
Optimal Scoring Rule Design under Partial Knowledge

Yiling Chen, Harvard University

Fang-Yi Yu, George Mason University

Harvard John A. Paulson
School of Engineering
and Applied Sciences

High quality information from crowd

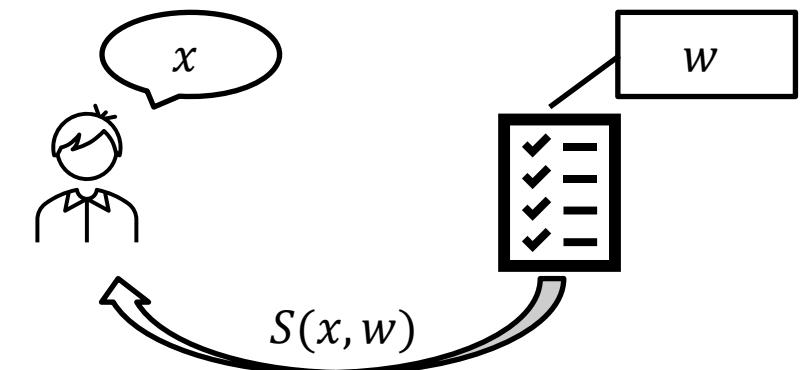
- Peer review at conferences
- Peer grading in classrooms
- Expert forecasting and predictions
 - 1. Strong Reject 5%
 - 2. Round 1 Reject 50%
 - 3. Probable Eventual Reject 65%
 - 4. Borderline (avoid using if possible) 70%
 - 5. Weak Accept 80 %
 - 6. Accept 90%
 - 7. Strong Accept 95%
 - 8. Top (Best Paper Nomination) 99%
 - 9. Very Top (Best Paper) 100%

Outline

- Problem set up
 - Proper scoring rule
 - Maximizing information gain
 - Partial knowledge
- Savage characterization
- Main results
 - Core idea: Information gain = convexity
 - Simulation

Incentivize predictions

- Peer review example
 - Binary outcome: $w \in \{0,1\}$
 - An agent's review/prediction: $x \in [0,1]$

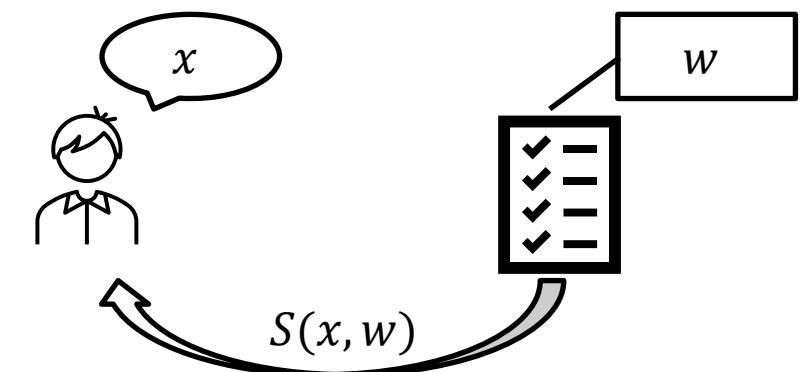


Incentivize predictions

- Peer review example
 - Binary outcome: $w \in \{0,1\}$
 - An agent's review/prediction: $x \in [0,1]$
- A scoring rule S rewards $S(x, w) \in \mathbb{R}$
 - S is **proper** if for all x'
$$\mathbb{E}_{w \sim x}[S(x, w)] \geq \mathbb{E}_{w \sim x}[S(x', w)].$$

Truthful

Non-truthful

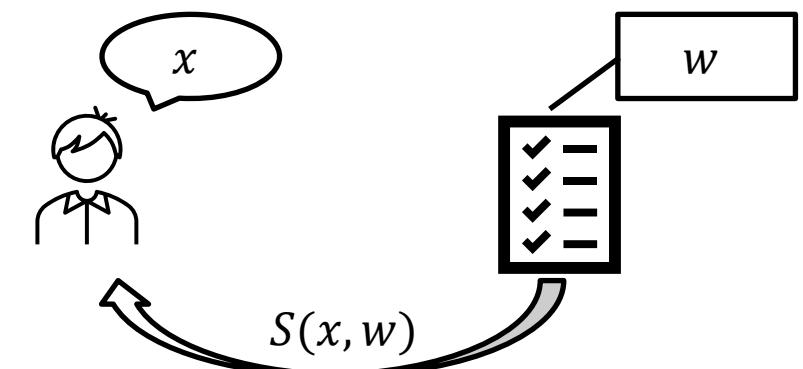


Incentivize predictions

- Peer review example
 - Binary outcome: $w \in \{0,1\}$
 - An agent's review/prediction: $x \in [0,1]$
- A scoring rule S rewards $S(x, w) \in \mathbb{R}$
 - S is **proper** if for all x'
$$\mathbb{E}_{w \sim x}[S(x, w)] \geq \mathbb{E}_{w \sim x}[S(x', w)].$$

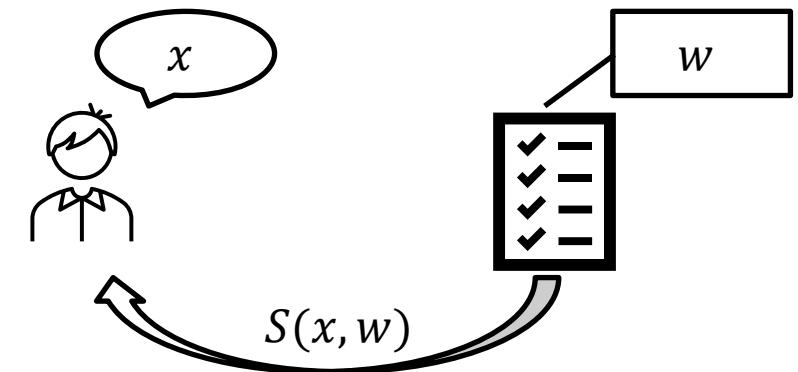
$$S(x, x) \geq S(x', x).$$

Truthful	Non-truthful
----------	--------------



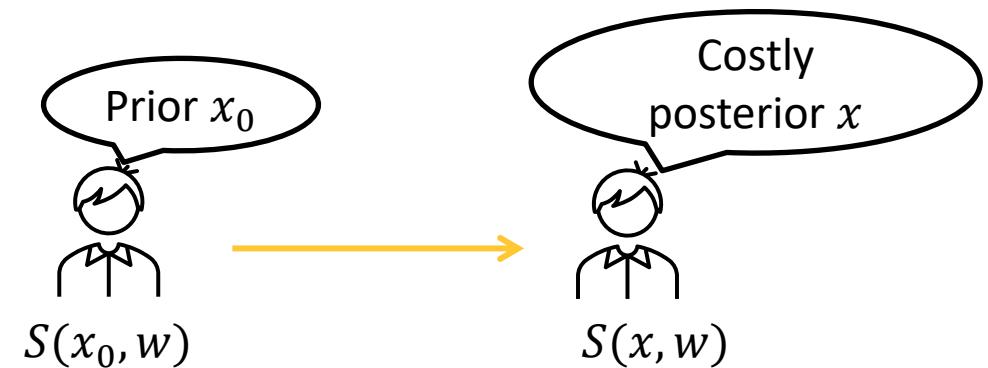
Is proper scoring rule enough?

