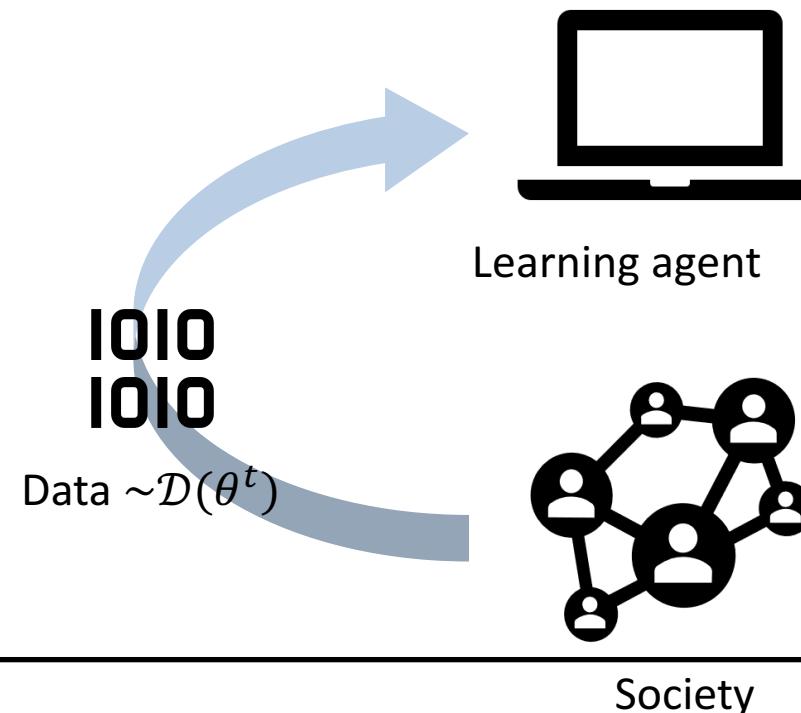
Performative prediction

- Given $\theta \in \Theta$, data (x, y) is sampled from a distribution map $\mathcal{D}(\theta)$
- Expected loss of a **predictive model** $\vartheta \in \Theta$ on **deployed model** $\theta \in \Theta$
$$\ell(\vartheta; \mathcal{D}(\theta)) := \mathbb{E}_{(x,y) \sim \mathcal{D}(\theta)} [\ell(f_\vartheta(x), y)]$$



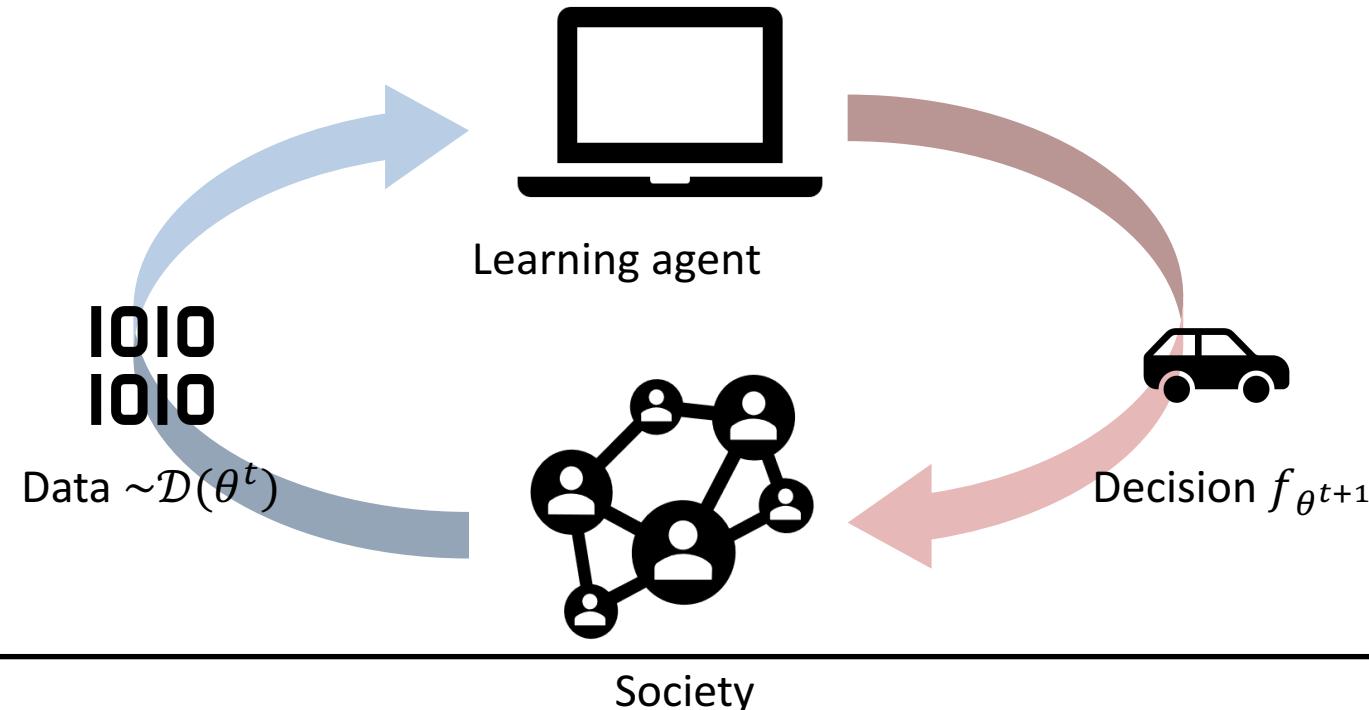
Dynamics of learning (retraining)

Since the distribution map $\mathcal{D}(\cdot)$ is unknown, the learning agent may iteratively access samples of $\mathcal{D}(\theta^t)$



Dynamics of learning

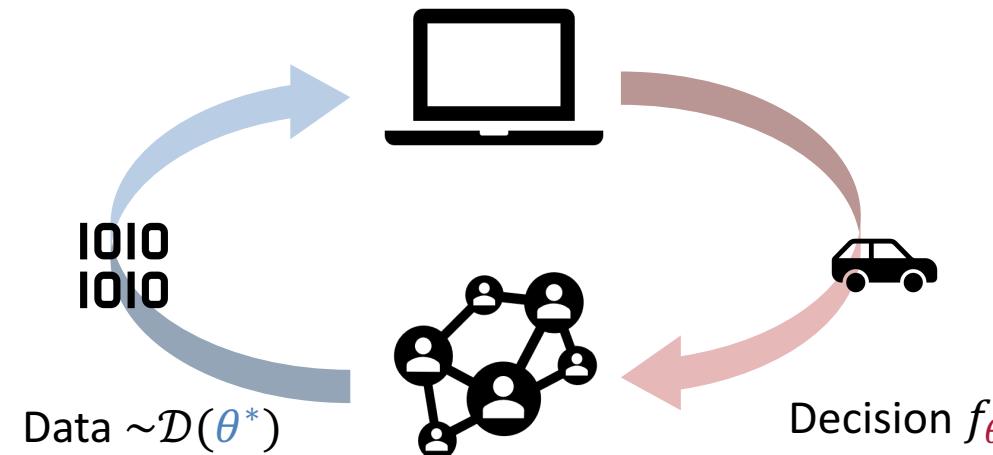
Since the distribution map $\mathcal{D}(\cdot)$ is unknown, the learning agent may iteratively access samples of $\mathcal{D}(\theta^t)$ and improve the model to θ^{t+1}



