
Learning and Strongly Truthful Multi-Task Peer Prediction

A Variational Approach

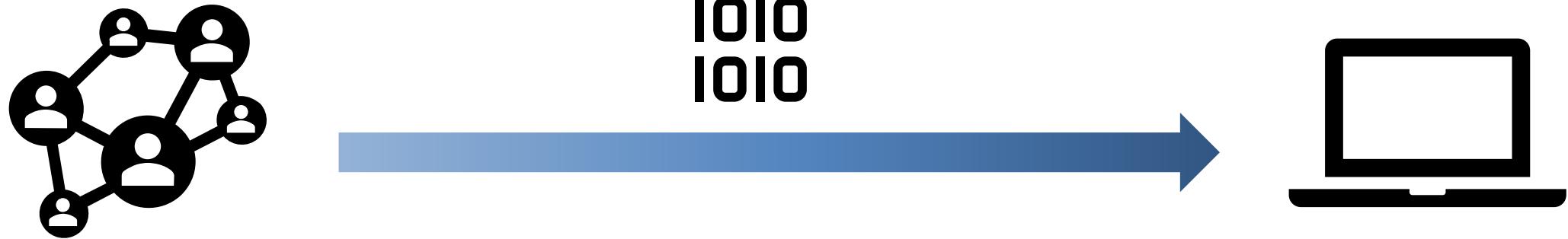
Grant Schoenebeck, University of Michigan
Fang-Yi Yu, Harvard University

Elicit Information from Crowds

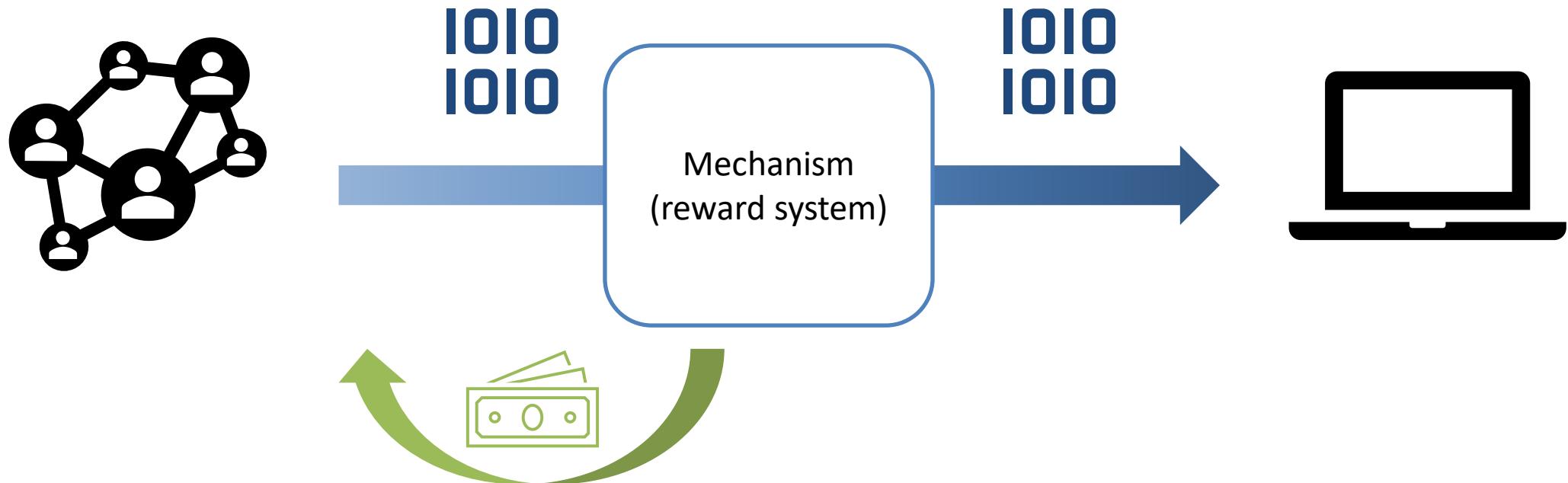
- Subjective
 - Are you happy?
 - Do you like the restaurant?
- Private
 - What is your commute time?

Cannot verify!