- Peer review
 1. Principle announce S
 2. Agent reports $x \in [0,1]$
 3. Outcome reveals $w \in \{0,1\}$
 4. Agent gets $S(x, w)$



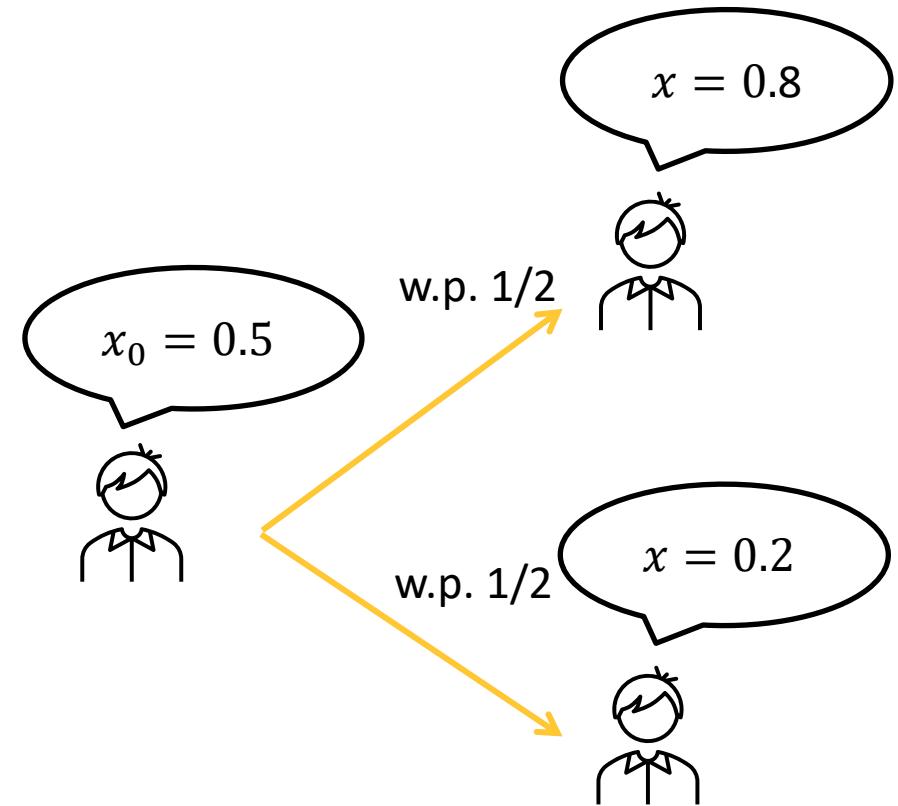
Incentivize costly predictions

- Peer review with effort
 1. Principle announce S
 2. Agent decides to acquire costly information
 3. Agent reports $x \in [0,1]$
 4. Outcome reveals $w \in \{0,1\}$
 5. Agent gets $S(x, w)$



Incentivize costly predictions

- Peer review with effort
 1. Principle announce S
 2. Agent decides to acquire costly information
 3. Agent reports $x \in [0,1]$
 4. Outcome reveals $w \in \{0,1\}$
 5. Agent gets $S(x, w)$

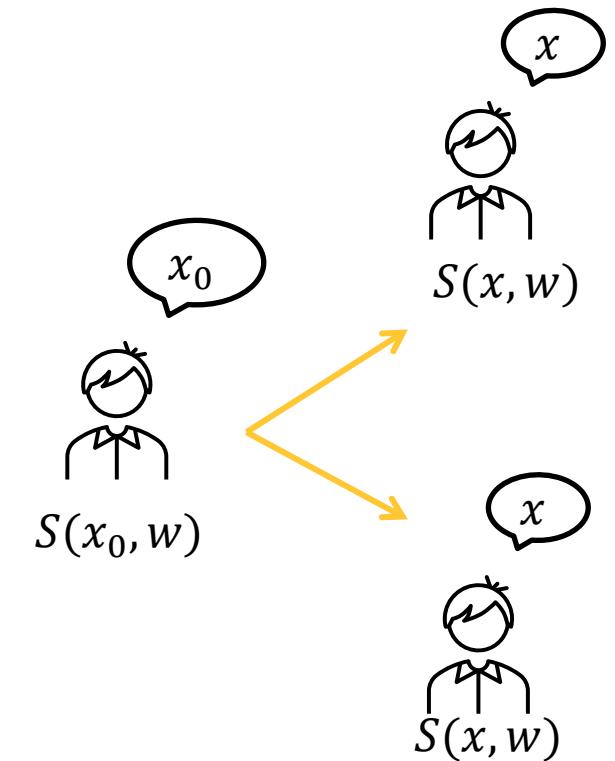


Optimization of scoring rule [HLSW20]

- Given an information structure P on (w, x) , design bounded S so that maximize the expected gain

$$\max_S \text{Expected gain}$$

s. t. S is proper and bounded

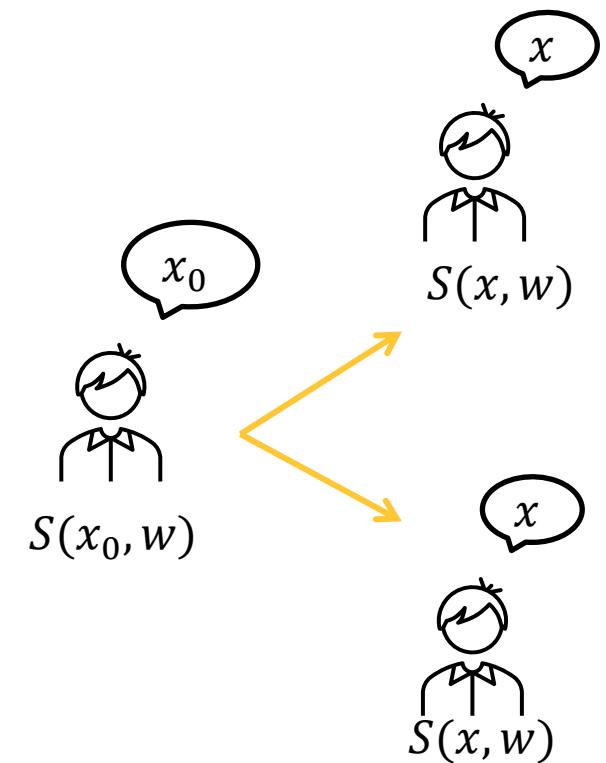


Optimization of scoring rule

- Given an information structure P on (w, x) , design bounded S so that maximize the expected gain

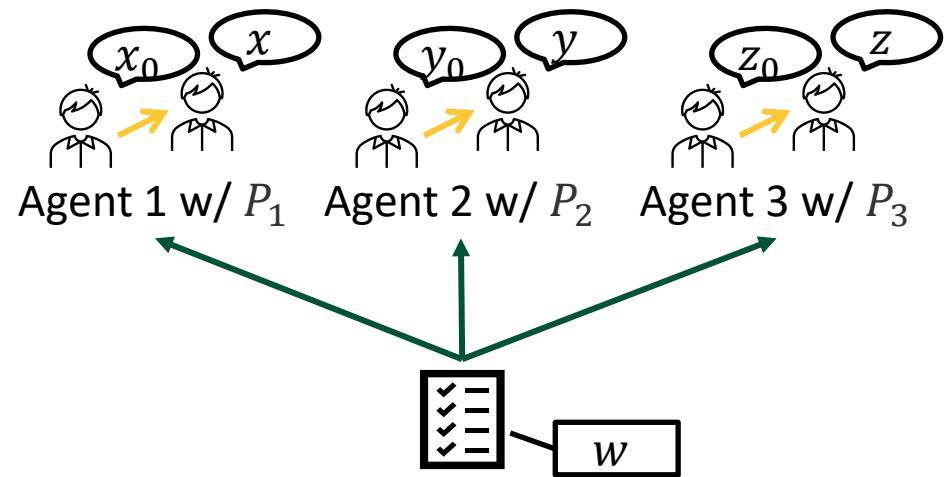
$$\max_S \mathbb{E}_P [S(x, w) - S(x_0, w)]$$