Dynamics of learning

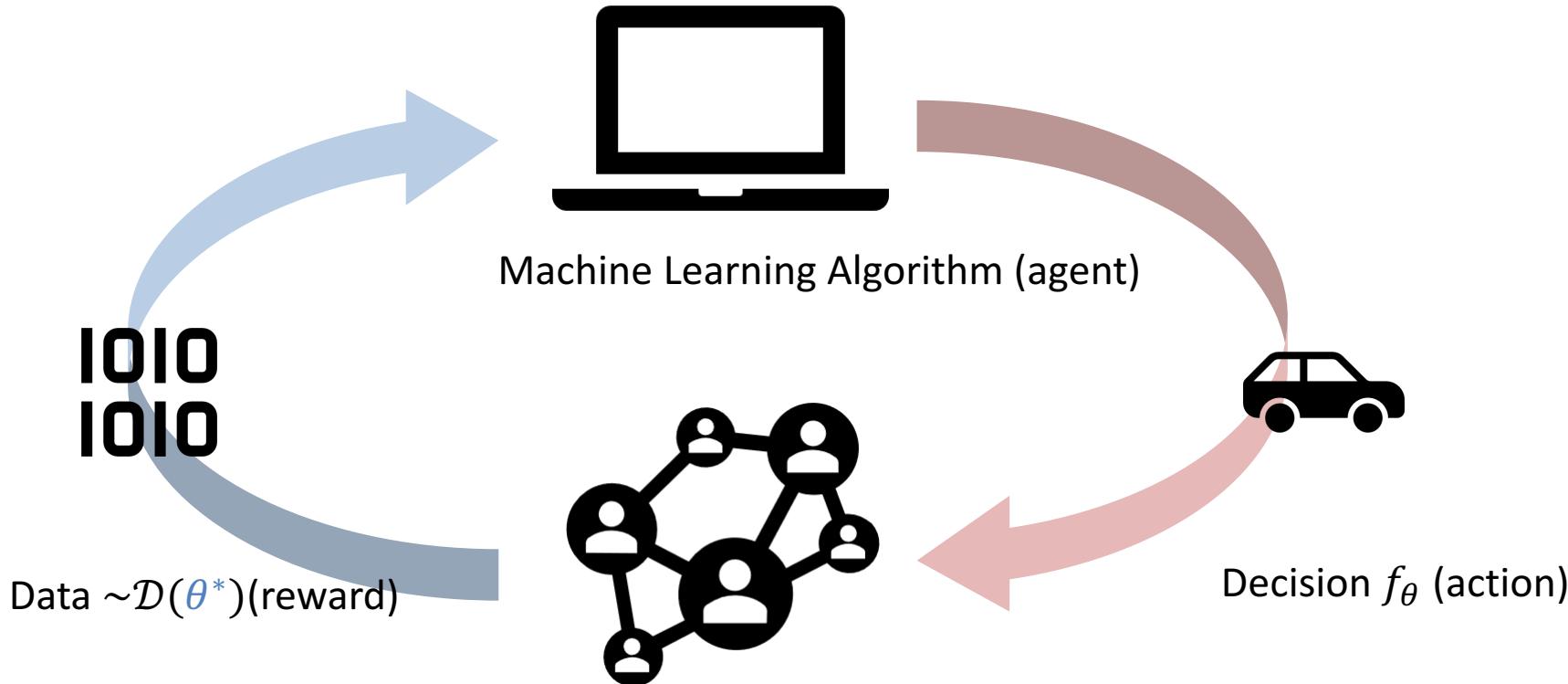
- The learning agent iteratively access samples of $\mathcal{D}(\theta^t)$ and improve the model to θ^{t+1}
- Fixed point: the model is optimal for distribution that it induces => **performatively stable point θ^***

$$\ell(\theta^*; \mathcal{D}(\theta^*)) = \min_{\theta} \ell(\theta; \mathcal{D}(\theta^*))$$



Performative prediction as a game

- The predictive agent is playing a game against himself



Related work

- Convergence of learning dynamics
 - Naïve retraining with smoothness/convexity assumption
 - Repeated empirical risk minimization [JZMH20, DCRMF23]
 - Stochastic gradient descent [MPZH21, DX 20]
 - Learning with partial knowledge of $\mathcal{D}(\cdot)$
 - Stochastic gradient descent with known $\mathcal{D}(\cdot)$ [IYZ21]
 - Regret minimization with performatve feedback [JZM22]
 - Plug-in estimator with a proxy $\mathcal{D}'(\cdot)$ [LZ23]

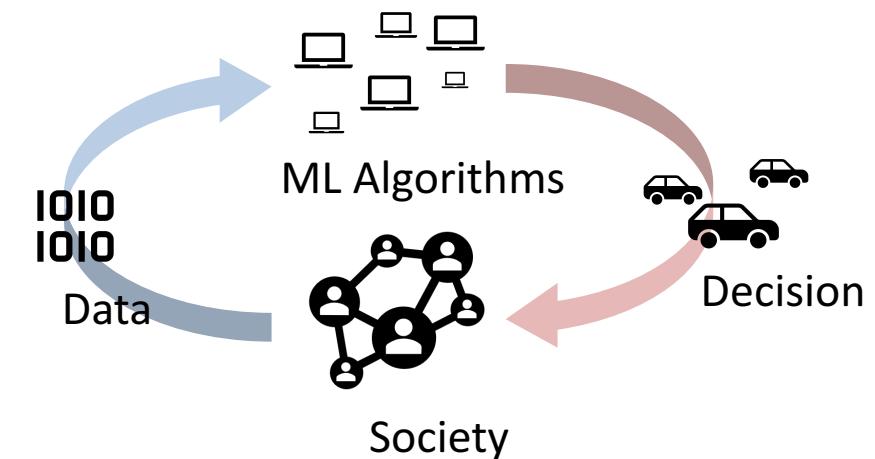
Related work

- Convergence of learning dynamics
 - **Naïve retraining with smoothness/convexity assumption**
 - Repeated empirical risk minimization [JZMH20, DCRMF23]
 - Stochastic gradient descent [MPZH21, DX 20]
 - Learning with partial knowledge of $\mathcal{D}(\cdot)$
 - Stochastic gradient descent with known $\mathcal{D}(\cdot)$ [IYZ21]
 - Regret minimization with performatve feedback [JZM22]
 - Plug-in estimator with a proxy $\mathcal{D}'(\cdot)$ [LZ23]

When does learning fail?

