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High quality information form crowd

 Peerreview at conferences

 Peer grading in classrooms O 1. Strong Reject 5%
O 2. Round 1 Reject 50%

O 3. Probable Eventual Reject 65%

O 4. Borderline (avoid using if possible) 70%
® 5. Weak Accept 80 %

O 6. Accept 90%

O 7. Strong Accept 95%

O 8. Top (Best Paper Nomination) 99%

O 9. Very Top (Best Paper) 100%

* Expert forecasting and
predictions




Outline

* Problem set up
— Proper scoring rule
— Maximizing information gain
— Partial knowledge

* Savage characterization
e Main results

— Core idea: Information gain = convexity
— Simulation




Incentivize predictions

* Peerreview example
— Binary outcome: w € {0,1}
— An agent’s review/prediction: x € [0,1]
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Incentivize predictions

* Peerreview example
— Binary outcome: w € {0,1}
— An agent’s review/prediction: x € [0,1]
* Ascoringrule S rewards S(x,w) € R @

— S'is proper if for all x’ &S
Ep~x[SCewW)] = Eypone[S(X, W) &

Truthful Non-truthful \S x, W%
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Incentivize predictions

* Peerreview example
— Binary outcome: w € {0,1}
— An agent’s review/prediction: x € [0,1]

* Ascoringrule S rewards S(x,w) € R @

— S'is proper if for all x’ &S
M

S(x,x) = S(x', x).
Truthful Non-truthful \S (x, WJ
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Is proper scoring rule enough?

* Peerreview
1. Principle announce S

2. Agentreportsx € [0,1]

3. Outcomerevealsw € {0,1}
A @ pd
4. Agentgets S(x,w) @ i
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Incentivize costly predictions

* Peerreview with effort
1. Principle announce S

2. Agent decides to acquire costly
information

3. Agentreportsx € [0,1]
4. Outcome revealsw € {0,1} QED
5. AgentgetsS(x,w) 2 @
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S(xg, W) S(x,w)




Incentivize costly predictions

* Peerreview with effort
1. Principle announce S

2. Agent decides to acquire costly
information

3. Agentreportsx € [0,1] w.p. 1/2
4. Outcomerevealsw € {0,1}
5. Agentgets S(x,w) &)

SN

w.p. 1/2
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Optimization of scoring rule [HLSW20]

* Given aninformation structure P on (w, x), design bounded S
so that maximize the expected gain
max
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Optimization of scoring rule

* Given aninformation structure P on (w, x), design bounded S
so that maximize the expected gain
max Ep[S(x, w) — S(xo, w)]
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Multiple possible information structure P

Heterogeneous agents P = {P4, P, ...}
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Multiple possible information structure P

Heterogeneous agents P = {P{,P, ...}  Sequential learning
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Multiple possible information structure P

Heterogeneous agents P = {P{,P, ...}  Sequential learning
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Optimal scoring rule with partial knowledge

* Given P (a collection of P), design bounded S so that
maximize the expected gain

max min Ep[S(x,w) — S(xg, W)]

s.t. S is proper and bounded
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Outline

* Savage characterization
e Main results

— Core idea: Information gain = convexity
— Simulation
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What are proper scoring rules

* Given a proper scoringrule S

— Binary outcome: w € {0,1} and
prediction: x € [0,1]

— S(x,x) = S(x',x) forall x'.

S(x,0)
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What are proper scoring rules

* Given a proper scoringrule S

— Binary outcome: w € {0,1} and
prediction: x € [0,1]

— S(x,x) = S(x',x) forall x'.

¢ 5(x, 1)

S(x,1)

S(x,0)

S(x', x)

S(x',0)®
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What are proper scoring rules

* Given a proper scoringrule S

— Binary outcome: w € {0,1} and
prediction: x € [0,1]

— S(x,x) = S(x',x) forall x'.

Proper scoring rule S

)

convex function H(x) = S(x, x)

S(x,0)

S(x',0)

.
S(x', x)

S(x', 1)

S(x,1)




Outline

* Main results
— Core idea: Information gain = convexity
— Simulation
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Main results

 Different P leads different optimal scoring rules
— Singleton P: AV-shaped H is optimal.

— Finite P: An efficient algorithm yields an optimal piecewise linear H
— "Discretizable” P: An FPTAS for optimal H

. :
Homogeneous experiment Singleton P Finite P

* Beta-Bernoulli
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Information gain < convexity

* Example
— Uniformly distributed w~{0,1}

— Costly binary signal equals w w.p.
4/5

— Prior: Xog = 05 W.p. 1/2
— Posterior:

» Pr[x = 0.8] = Pr[x = 0.2] = 1/2 rp@r‘w w.p. 1/2

"B "

23



Information gain < convexity

* Example
— Uniformly distributed w~{0,1}
— Costly binary signal equals w w.p.
4/5
— Prior: xg = 0.5
— Posterior:
e Prlx=08] =Pr[x=0.2]=1/2

Expected prior reward
H(xo) = S(x0,%0)

xo = 1/2
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Information gain < convexity

e Exam pIe Expected posterior reward
H(x)

— Uniformly distributed w~{0,1}
— Costly binary signal equals w w.p.
4/5
— Prior: xg = 0.5
— Posterior:
e Prlx=08] =Pr[x=0.2]=1/2

— Information gain under H
Ep[S(x,w) — S(xq,w)]
= Ep[H(x) — H(xo)]
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Information gain < convexity

* Example
— Uniformly distributed w~{0,1}
— Costly binary signal equals w w.p.
4/5
— Prior: xg = 0.5
— Posterior:
e Prlx=08] =Pr[x=0.2]=1/2

— Information gain under H
Ep[S(x,w) — S(xq,w)]
= Ep[H(x) — H(xo)]

Ep[H(xo)] = H(Ep[x])
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Information gain < convexity

* Example
— Uniformly distributed w~{0,1}
— Costly binary signal equals w w.p.
4/5
— Prior: xg = 0.5
— Posterior:
e Prlx=08] =Pr[x=0.2]=1/2

— Information gain under H
Ep[S(x,w) — S(xq,w)]
= Ep[H(x) — H(xo)]
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Main results

Different P leads different

optimal scoring rules

— Singleton P: a v-shaped H is
optimal «—turning point at prior

— Finite P: an efficient algorithm and
is piecewise linear is optimal
«—turning points at support of P

Singleton P Finite P
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Simulations

* Log scoring rule perform well under Beta-Bernoulli setting
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(a) Associated convex functions
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(b) Information gain with p
0.25.
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(¢) Information gain with p
0.025.




Simulations

* Log scoring rule perform well under Beta-Bernoulli setting
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