s. t. S is proper and bounded



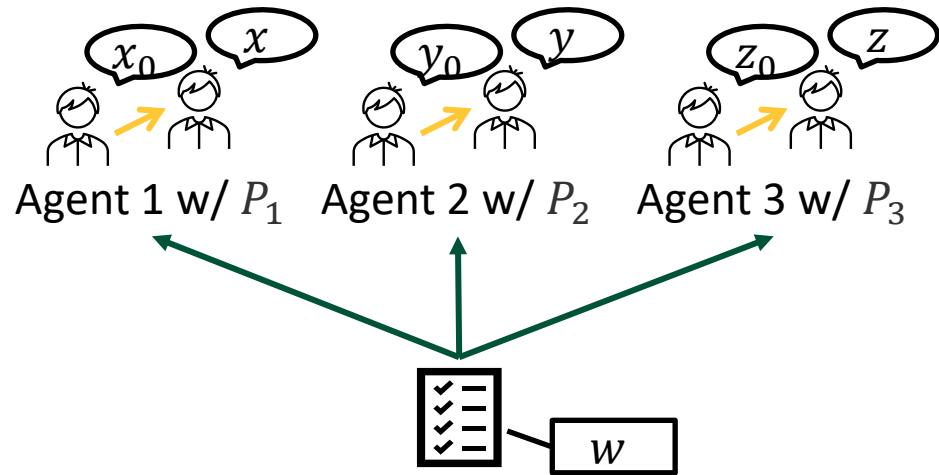
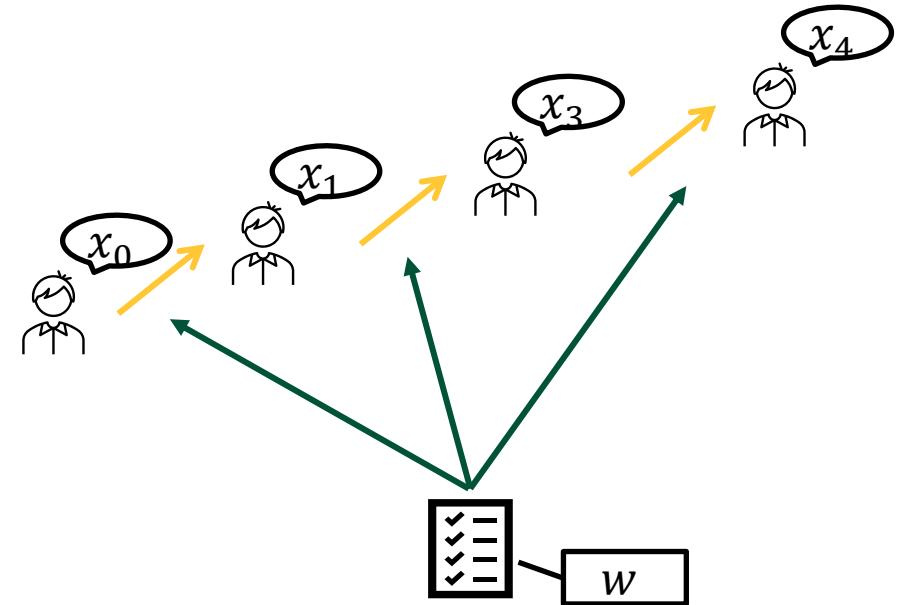
Multiple possible information structure P

Heterogeneous agents $\mathcal{P} = \{P_1, P_2 \dots\}$



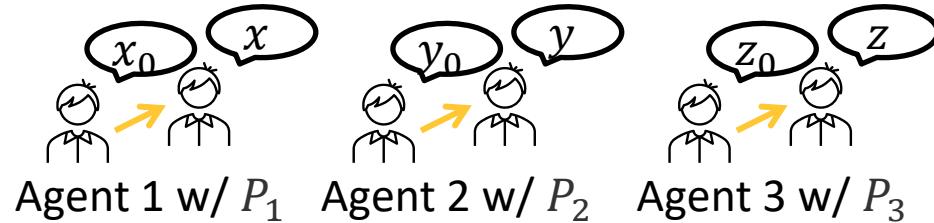
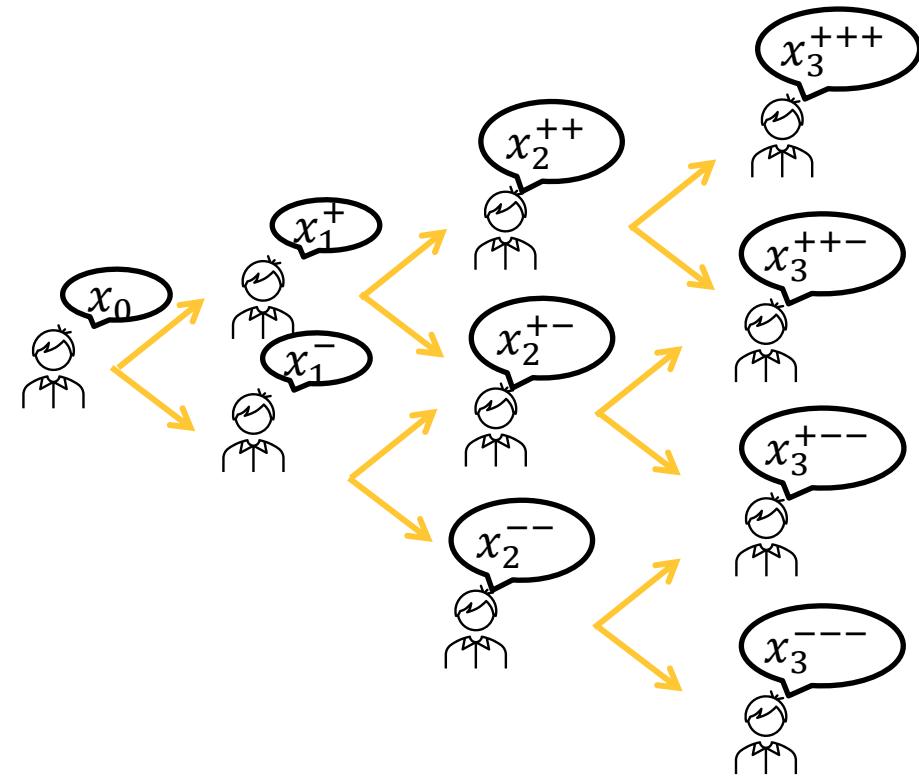
Multiple possible information structure P