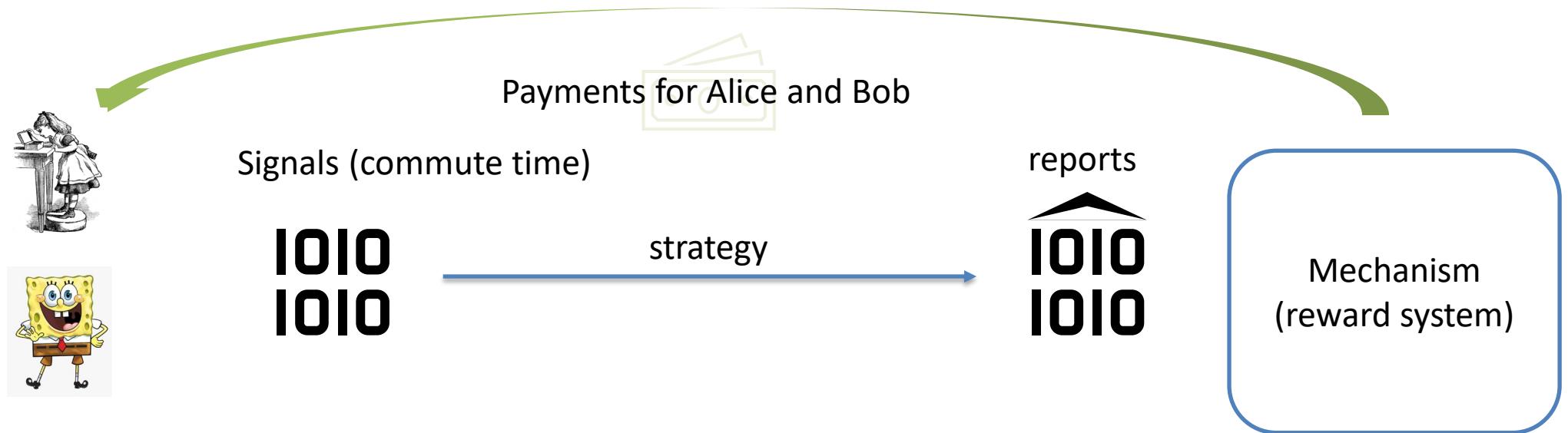
Data from strategic agents



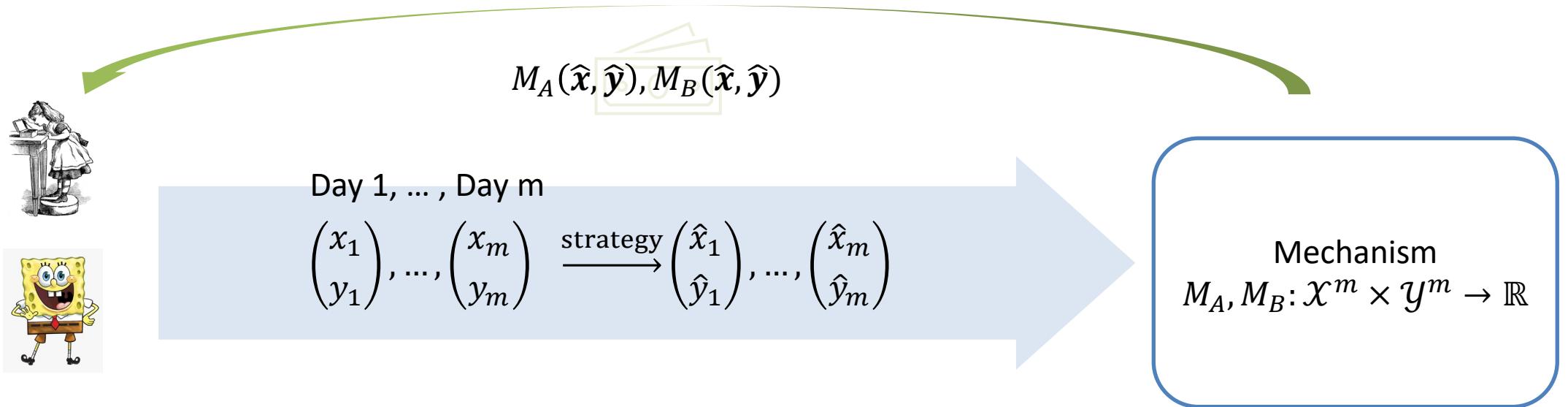
Information elicitation



Setting of information elicitation

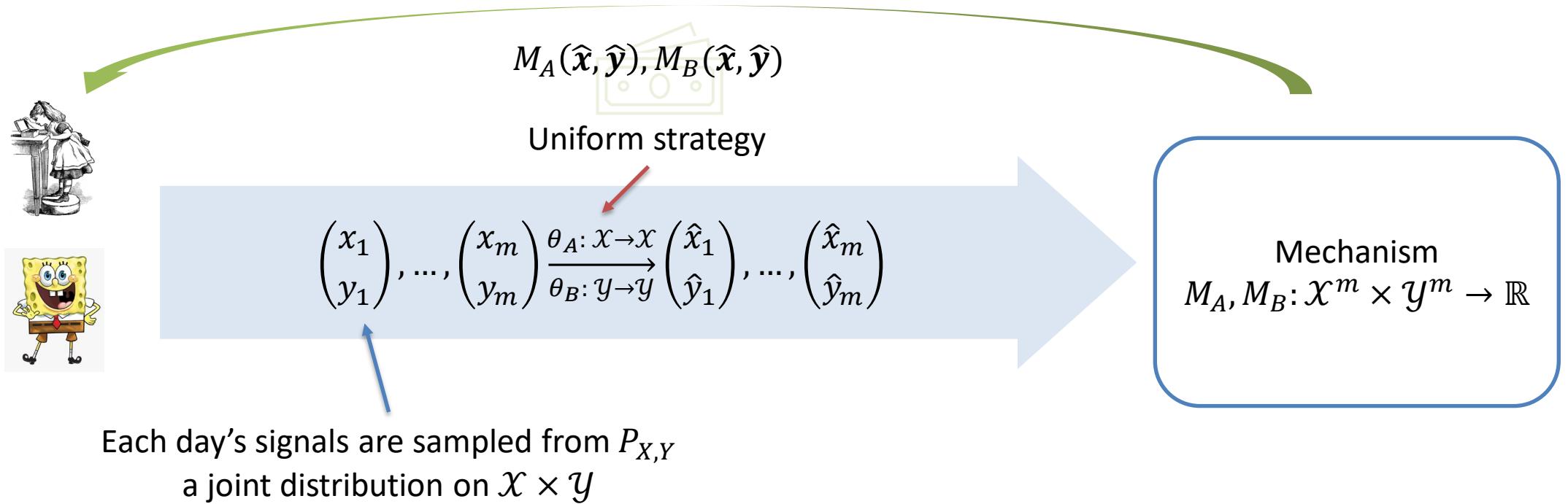


Setting of information elicitation



A mechanism is **truthful** if truth telling maximizes the rewards of the both.