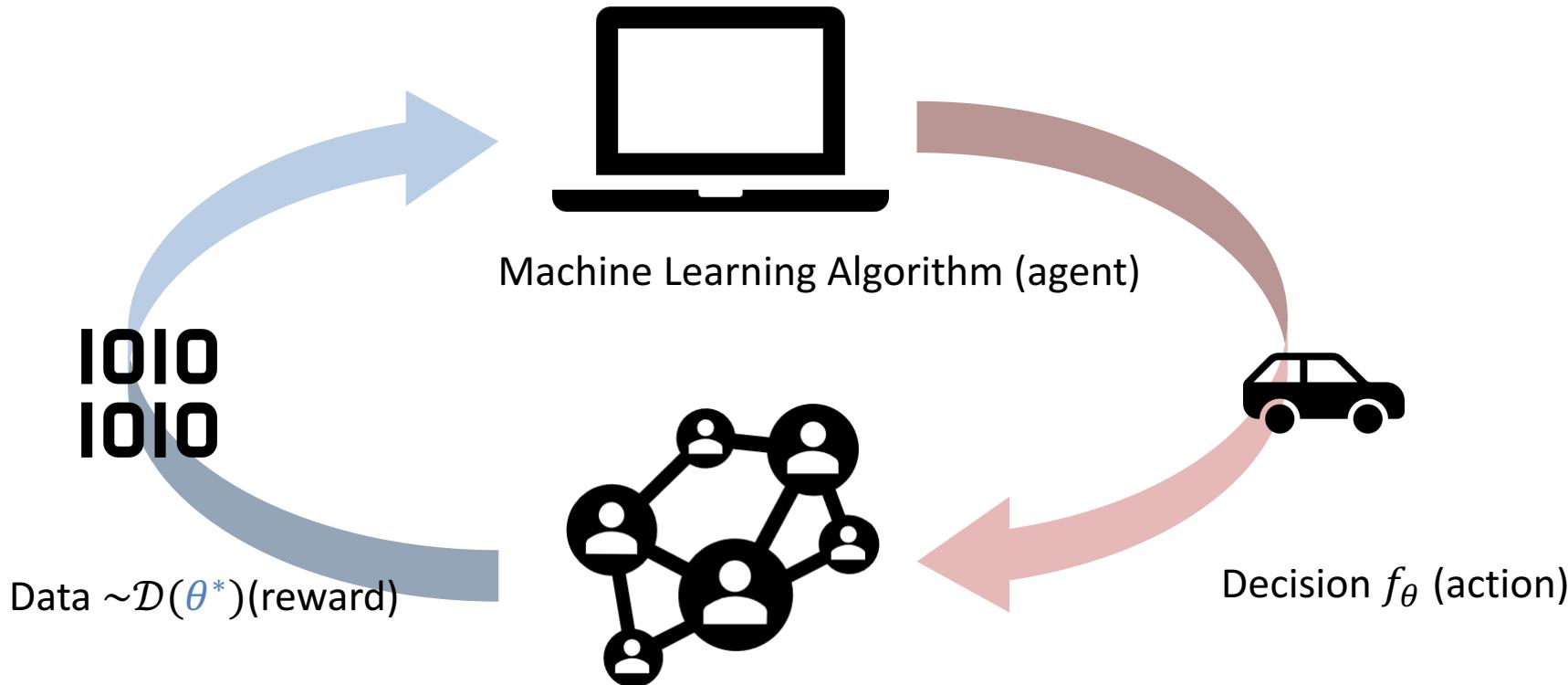
Contributions

- Formalize the concept of **multi agent performative predictions** and a novel solution concept, **multi agent performative stability**
- Main result: a threshold result on online learning algorithms
 - **Convergence** for small learning rate
 - **Li-Yorke chaos** when too much influence



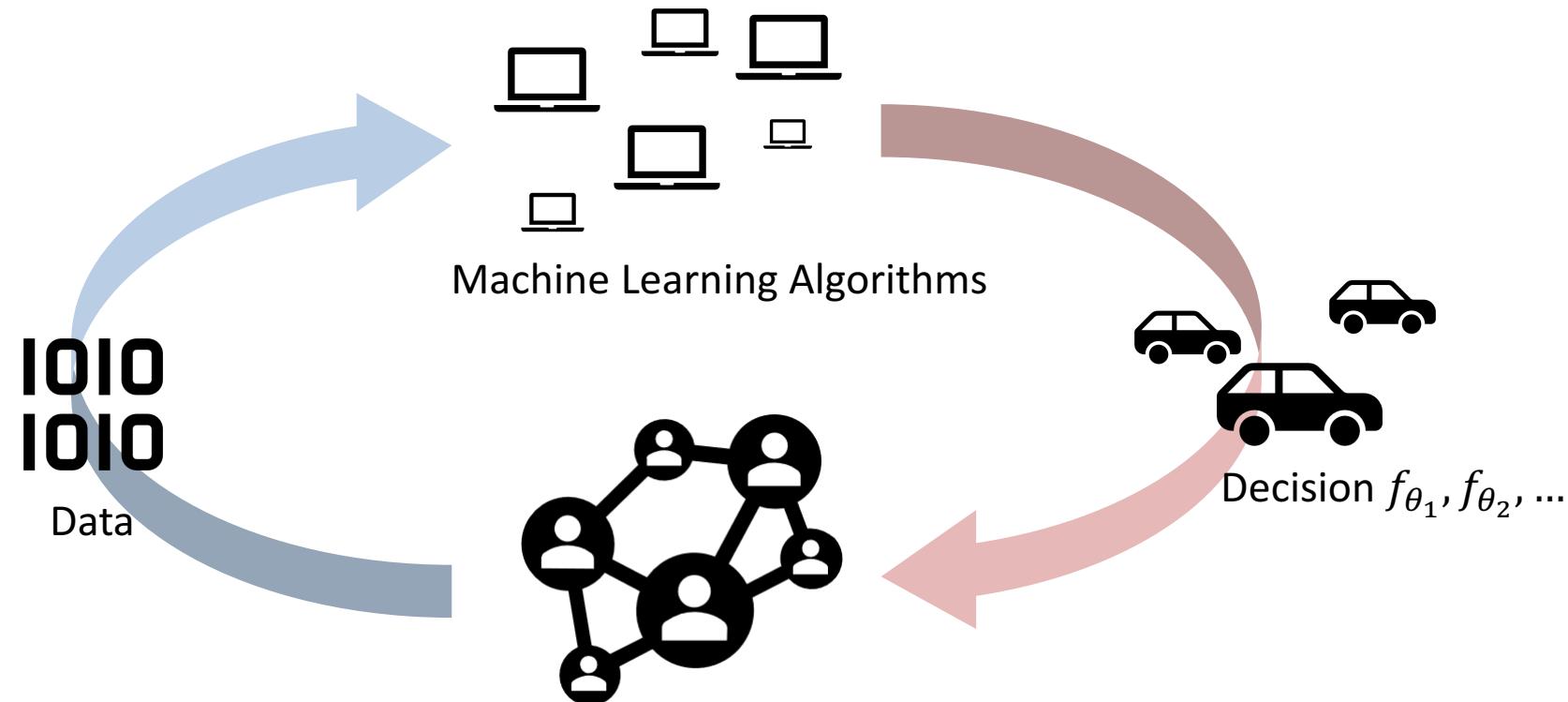
Performative prediction as a game

- The predictive agent is playing a game against himself



Multi-agent performative prediction

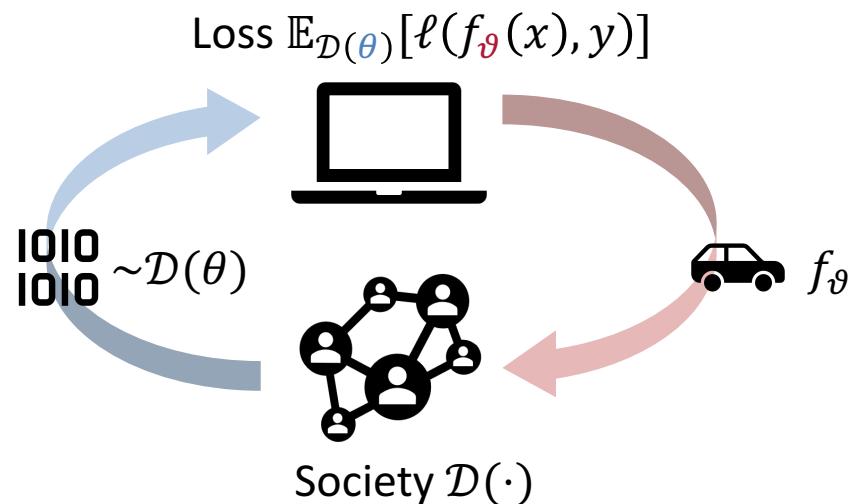
- Multiple predictive agents making decisions that collectively influence the distribution of future data.