Heterogeneous agents $\mathcal{P} = \{P_1, P_2 \dots\}$ Sequential learning



Multiple possible information structure P

Heterogeneous agents $\mathcal{P} = \{P_1, P_2 \dots\}$ Sequential learning

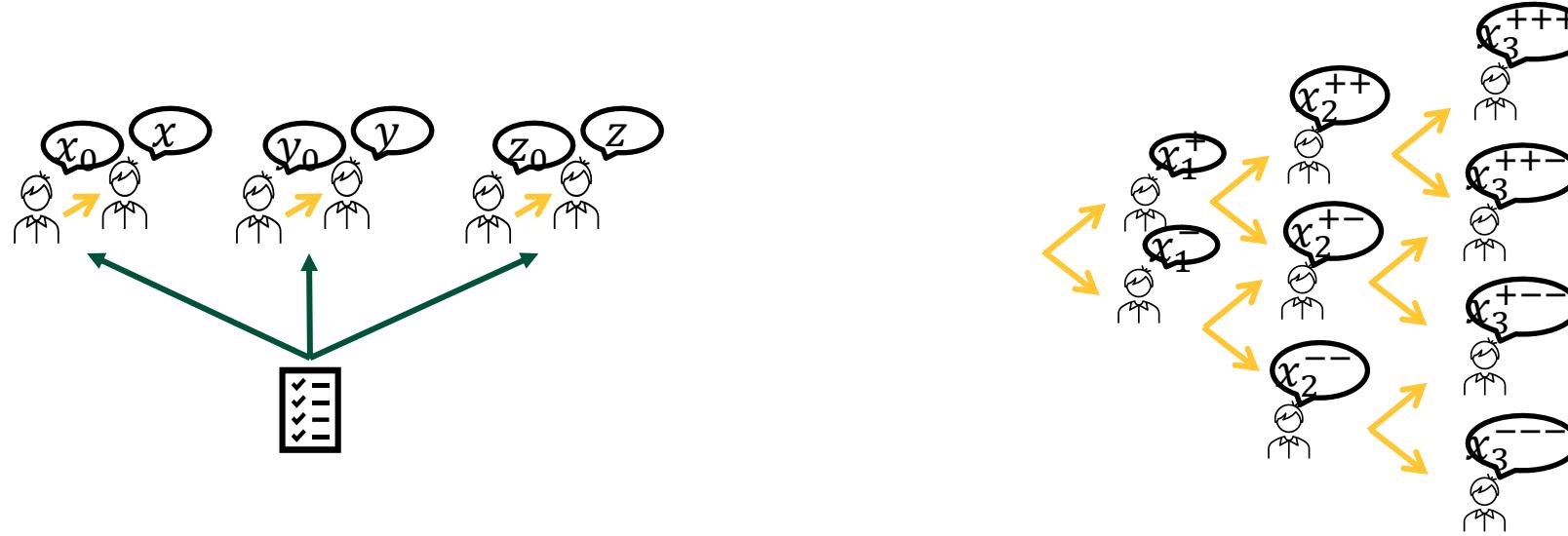


Optimal scoring rule with partial knowledge

- Given \mathcal{P} (a collection of P), design bounded S so that maximize the expected gain

$$\max_S \min_{P \in \mathcal{P}} \mathbb{E}_P [S(x, w) - S(x_0, w)]$$

s. t. S is proper and bounded

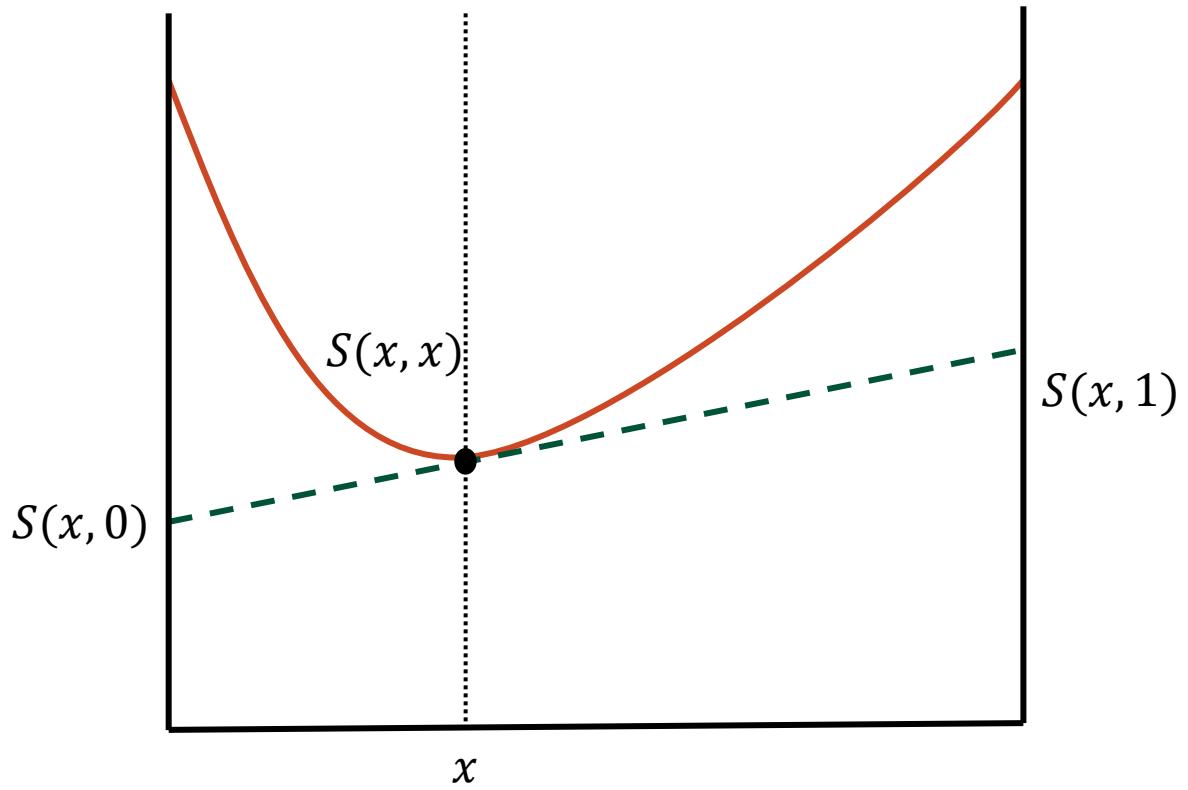


Outline

- Problem set up
 - Proper scoring rule
 - Maximizing information gain
 - Partial knowledge
- Savage characterization
- Main results
 - Core idea: Information gain = convexity
 - Simulation