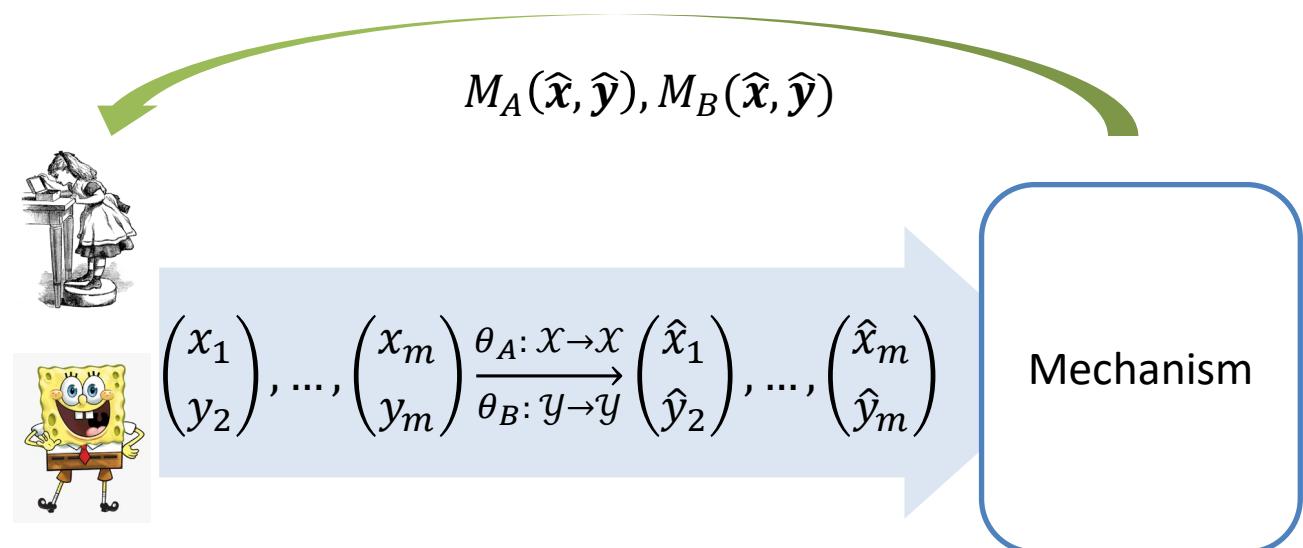
Multi-task information elicitation



A mechanism is (strongly) **truthful** if $\mathbb{E}[M_A(x, y)] > \mathbb{E}[M_A(\hat{x}, \hat{y})]$ and $\mathbb{E}[M_B(x, y)] > \mathbb{E}[M_B(\hat{x}, \hat{y})]$ for any nontruthful θ_A or θ_B

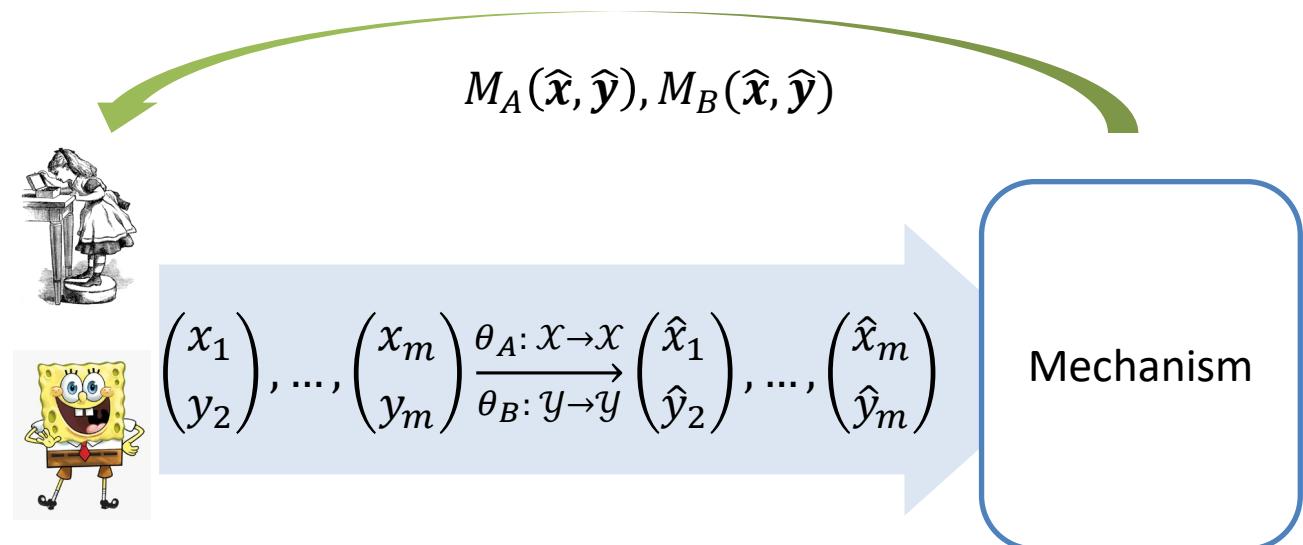
Goal of information elicitation

- Truthful > any nontruthful
 $\mathbb{E}[M_A(x, y)] > \mathbb{E}[M_A(\hat{x}, \hat{y})]$ and
 $\mathbb{E}[M_B(x, y)] > \mathbb{E}[M_B(\hat{x}, \hat{y})]$



Goal of information elicitation

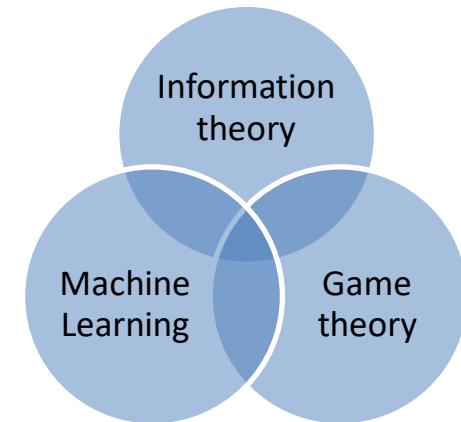
- Truthful > any nontruthful
- No verification
 - Private: What is your commute time?
 - Subjective: Do you like the restaurant?
- No knowledge about P_{XY}



Contributions

Propose pairing mechanisms

1. Elicit truthful reports from **strategic agents** even for general signal spaces, \mathcal{X} and \mathcal{Y}
2. Generalize previous mechanisms
3. Connect information elicitation mechanism design to learning



Outline

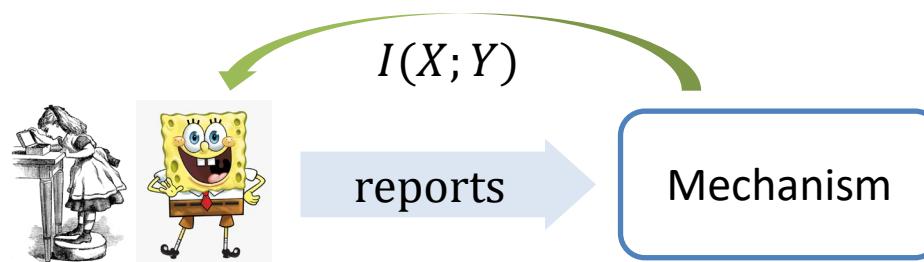
- Model and our contributions
- From mechanism to learning
 - **Three observations**
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- Connection to previous mechanisms