Multi-agent performative prediction

Performative prediction

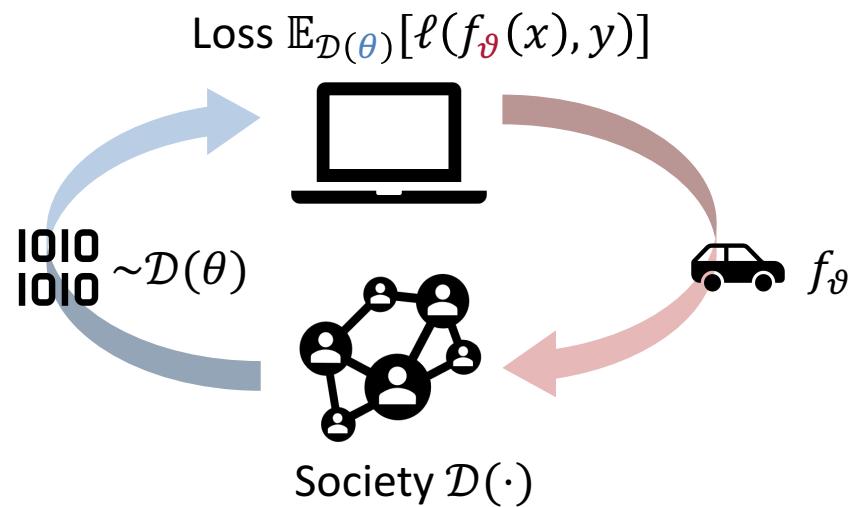
- Deploy $\theta \in \Theta$
- Distribution map $\mathcal{D}: \Theta \rightarrow \Delta_{\mathcal{X} \times \mathcal{Y}}$
- Predict $\vartheta \in \Theta$



Multi-agent performative prediction

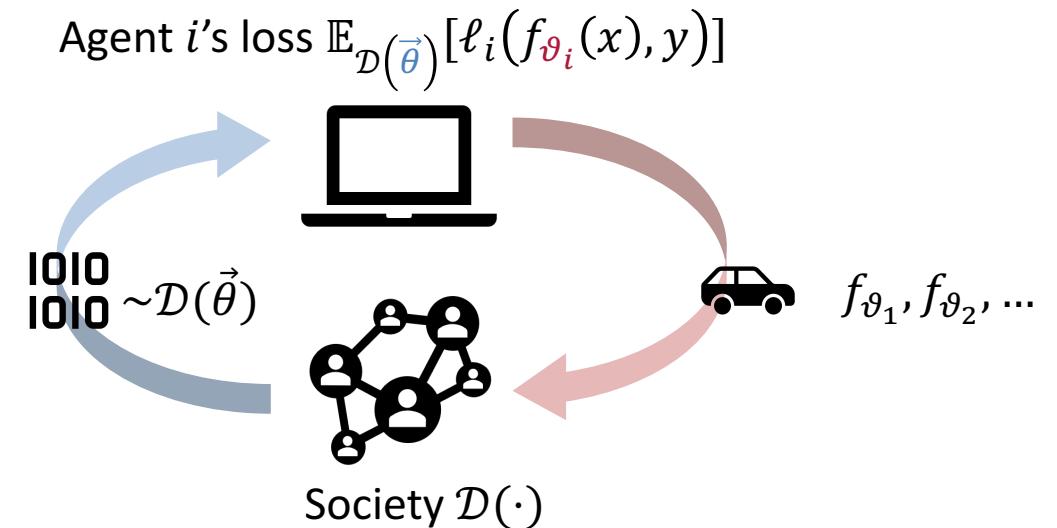
Performative prediction

- Deploy $\theta \in \Theta$
- Distribution map $\mathcal{D}: \Theta \rightarrow \Delta_{\mathcal{X} \times \mathcal{Y}}$
- Predict $\vartheta \in \Theta$



Multi-agent performative prediction

- Deploy $\vec{\theta} = (\theta_1, \dots, \theta_n) \in \Theta^n$
- Distribution map $\mathcal{D}: \Theta^n \rightarrow \Delta_{\mathcal{X} \times \mathcal{Y}}$
- Predict $\vartheta \in \Theta$

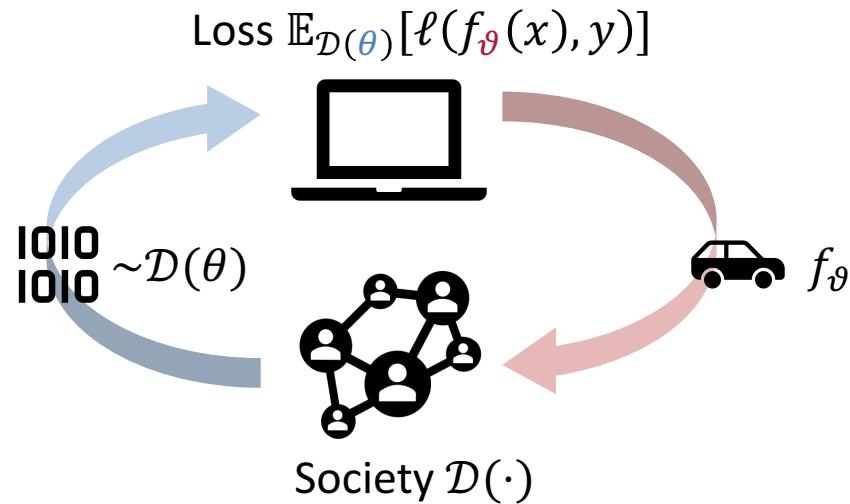


Multi-agent performative prediction

Performative prediction

- Performative stable, $\theta^* \in \Theta$

$$\ell(\theta^*; \mathcal{D}(\theta^*)) = \min_{\theta} \ell(\theta; \mathcal{D}(\theta^*))$$

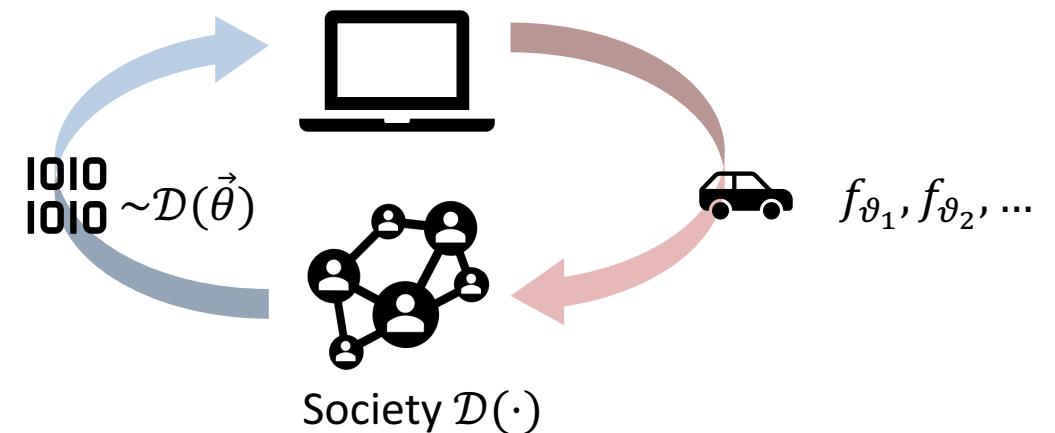


Multi-agent performative prediction

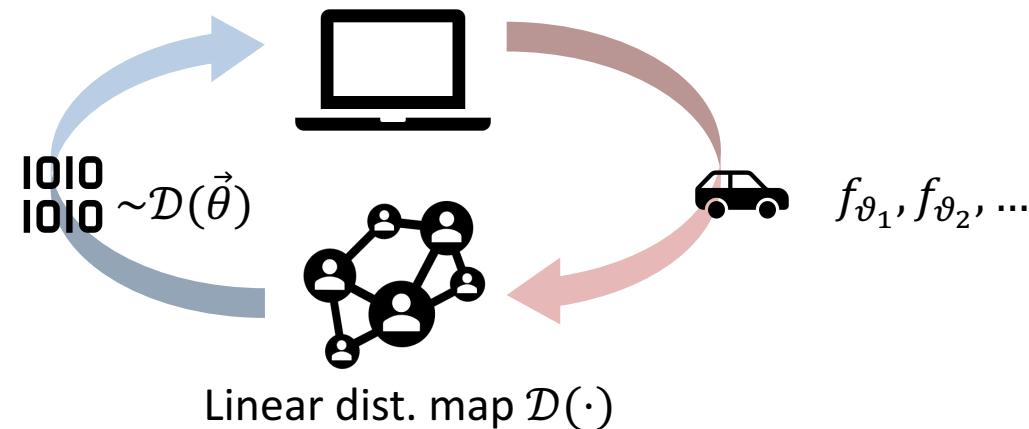
- Multi-agent performative stable, $\vec{\theta}^* \in \Theta^n$: for all $i \in [n]$,

$$\ell_i(\theta_i^*; \mathcal{D}(\vec{\theta}^*)) = \min_{\theta_i} \ell_i(\theta_i; \mathcal{D}(\vec{\theta}^*))$$