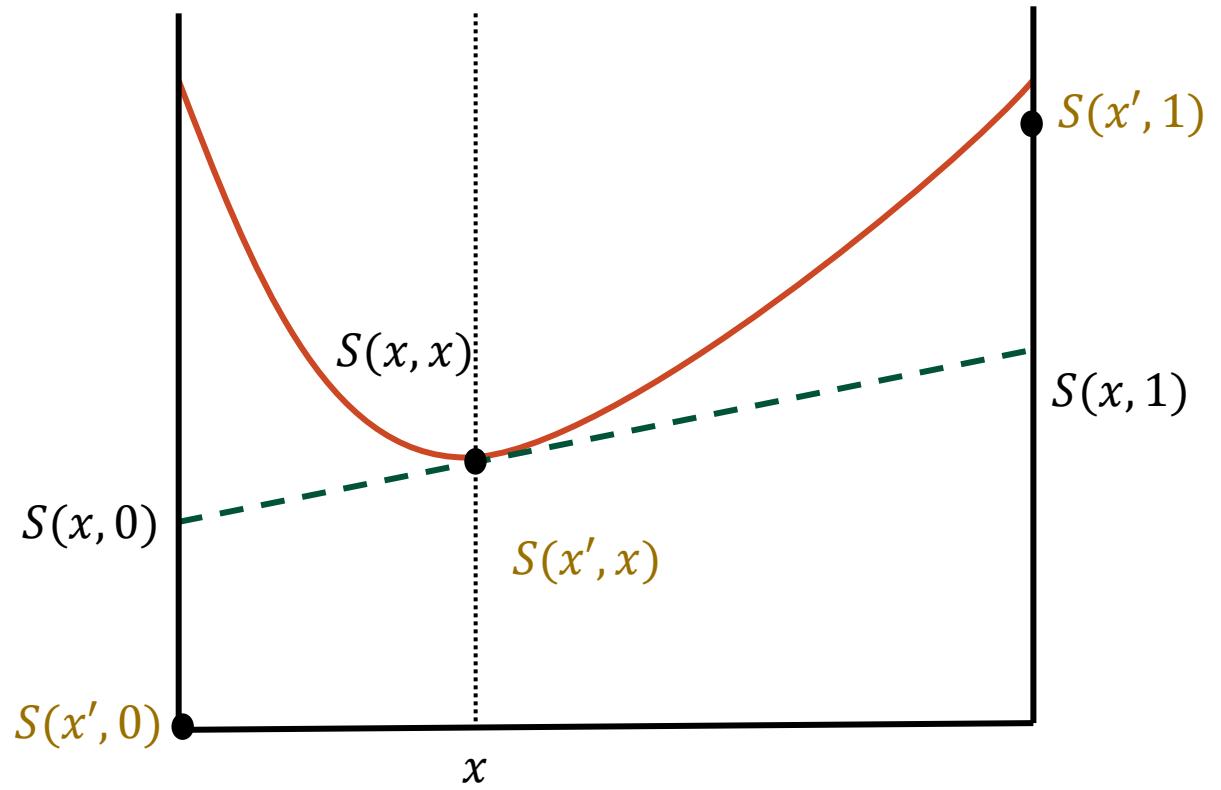
What are proper scoring rules

- Given a proper scoring rule S
 - Binary outcome: $w \in \{0,1\}$ and prediction: $x \in [0,1]$
 - $S(x, x) \geq S(x', x)$ for all x' .



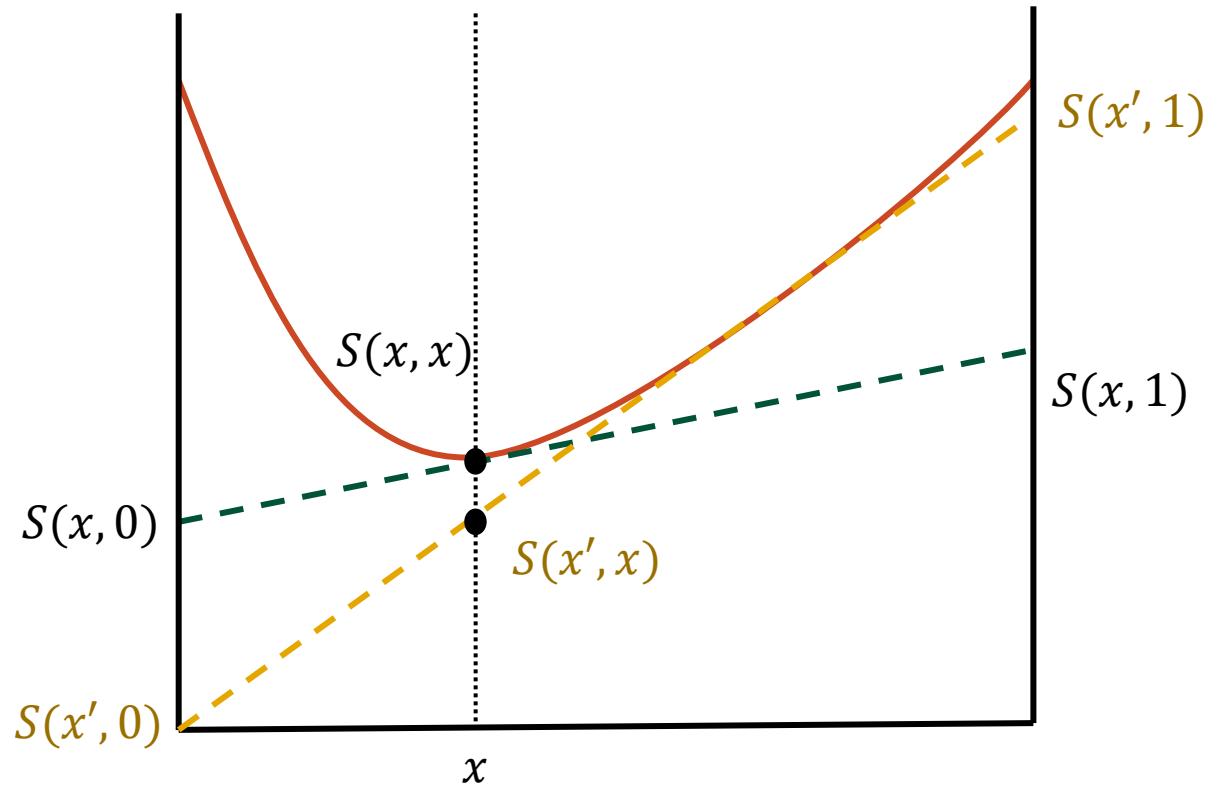
What are proper scoring rules

- Given a proper scoring rule S
 - Binary outcome: $w \in \{0,1\}$ and prediction: $x \in [0,1]$
 - $S(x, x) \geq S(x', x)$ for all x' .



What are proper scoring rules

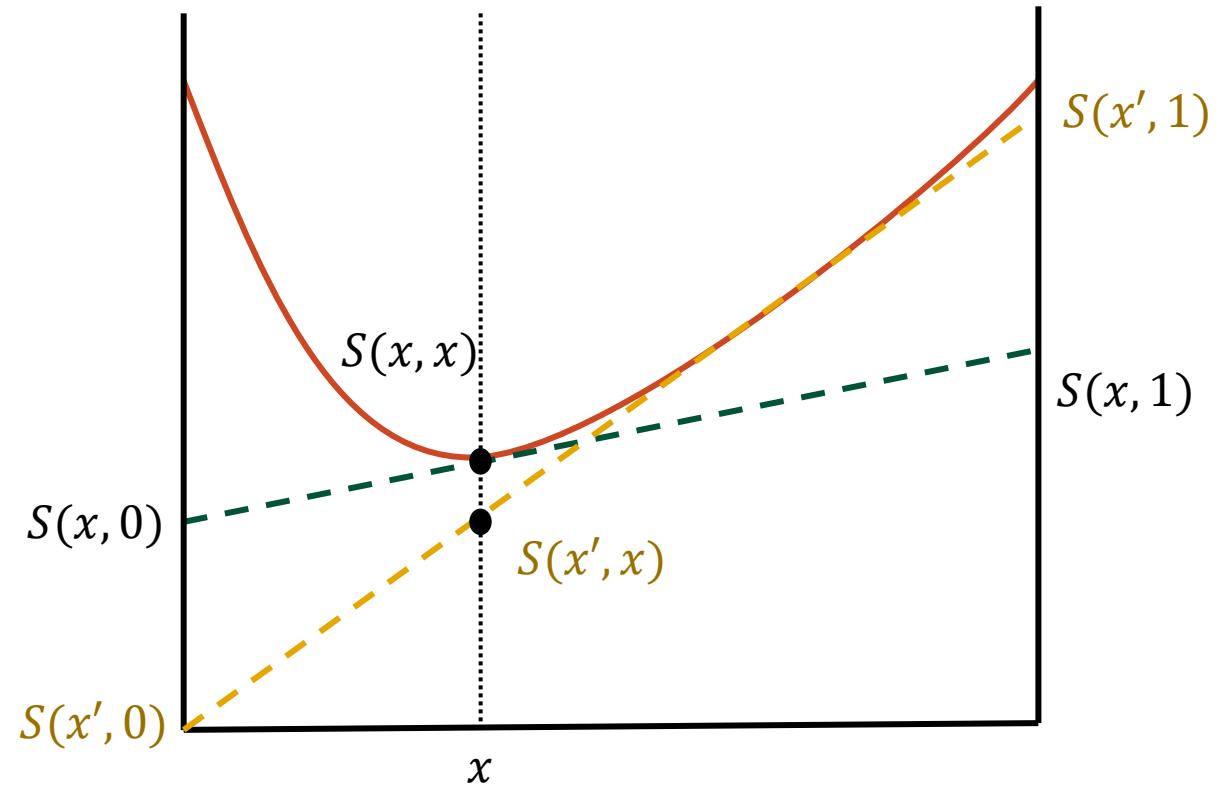
- Given a proper scoring rule S
 - Binary outcome: $w \in \{0,1\}$ and prediction: $x \in [0,1]$
 - $S(x, x) \geq S(x', x)$ for all x' .