Three observations

1. Correlated signals P_{XY}
2. Strategy = data processing

$$Y \xrightarrow{P_{X|Y}} X \xrightarrow{\theta_A} \hat{X}$$

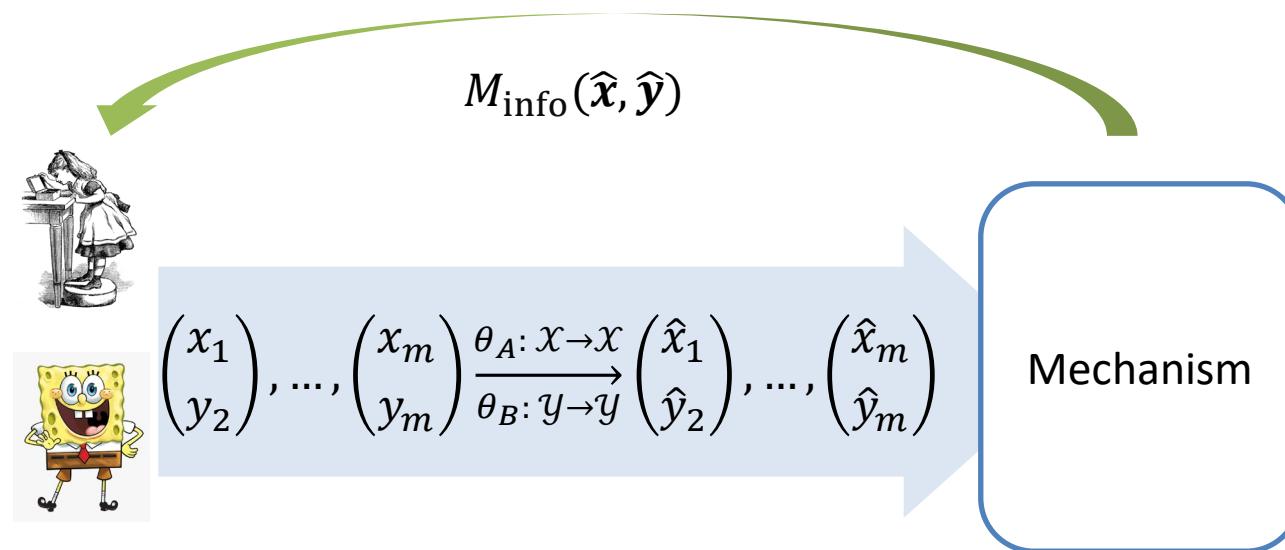
3. Data processing ineq. for mutual information $I(X; Y) = \mathbb{E}_{P_{XY}} \left[\ln \frac{P_{XY}}{P_X P_Y} \right]$
$$I(Y; X) \geq I(Y; \hat{X})$$



Mechanism to learning

- Approx. mutual information is approx. truthful

$$M_{\text{info}}(\mathbf{x}, \mathbf{y}) \approx I(X; Y) \geq I(\hat{\mathbf{X}}; \hat{\mathbf{Y}}) \approx M_{\text{info}}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$$



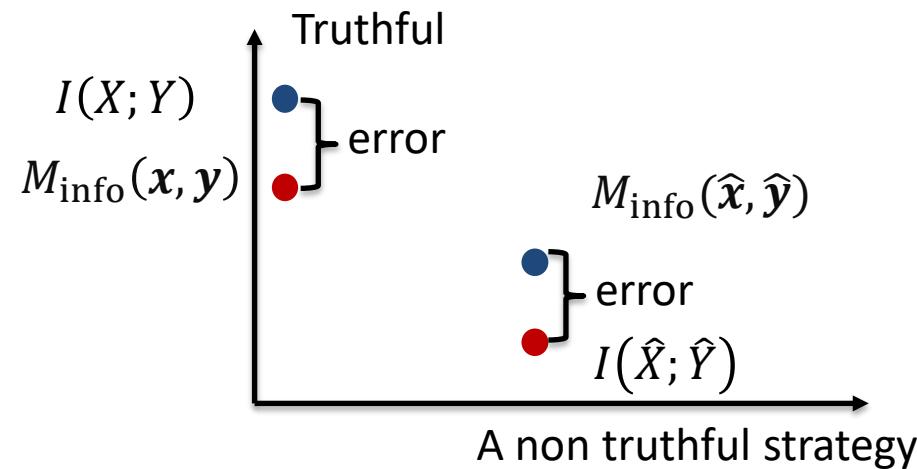
Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - **Challenges for learning from strategic agents**
 - Pairing mechanisms
- Connection to previous mechanisms

Challenge for learning from strategic agents

- Approx. truthful

$$M_{\text{info}}(\mathbf{x}, \mathbf{y}) \approx I(X; Y) \geq I(\hat{X}; \hat{Y}) \approx M_{\text{info}}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$$

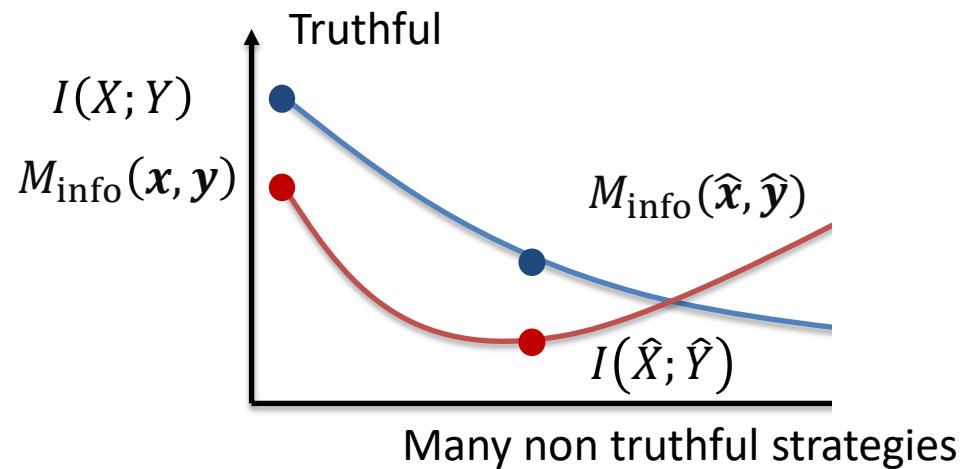


Challenge for learning from strategic agents

- Approx. truthful

$$M_{\text{info}}(\mathbf{x}, \mathbf{y}) \approx I(X; Y) \geq I(\hat{X}; \hat{Y}) \approx M_{\text{info}}(\hat{\mathbf{x}}, \hat{\mathbf{y}})$$