Agent i 's loss $\mathbb{E}_{\mathcal{D}(\vec{\theta})}[\ell_i(f_{\theta_i}(x), y)]$



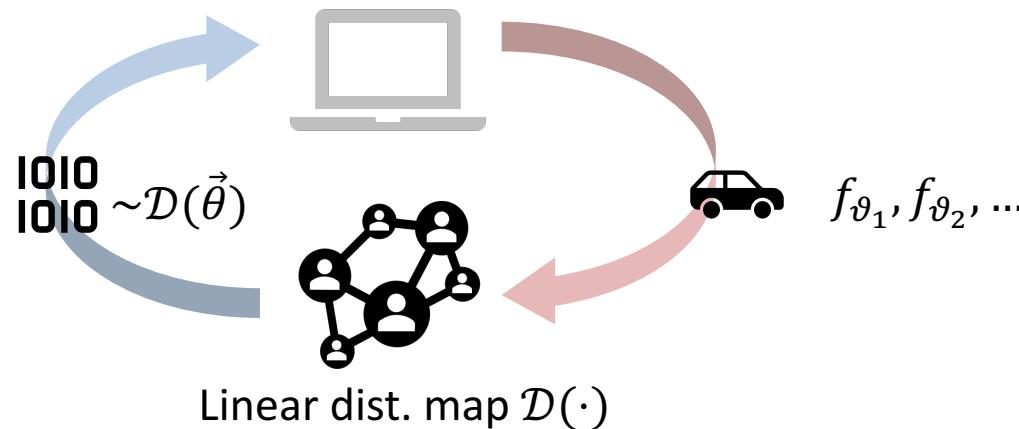
A toy learning dynamics $\vec{\theta}^1, \vec{\theta}^2, \dots, \vec{\theta}^t, \dots$



A toy learning dynamics $\vec{\theta}^1, \vec{\theta}^2, \dots, \vec{\theta}^t, \dots$

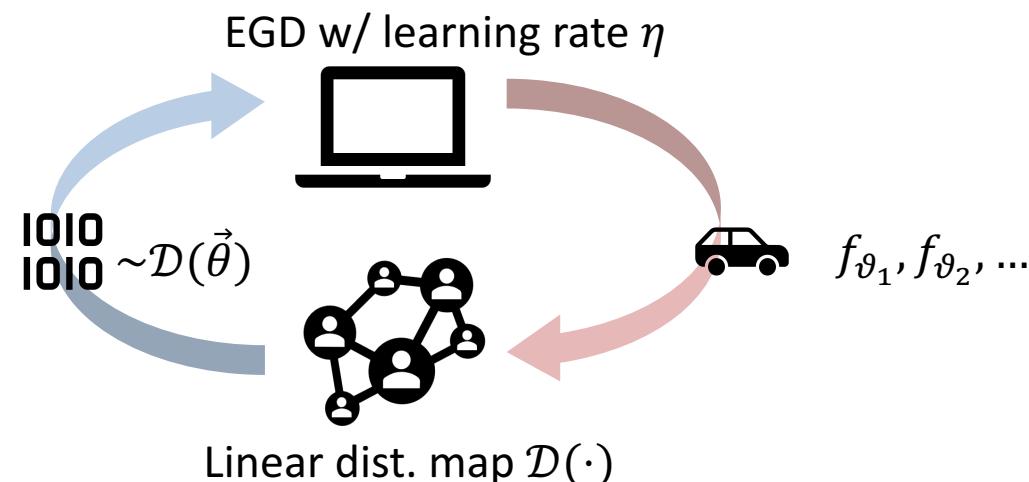
- Linear distribution mapping, $\mathcal{D}(\vec{\theta})$: given parameters, \mathcal{D}_X , θ_0 , and influence parameter λ

$$x \sim \mathcal{D}_X, \text{ and } y = x^\top \left(\theta_0 - \lambda \sum_{i \in [n]} \theta_i \right) + \text{noise}$$



Learning dynamics $\vec{\theta}^0, \vec{\theta}^1, \dots, \vec{\theta}^t, \dots$

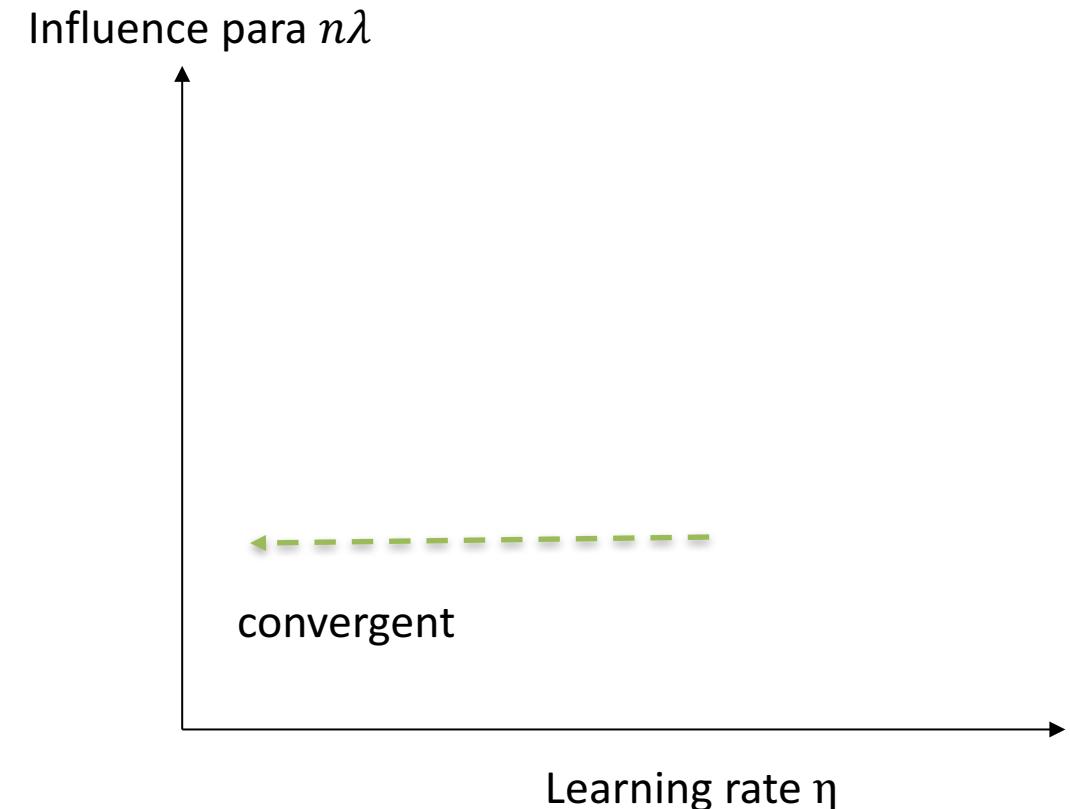
- Linear distribution mapping, $\mathcal{D}(\vec{\theta})$: given \mathcal{D}_X , θ_0 , and λ , $x \sim \mathcal{D}_X$ and $y = x^\top(\theta_0 - \lambda \sum_i \theta_i) + \text{noise}$
- Exponentiated gradient descent w/ learning rate η and initial conditions $\vec{\theta}^0$ [KW97]



A threshold result on MAPP

Consider n learning agents with influence parameter λ using exponentiated GD with learning rate η .