What are proper scoring rules

- Given a proper scoring rule S
 - Binary outcome: $w \in \{0,1\}$ and prediction: $x \in [0,1]$
 - $S(x, x) \geq S(x', x)$ for all x' .

Proper scoring rule S
↔
convex function $H(x) = S(x, x)$

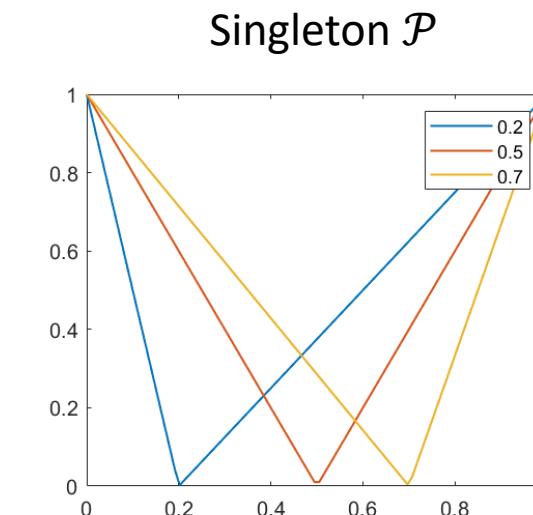
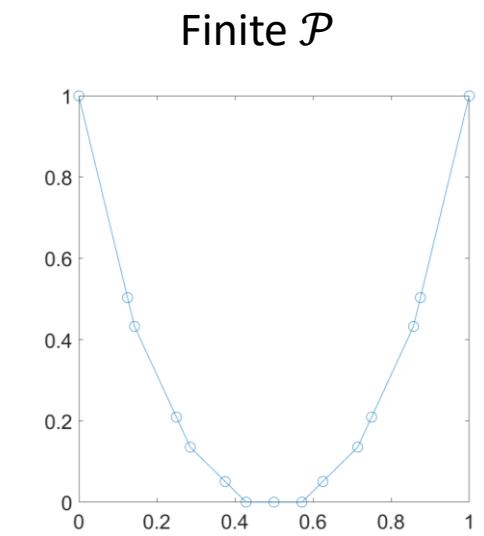


Outline

- Problem set up
 - Proper scoring rule
 - Maximizing information gain
 - Partial knowledge
- Savage characterization
- Main results
 - Core idea: Information gain = convexity
 - Simulation

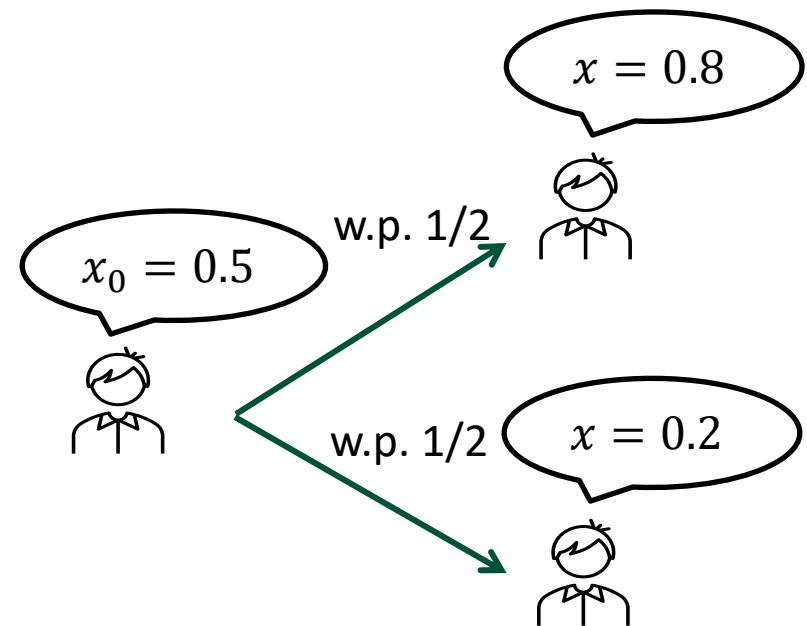
Main results

- Different \mathcal{P} leads different optimal scoring rules
 - Singleton \mathcal{P} : A V-shaped H is optimal.
 - Finite \mathcal{P} : An efficient algorithm yields an optimal piecewise linear H
 - “Discretizable” \mathcal{P} : An FPTAS for optimal H
 - Homogeneous experiment
 - Beta-Bernoulli



Information gain \leftrightarrow convexity

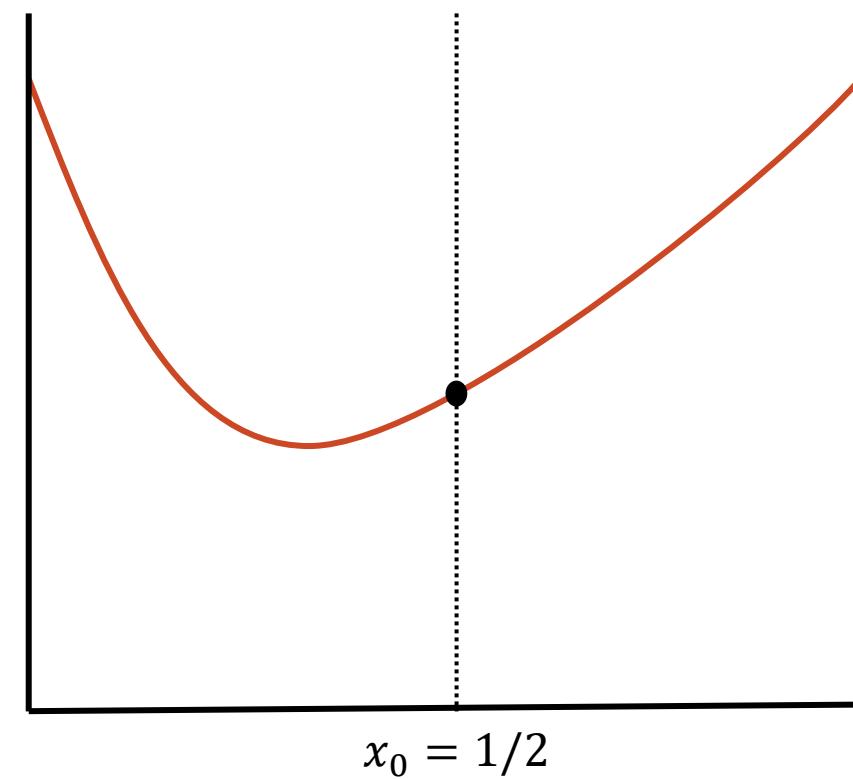
- Example
 - Uniformly distributed $w \sim \{0,1\}$
 - Costly binary signal equals w w.p. $4/5$
 - Prior: $x_0 = 0.5$
 - Posterior:
 - $\Pr[x = 0.8] = \Pr[x = 0.2] = 1/2$