requires **uniform** estimate error bound for all strategies



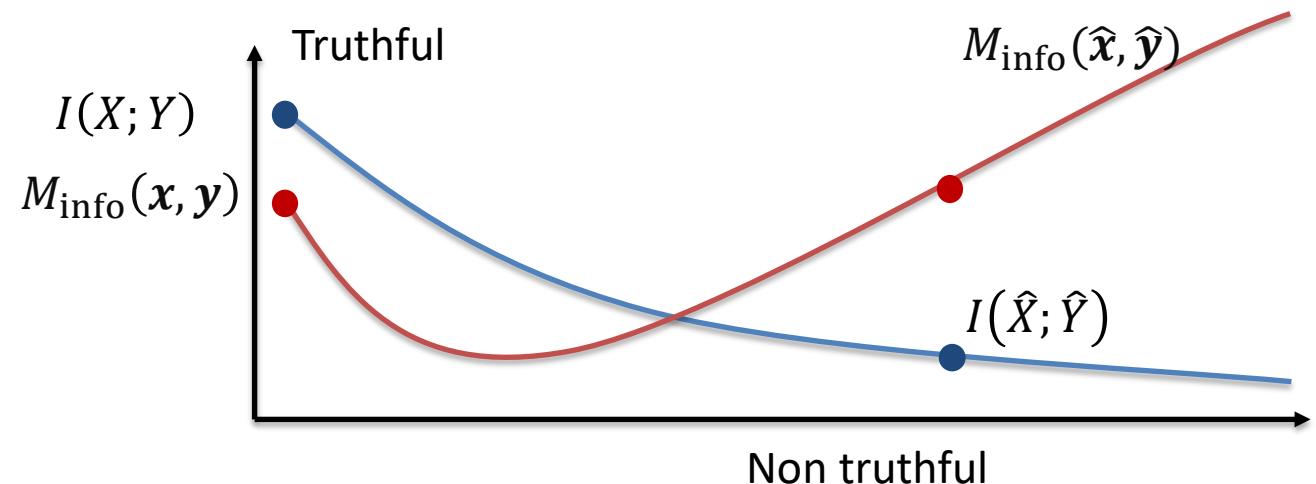
Challenge for learning from strategic agents

- Approx. truthful

$$M_{\text{info}}(x, y) \approx I(X; Y) \geq I(\hat{X}; \hat{Y}) \approx M_{\text{info}}(\hat{x}, \hat{y})$$

requires **uniform** estimate error bound for all strategies

- Strategic agents
- Large signal space $\mathcal{X} \times \mathcal{Y}$



Outline

- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - **Pairing mechanisms**
- Connection to previous mechanisms

Pairing Mechanism

Suppose we have a scoring function $K: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ mapping a pair of reports to a score. The pairing mechanism M_{pair}^K

1. Samples a pair on a common task, (x_b, y_b) ,
2. Samples a pair on distinct tasks, (x_p, y_q) , and
3. Pays Alice and Bob

$$K(x_b, y_b) - \exp K(x_p, y_q) + 1$$

x_1	x_2	...	x_b	...	x_p	...	x_q	x_m
y_1	y_2	...	y_b	...	y_p	...	y_q	y_m

Tasks for payment

Connection of mutual information

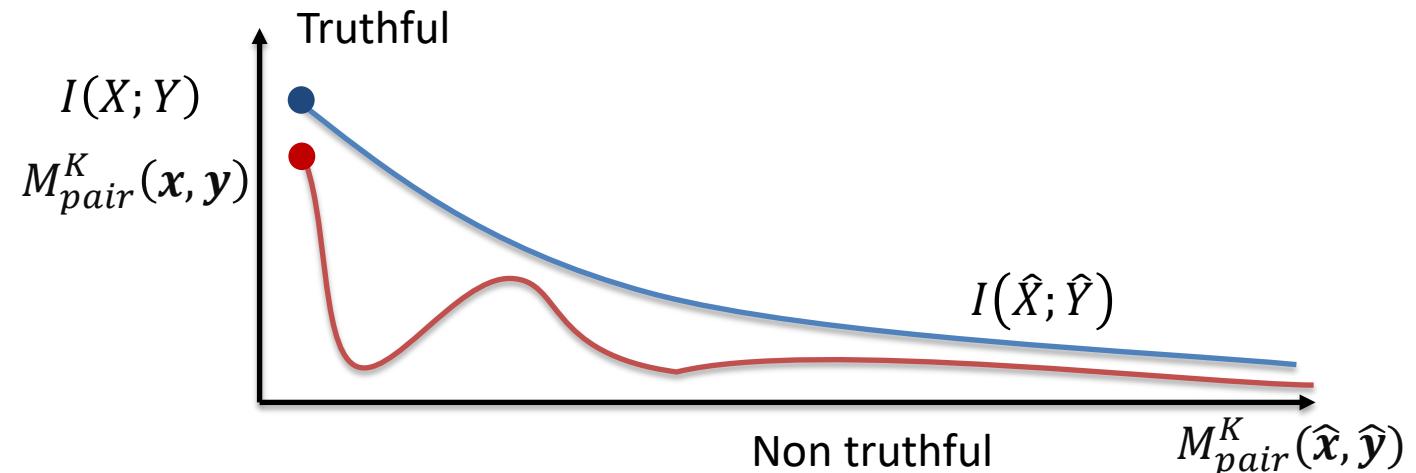
- Given K , the expected payment is $\mathbb{E}[K(x_b, y_b) - \exp K(x_p, y_q)] + 1$
 $= \mathbb{E}_{P_{XY}}[K(X, Y)] - \mathbb{E}_{P_X P_Y}[\exp(K(X, Y))] + 1$
- Variational presentation of mutual information $I(X; Y) = \mathbb{E}_{P_{XY}}\left[-\ln \frac{P_X P_Y}{P_{XY}}\right]$
 $= \sup_{L: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}} \mathbb{E}_{P_{XY}}[L(X, Y)] - \mathbb{E}_{P_X P_Y}[\exp(L(X, Y))] + 1$

and maximum happens at $L = K^* = \ln\left(\frac{P_{XY}}{P_X P_Y}\right)$

Agent's Manipulation

$$M_{pair}^{\hat{K}}(\hat{x}, \hat{y}) = \mathbb{E} \left[\hat{K}(\hat{x}_b, \hat{y}_b) - \exp \left(\hat{K}(\hat{x}_p, \hat{y}_q) \right) \right] + 1 \leq I(\hat{X}; \hat{Y}) \leq I(X; Y)$$