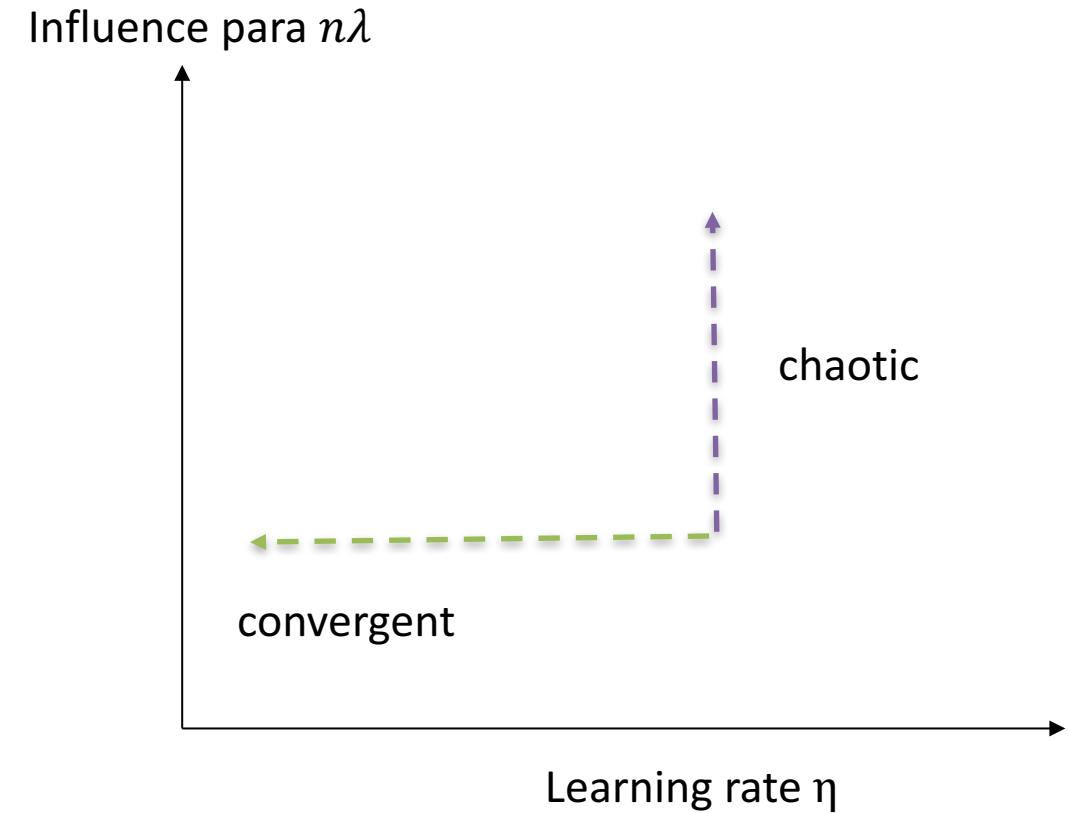
1. Fixing n and λ , if η is small enough, $\lim_{t \rightarrow \infty} \vec{\theta}^t$ is performatively stable.



A threshold result on MAPP

Consider n learning agents with influence parameter λ using exponentiated GD with learning rate η .

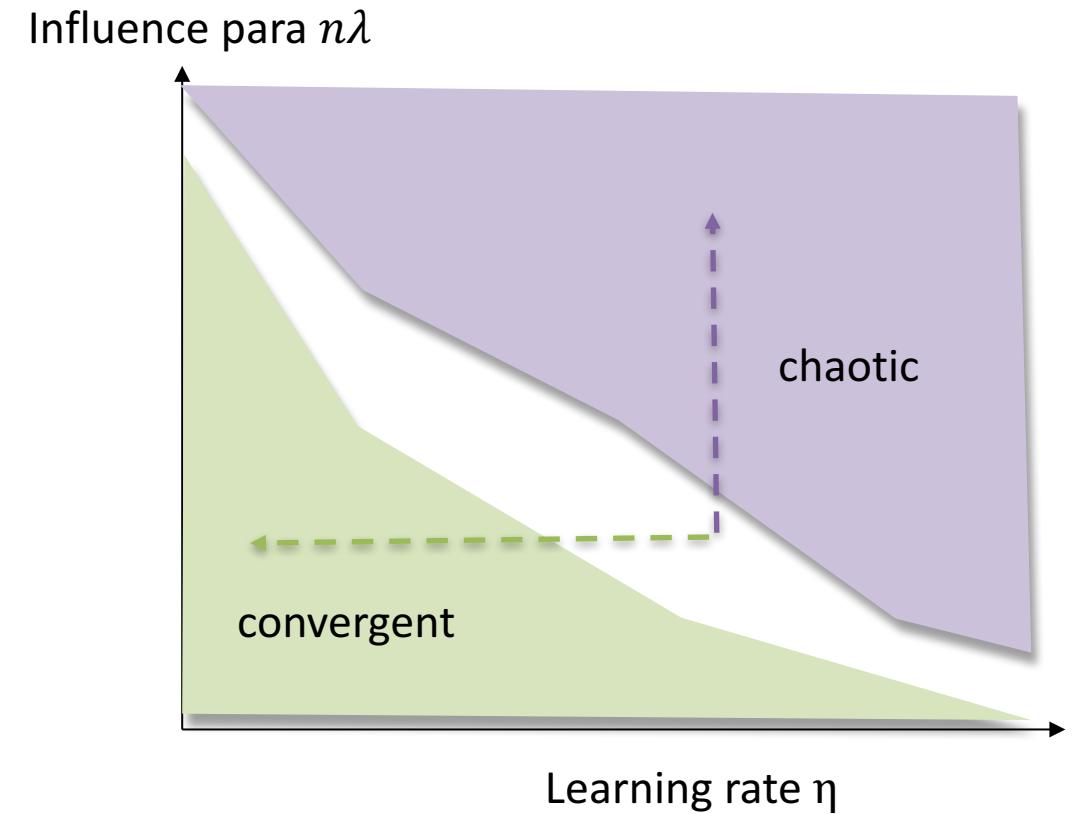
1. Fixing n and λ , if η is small enough, $\lim_{t \rightarrow \infty} \vec{\theta}^t$ is performatively stable.
2. Fixing η , if $n\lambda$ is large enough, $\vec{\theta}^t$ is Li-Yorke chaotic.



A threshold result on MAPP

Consider n learning agents with influence parameter λ using exponentiated GD with learning rate η .

1. Fixing n and λ , if η is small enough, $\lim_{t \rightarrow \infty} \vec{\theta}^t$ is performatively stable.
2. Fixing η , if $n\lambda$ is large enough, $\vec{\theta}^t$ is Li-Yorke chaotic.