Information gain \leftrightarrow convexity

- Example
 - Uniformly distributed $w \sim \{0,1\}$
 - Costly binary signal equals w w.p. $4/5$
 - Prior: $x_0 = 0.5$
 - Posterior:
 - $\Pr[x = 0.8] = \Pr[x = 0.2] = 1/2$

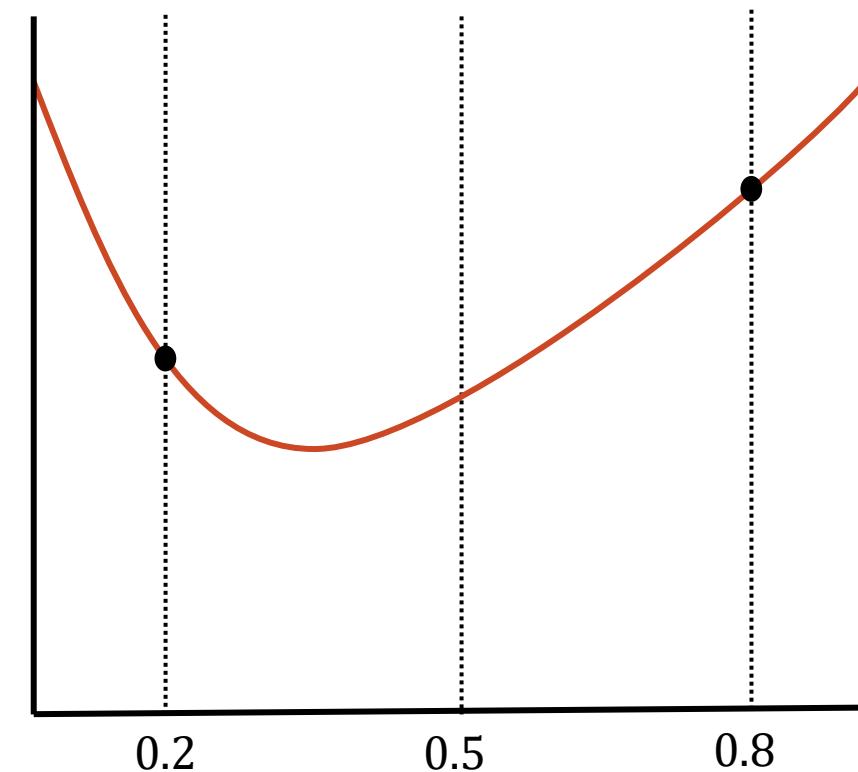
Expected prior reward
 $H(x_0) = S(x_0, x_0)$



Information gain \leftrightarrow convexity

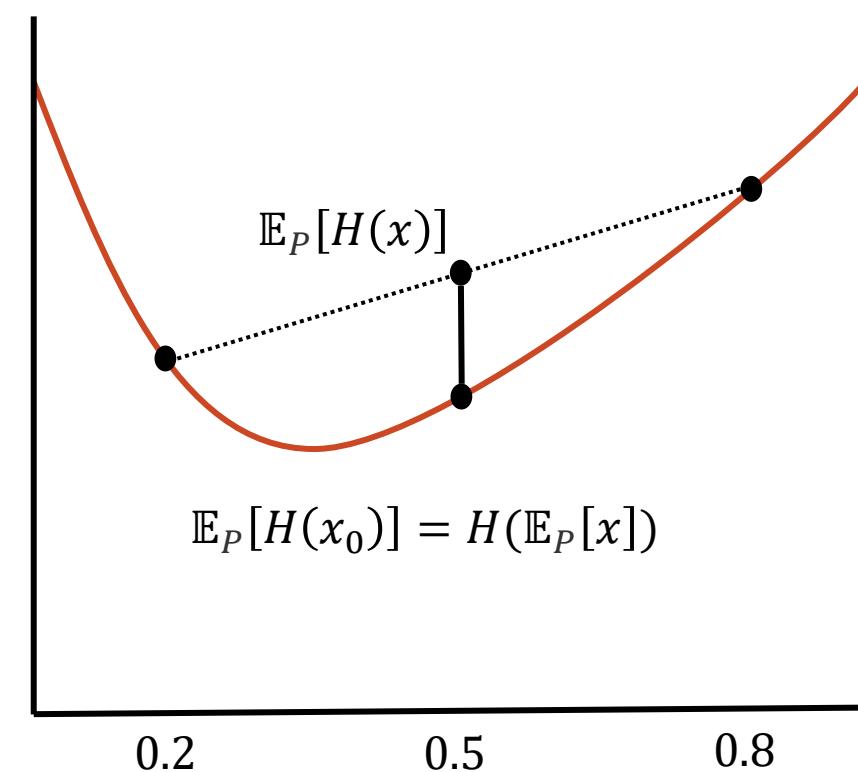
- Example
 - Uniformly distributed $w \sim \{0,1\}$
 - Costly binary signal equals w w.p. $4/5$
 - Prior: $x_0 = 0.5$
 - Posterior:
 - $\Pr[x = 0.8] = \Pr[x = 0.2] = 1/2$
 - Information gain under H
$$\mathbb{E}_P[S(x, w) - S(x_0, w)] = \mathbb{E}_P[H(x) - H(x_0)]$$

Expected posterior reward
 $H(x)$



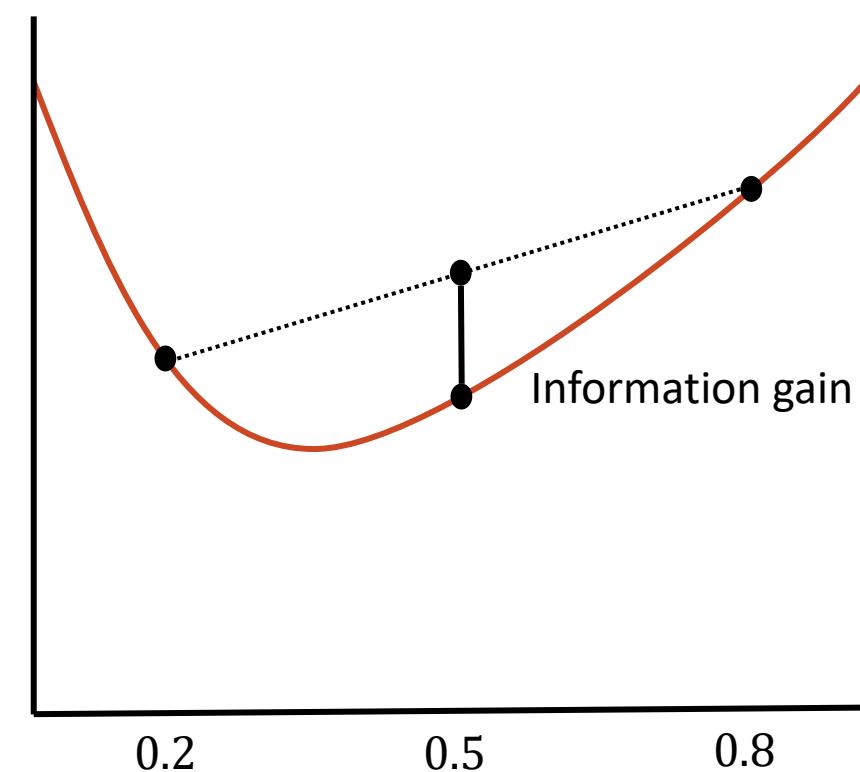
Information gain \leftrightarrow convexity