- Maximum happens only if both
 - $\hat{K} = K^*$
 - truthful report
- Approx. truthful only requires error bound at the truthful strategy



Pairing Mechanism

Given a scoring function $K: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, the pairing mechanism M_{pair}^K

1. Sample a pair on a common task, (x_b, y_b) .
2. Sample a pair on distinct tasks, (x_p, y_q) .
3. Pay Alice and Bob

$$K(x_b, y_b) - \exp K(x_p, y_q) + 1$$

x_1	x_2	...	x_b	...	x_p	...	x_q	x_m
y_1	y_2	...	y_b	...	y_p	...	y_q	y_m

Tasks for payment

Pairing Mechanism (cont.)

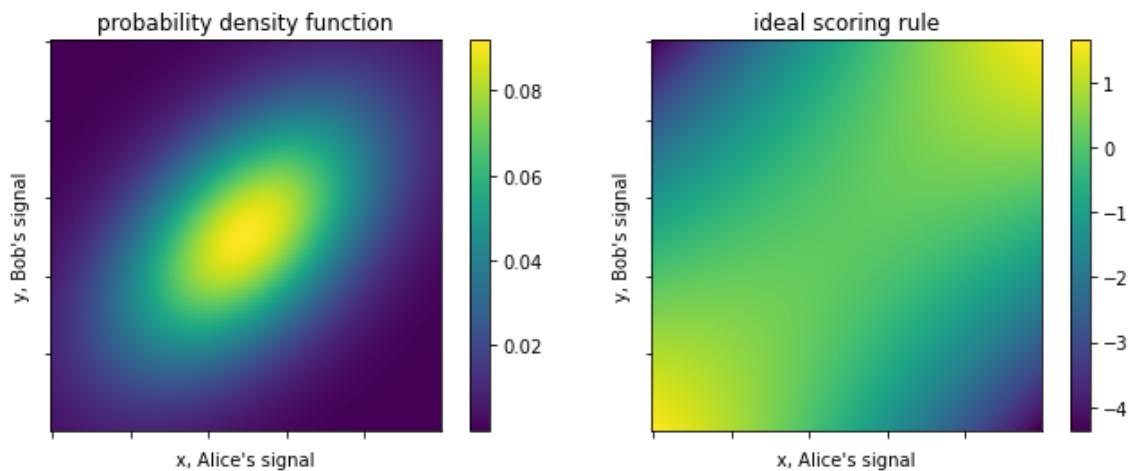
1. Estimate ideal scoring rule K^* from tasks for learning.
2. Sample a pair on a common task, (x_b, y_b) .
3. Sample a pair on distinct tasks, (x_p, y_q) .
4. Pay Alice and Bob

$$K(\textcolor{violet}{x}_b, y_b) - \exp K(\textcolor{violet}{x}_p, y_{\textcolor{violet}{q}}) + 1$$

Pairing mechanism (conti.): $K^* = \log \frac{P_{XY}}{P_X P_Y}$

- Plug-in estimator
- Optimization $K^* = \operatorname{argmax}_K \left\{ \mathbb{E}_{P_{X,Y}}[K(x, y)] - \mathbb{E}_{P_X P_Y}[\exp K(x, y)] \right\}$
 - Empirical risk minimization
 - Standard optimization
 - Deep neural network...

$$\rho_{XY} = 1/2$$



Variational method for strategic learning

Challenges of strategic learning

$$\begin{aligned} M_{\text{info}}(\mathbf{x}, \mathbf{y}) &\approx I(X; Y) \geq I(\hat{X}; \hat{Y}) \\ &\approx M_{\text{info}}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \end{aligned}$$