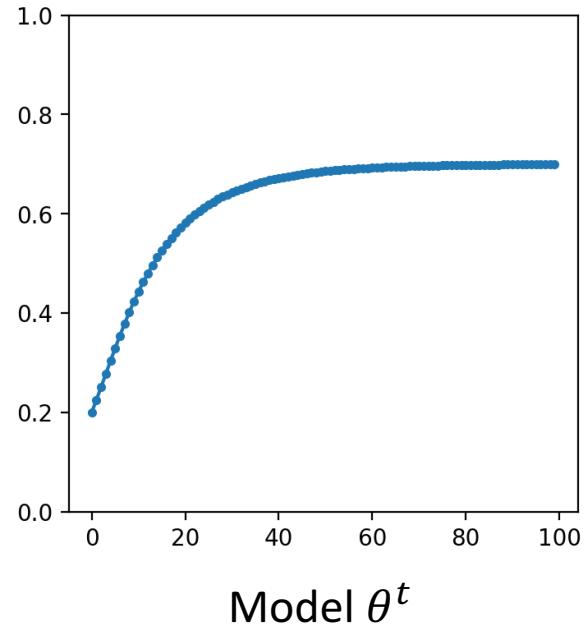
Proof idea

Connection of Hedge learning on congestion game with linear cost

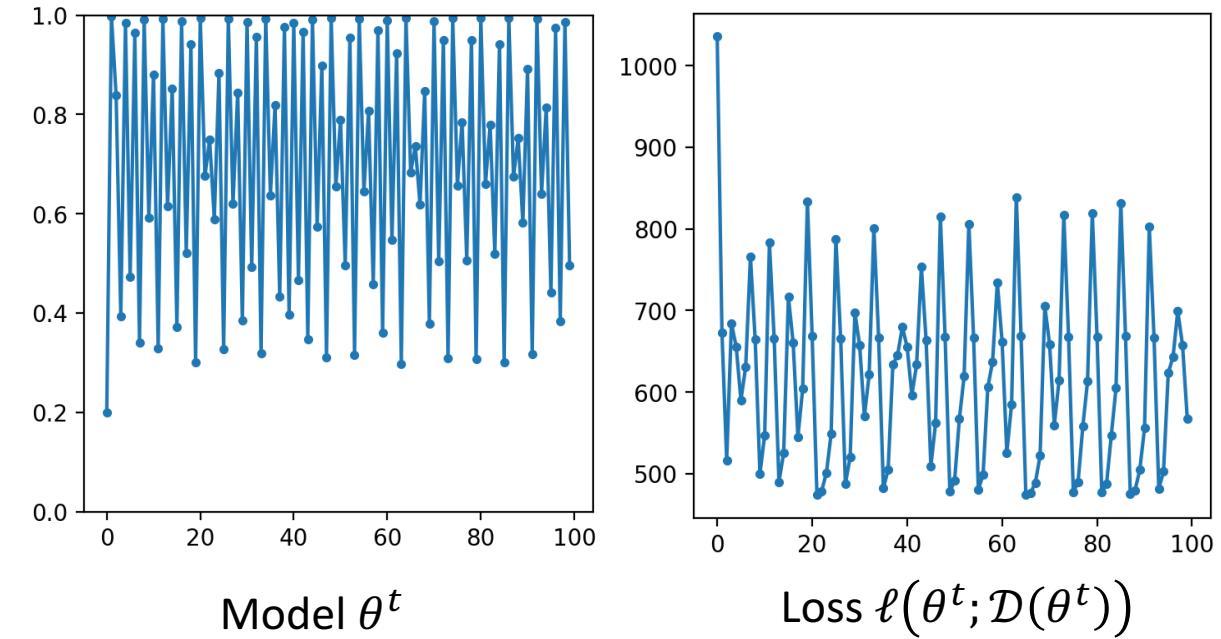
- Convergence
 - Replicator dynamics ($\eta \rightarrow 0$) on congestion game [KPT09]
 - Linear MWU with constant η on congestion game [PPP 17]
- LiYorke chaos
 - Large learning rate in Hedge [CFMP 20]

Simulation

Small learning rate (η)

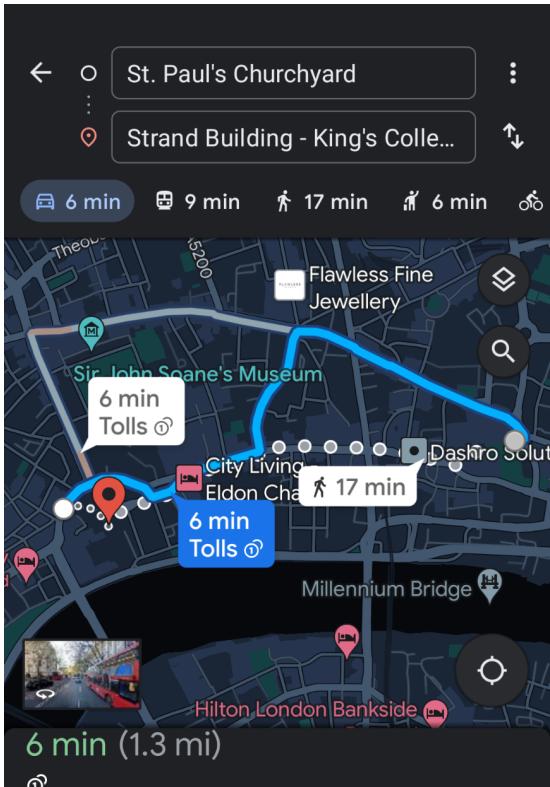


Large influence ($n\lambda$)



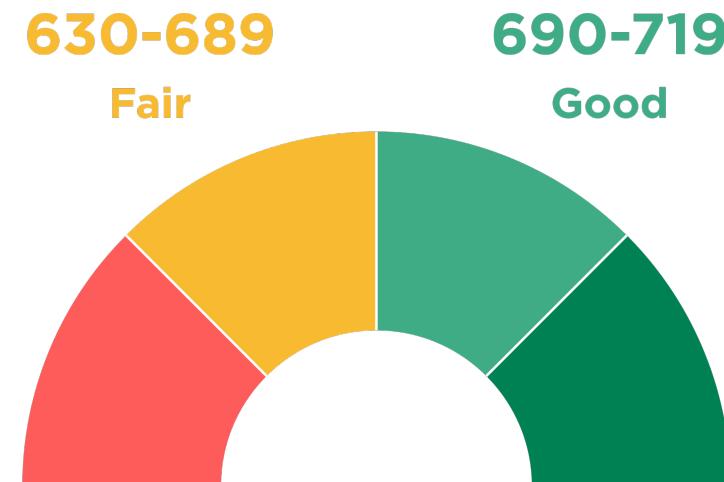
Connections

Traffic prediction



More drivers follow=> large λ => chaos

Credit score



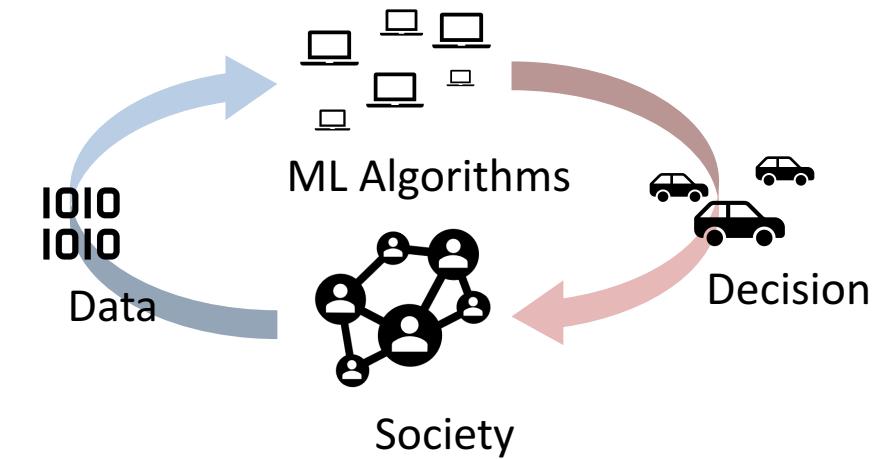
More banks=> large n => chaos

Policy patrol with predictions

More dependency => large λ => chaos

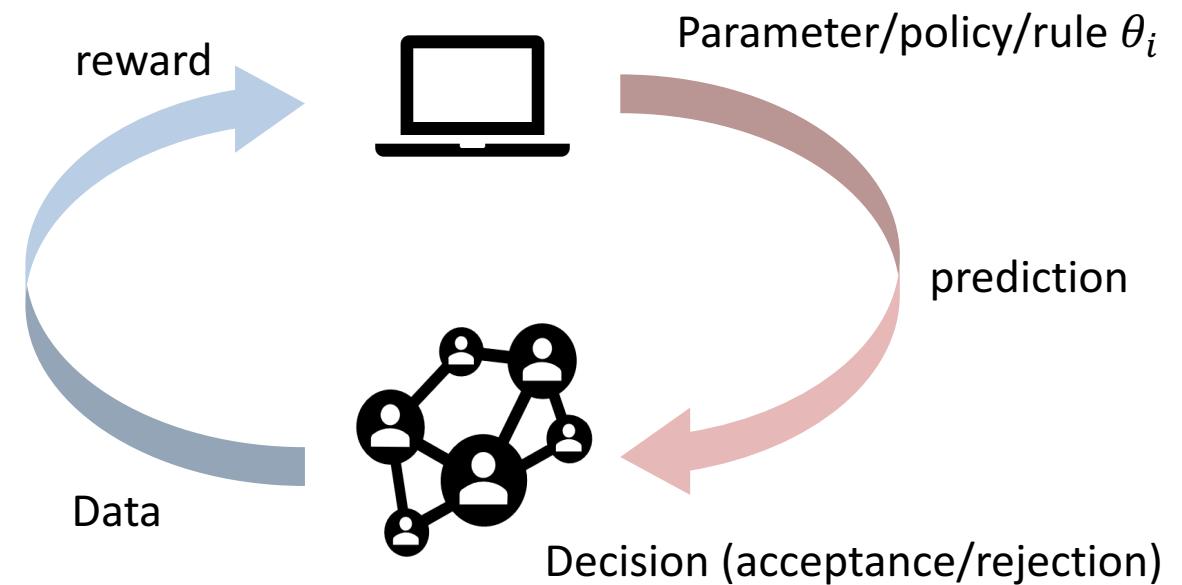
Open questions

- Multi agent performative prediction
 - How can we learn and avoid chaos?
 - Algorithm
 - Mechanism
 - Competition between learning agents
- When are predictions performative?
 - Strategic classification
 - Price competition
 - Recommendation system



