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High quality information form crowd

• Peer review at conferences

• Peer grading in classrooms

• Expert forecasting and 
predictions
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Incentivize predictions

• Peer review example

– Binary outcome: 𝑤 ∈ {0,1}

– An agent’s review/prediction: 𝑥 ∈ [0,1]
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𝑆(𝑥, 𝑤)
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Is proper scoring rule enough?

• Peer review

1. Principle announce 𝑆

2. Agent reports 𝑥 ∈ [0,1]

3. Outcome reveals 𝑤 ∈ {0,1}

4. Agent gets 𝑆(𝑥, 𝑤)
𝑥 𝑤

𝑆(𝑥, 𝑤)



Incentivize costly predictions

• Peer review with effort

1. Principle announce 𝑆

2. Agent decides to acquire costly 
information

3. Agent reports 𝑥 ∈ [0,1]

4. Outcome reveals 𝑤 ∈ {0,1}

5. Agent gets 𝑆(𝑥, 𝑤)

Prior 𝑥0

𝑆(𝑥0, 𝑤)

Costly 
posterior 𝑥

𝑆(𝑥, 𝑤)



Incentivize costly predictions

• Peer review with effort

1. Principle announce 𝑆

2. Agent decides to acquire costly 
information

3. Agent reports 𝑥 ∈ [0,1]

4. Outcome reveals 𝑤 ∈ {0,1}

5. Agent gets 𝑆(𝑥, 𝑤)

𝑥0 = 0.5

𝑥 = 0.8

𝑥 = 0.2

w.p. 1/2

w.p. 1/2



Optimization of scoring rule [HLSW20]

• Given an information structure 𝑃 on (𝑤, 𝑥), design bounded 𝑆
so that maximize the expected gain

max
𝑆

Expected gain

s. t. 𝑆 is proper and bounded
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𝑥
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Multiple possible information structure 𝑃

Heterogeneous agents 𝓟 = {𝑷𝟏, 𝑷𝟐…}

𝑥0
𝑥

Agent 1 w/ 𝑃1

𝑦0
𝑦

Agent 2 w/ 𝑃2

𝑧0
𝑧

Agent 3 w/ 𝑃3

𝑤
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Optimal scoring rule with partial knowledge

• Given 𝒫 (a collection of 𝑃), design bounded 𝑆 so that 
maximize the expected gain

max
𝑆

min
𝑃∈𝒫

𝔼𝑃[𝑆 𝑥, 𝑤 − 𝑆 𝑥0, 𝑤 ]

s. t. 𝑆 is proper and bounded
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What are proper scoring rules

• Given a proper scoring rule 𝑆

– Binary outcome: 𝑤 ∈ 0,1 and 
prediction: 𝑥 ∈ 0,1

– 𝑆 𝑥, 𝑥 ≥ 𝑆 𝑥′, 𝑥 for all 𝑥′.
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• Given a proper scoring rule 𝑆

– Binary outcome: 𝑤 ∈ 0,1 and 
prediction: 𝑥 ∈ 0,1
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Main results

• Different 𝒫 leads different optimal scoring rules

– Singleton 𝒫: A V-shaped 𝐻 is optimal.

– Finite 𝒫: An efficient algorithm yields an optimal piecewise linear 𝐻

– “Discretizable” 𝒫: An FPTAS for optimal 𝐻

• Homogeneous experiment

• Beta-Bernoulli
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Information gain ↔ convexity

• Example

– Uniformly distributed 𝑤~{0,1}

– Costly binary signal equals 𝑤 w.p.
4/5

– Prior: 𝑥0 = 0.5

– Posterior: 
• Pr 𝑥 = 0.8 = Pr 𝑥 = 0.2 = 1/2
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Expected prior reward 
𝐻 𝑥0 = 𝑆(𝑥0, 𝑥0)

𝑥0 = 1/2



Information gain ↔ convexity

• Example

– Uniformly distributed 𝑤~{0,1}

– Costly binary signal equals 𝑤 w.p.
4/5

– Prior: 𝑥0 = 0.5

– Posterior: 
• Pr 𝑥 = 0.8 = Pr 𝑥 = 0.2 = 1/2

– Information gain under 𝐻
𝔼𝑃 𝑆 𝑥,𝑤 − 𝑆 𝑥0, 𝑤
= 𝔼𝑃 𝐻 𝑥 − 𝐻 𝑥0
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Main results

• Different 𝒫 leads different 
optimal scoring rules

– Singleton 𝒫: a v-shaped 𝐻 is 
optimal ⟵turning point at prior

– Finite 𝒫: an efficient algorithm and 
is piecewise linear is optimal
⟵turning points at support of 𝒫
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Simulations

• Log scoring rule perform well under Beta-Bernoulli setting
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• Log scoring rule perform well under Beta-Bernoulli setting