- Example
 - Uniformly distributed $w \sim \{0,1\}$
 - Costly binary signal equals w w.p. $4/5$
 - Prior: $x_0 = 0.5$
 - Posterior:
 - $\Pr[x = 0.8] = \Pr[x = 0.2] = 1/2$
 - Information gain under H
$$\mathbb{E}_P[S(x, w) - S(x_0, w)] = \mathbb{E}_P[H(x) - H(x_0)]$$



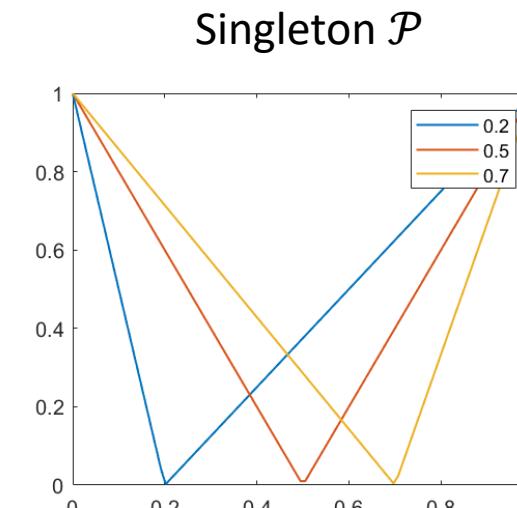
Information gain \leftrightarrow convexity

- Example
 - Uniformly distributed $w \sim \{0,1\}$
 - Costly binary signal equals w w.p. $4/5$
 - Prior: $x_0 = 0.5$
 - Posterior:
 - $\Pr[x = 0.8] = \Pr[x = 0.2] = 1/2$
 - Information gain under H
$$\mathbb{E}_P[S(x, w) - S(x_0, w)] = \mathbb{E}_P[H(x) - H(x_0)]$$

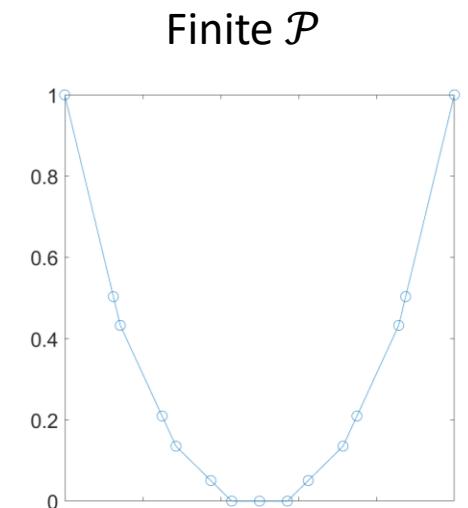


Main results

- Different \mathcal{P} leads different optimal scoring rules
 - Singleton \mathcal{P} : a v-shaped H is optimal ← turning point at prior
 - Finite \mathcal{P} : an efficient algorithm and is piecewise linear is optimal ← turning points at support of \mathcal{P}



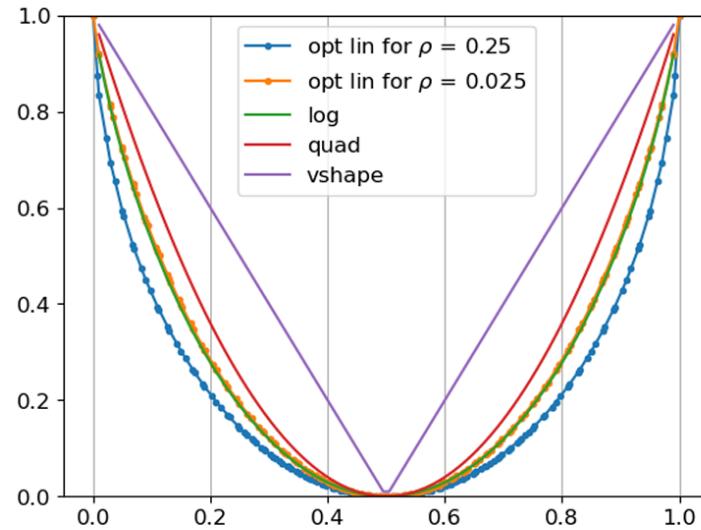
V-shape



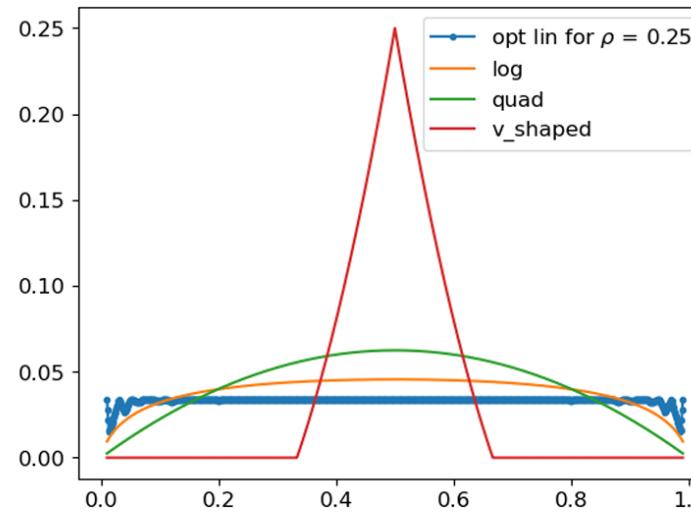
Piecewise linear

Simulations

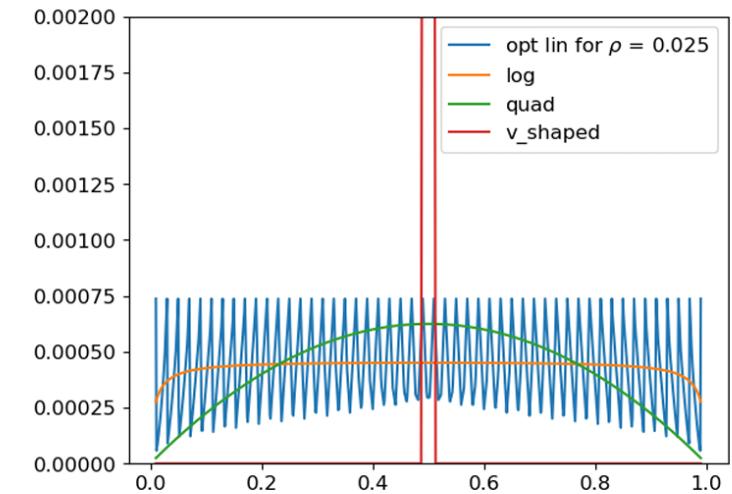
- Log scoring rule perform well under Beta-Bernoulli setting



(a) Associated convex functions



(b) Information gain with $\rho = 0.25$.



(c) Information gain with $\rho = 0.025$.

Simulations

- Log scoring rule perform well under Beta-Bernoulli setting