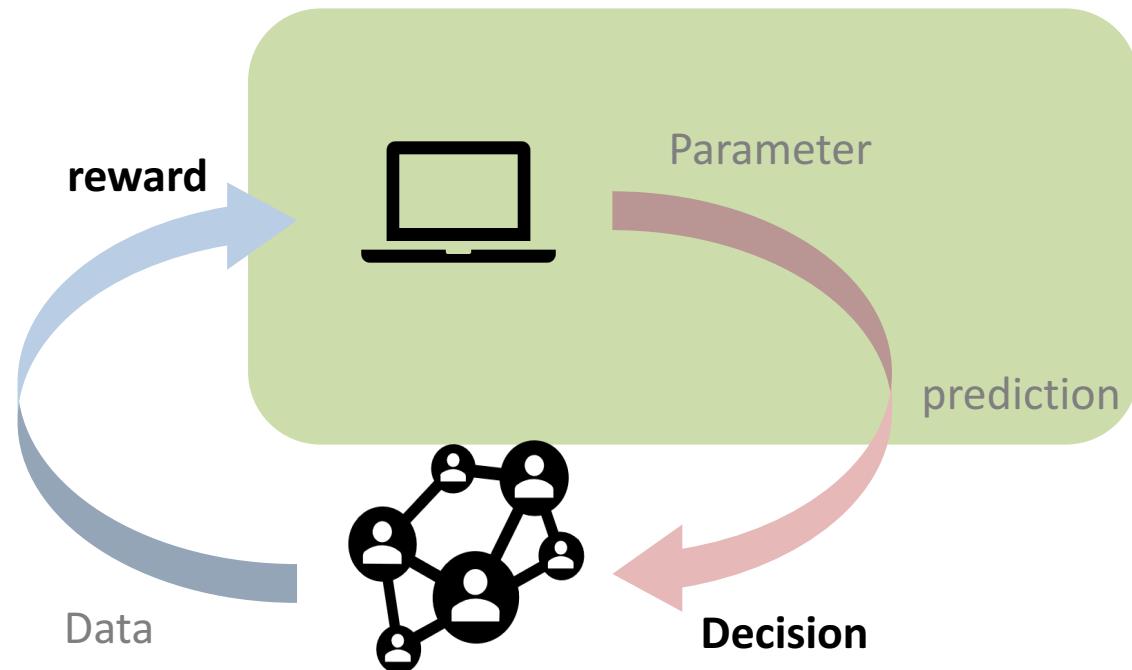
Some thoughts

- Which is performative?
 - Decision
 - Prediction
 - Policy
- Examples of θ_i
 - Navigation app's recommendation algorithms
 - College's acceptance rule
 - Hedge fund's automatic bidder

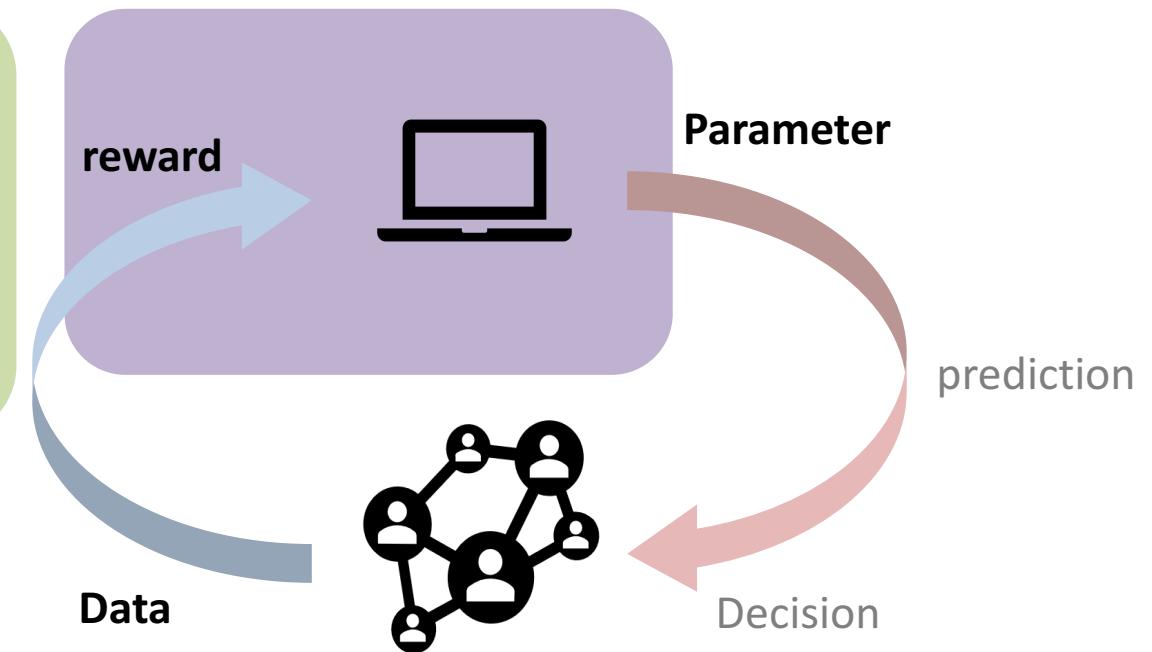


Some thoughts

Control theory/RL

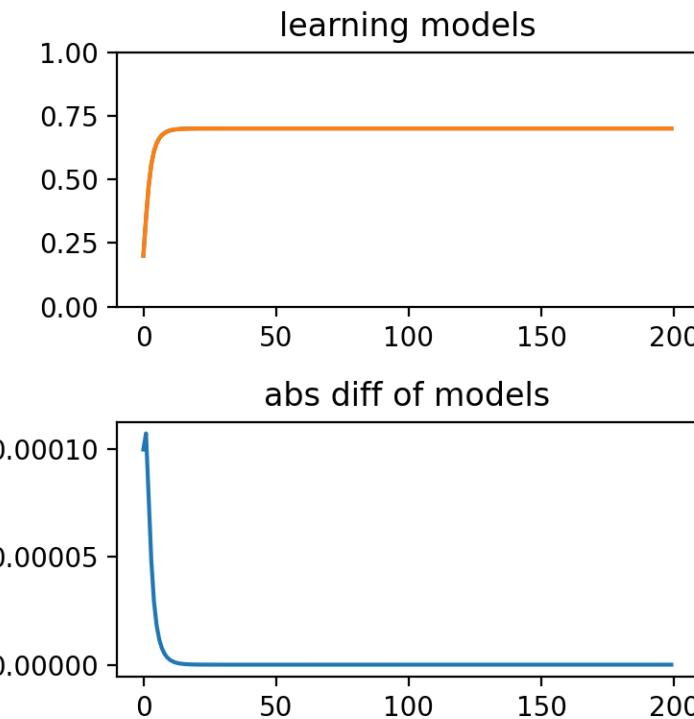


Performative prediction



Simulation

Small learning rate (η)



Large influence ($n\lambda$)