requires uniform error bound

1. Strategy spaces are large
2. Agents are strategic

Variational representation

$$I(X; Y) = \sup_L \mathbb{E}_{P_{XY}}[L] - \mathbb{E}_{P_X P_Y}[e^L] + 1$$

becomes learning ideal scoring rules K^*

1. Sufficient to bound the error at the truthful strategy
2. Agents want to help us to learn.

Outline

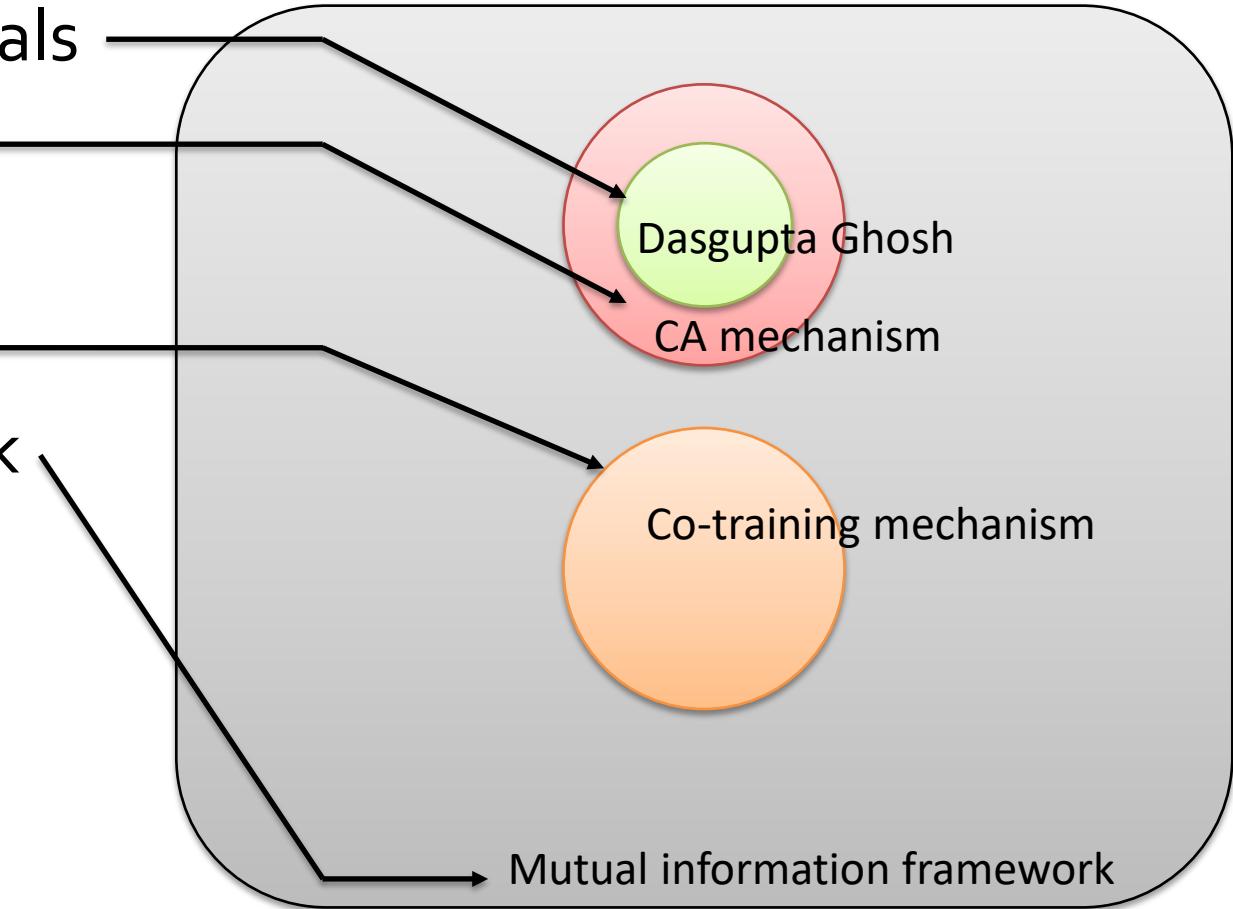
- Model and our contributions
- From mechanism to learning
 - Three observations
 - Challenges for learning from strategic agents
 - Pairing mechanisms
- **Connection to previous mechanisms**

Related Works in Multi-task Peer Prediction

- Mutual information framework
 - Binary positive correlated signals [Dasgupta, Ghosh 2013]
 - Correlated agreement mechanism [Shnyder et al 2016; Agarwal et al 2017]
 - Co-training mechanism [Kong, Schoenebeck 2018]
 - Mutual information framework [Kong, Schoenebeck 2019]
- Others
 - Determinant mechanism [Kong 2020]
 - Surrogate scoring rule mechanism [Chen et al 2020]

Mutual information framework

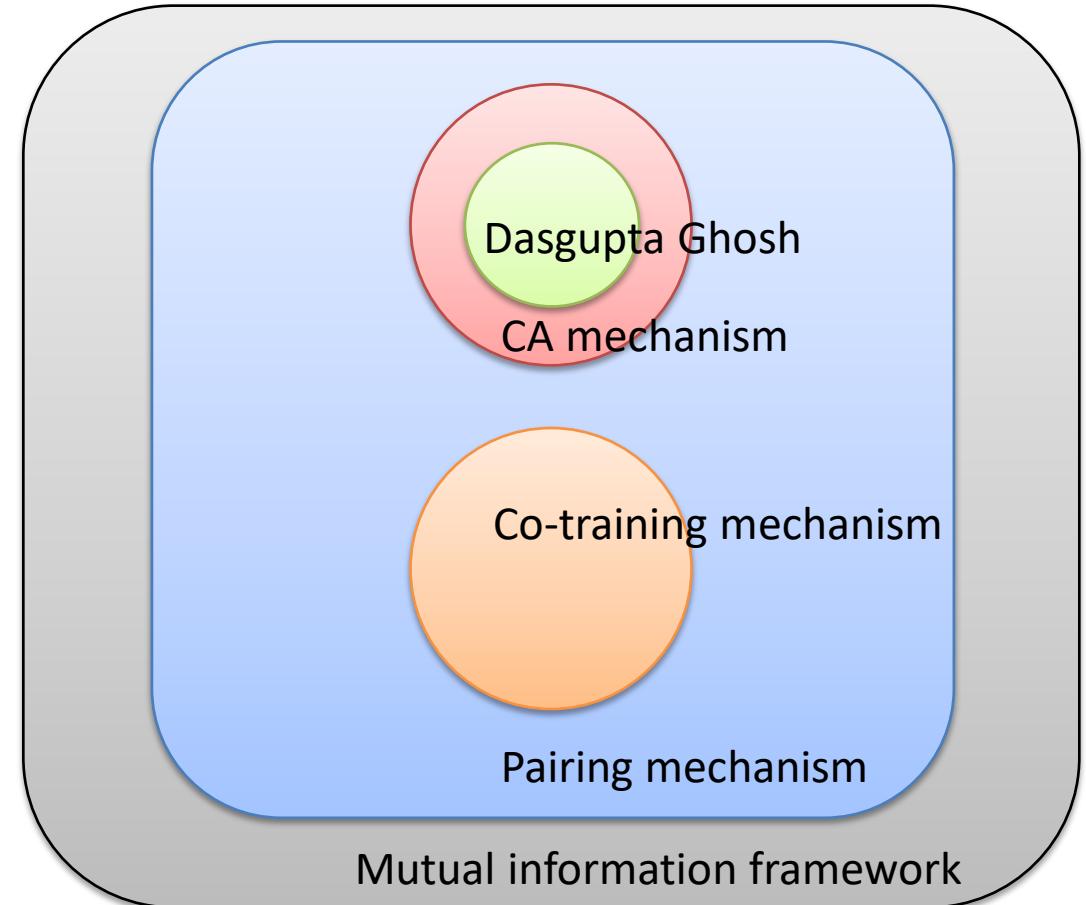
- Binary positive correlated signals
- Correlated agreement mechanism
- Co-training mechanism
- Mutual information framework



Contributions

If $P_{X,Y}$ is stochastic relevant, our **pairing mechanism** can elicit agents to report truthfully.

- General signal spaces, \mathcal{X} and \mathcal{Y}
- Mechanism design to learning reduction



Special cases $\Phi(a) = |a - 1|$

- Total variational distance

- $\Phi(a) = |a - 1|$
 - $\Phi^*(b) = b$ if $|b| \leq 1$; ∞ , o.w.
 - $\Phi'(a) = \text{sign}(a - 1)$

- Pairing mechanism

- Payment

$$K(\hat{x}_b, \hat{y}_b) - K(\hat{x}_p, \hat{y}_q)$$

- Φ -ideal scoring function

$$\Phi' \left(\frac{dP_{XY}}{dP_X P_Y} \right) = \text{sign}(P_{XY} > P_X P_Y)$$

Special cases $\Phi(a) = |a - 1|$

CA mechanism

- Total variational distance
 - $\Phi(a) = |a - 1|$
 - $\Phi^*(b) = b$ if $|b| \leq 1$; ∞ , o.w.
 - $\Phi'(a) = \text{sign}(a - 1)$
- Pairing mechanism
 - Payment
$$K(\hat{x}_b, \hat{y}_b) - K(\hat{x}_p, \hat{y}_q)$$
 - Φ -ideal scoring function
$$\Phi' \left(\frac{dP_{XY}}{dP_X P_Y} \right) = \text{sign}(P_{XY} > P_X P_Y)$$

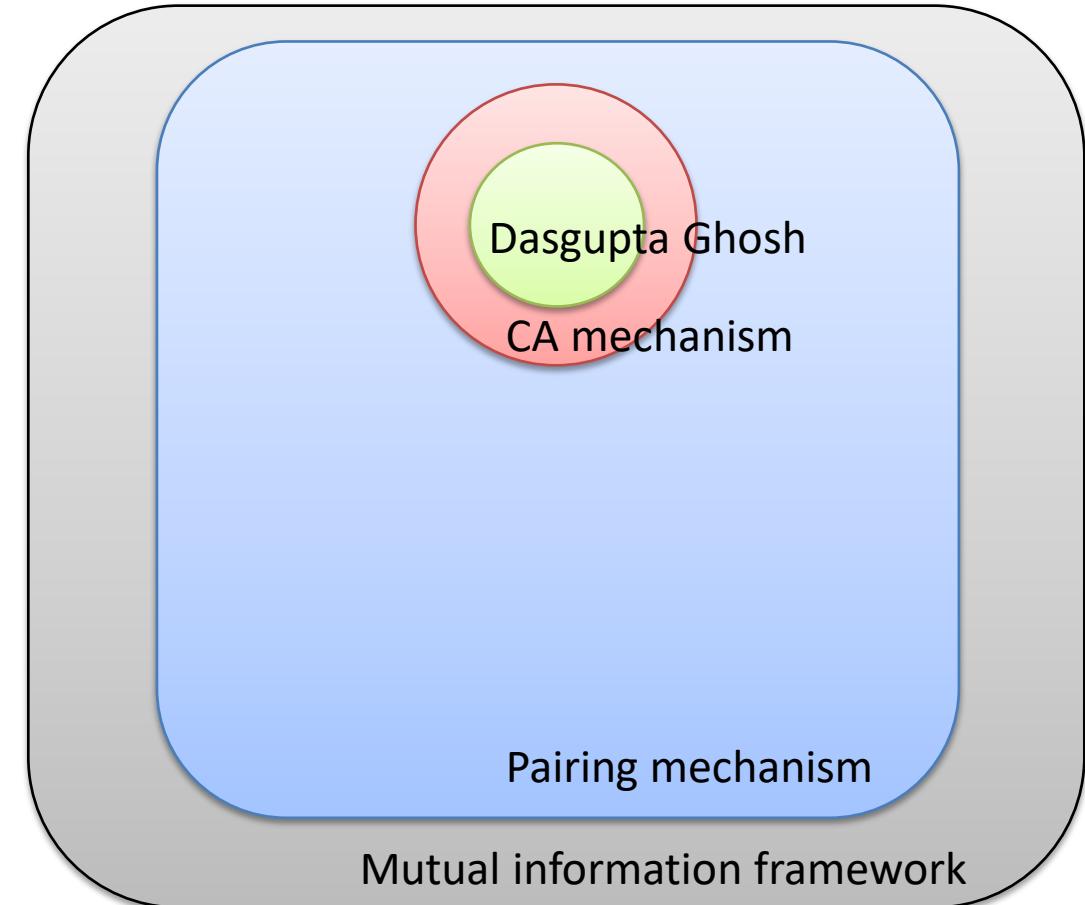
Dasgupta Ghosh

- Binary and positive correlated signals.
For all $z = 0, 1$
$$P_{XY}(z, z) > P_X(z)P_Y(z)$$
- Pairing mechanism
 - Payment
$$2(\mathbf{1}[\hat{x}_b = \hat{y}_b] - \mathbf{1}[\hat{x}_p = \hat{y}_q])$$
 - $K^*(x, y) = \text{sign}(P_{XY}(x, y) > P_X(x)P_Y(y)) = 2 \cdot \mathbf{1}[x = y] - 1$

Comparisons of Peer Prediction mechanisms

- Pairing mechanism pays an approximation of mutual information
- CA mechanism is the pairing mechanism with

$$\Phi(a) = |a - 1|$$



Comparisons of Peer Prediction mechanisms

- Pairing mechanism pays an approximation of mutual information
- CA mechanism is the pairing mechanism with

$$\Phi(a) = |a - 1|$$

- Co-training mechanism

$$\frac{dP_{XY}}{dP_X P_Y} = \sum_w \frac{P(W|X)P(W|Y)}{P(W)} \\ K^* = \Phi' \left(\frac{dP_{XY}}{dP_X P_Y} \right)$$

