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Elicit Information from Crowds

* Subjective
— Are you happy?
— Do you like the restaurant?
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* Private
— What is your commute time?
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Data from strategic agents
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Information elicitation
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Setting of information elicitation

Payments for Alice andh

Signals (commute time) reports
: 4 )
IO I 0 strategy > IO I 0 Mechanism
IO I 0 IO | 0 (reward system)
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Setting of information elicitation

Day 1, ..., Day m

<x1> <xm> strategy <f1> <fm>
) nuny —_— ~ ) ) A~
Y1 Ym V1 Ym

A mechanism is truthful if truth telling maximizes the rewards of the both.
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Multi-task information elicitation

MA(Q; j\,)) MB(QJ j\,) \

Uniform strategy ( \
<x1>, . <xm) 041 X>X <JE1>, " <3Em) Mechanism
Y1 Ym/) 98:Y-Y \ Y1 Ym My, Mg: X™ x Y™ - R

Each day’s signals are sampled from Py y
a joint distribution on X’ X Y

A mechanism is (strongly) truthful if E[M4(x, y)| > E[M4(X,y)] and E[Mg(x,y)] > E[Mg(X,y)]
for any nontruthful 84 or 05




Goal of information elicitation

* Truthful > any nontruthful
E[Ma(x,y)] > E[M4(X,¥)] and

E[Mg(x,y)] > E[Mp(X,y)] |
MA(’f,?),m
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Goal of information elicitation

* Truthful > any nontruthful
* No verification

— Private: What is your commute M, 9) m
t|me7 AX,Y), B(x;y)
5%

— Subijective: Do you like the 4 )

restaurant?

sk T e Mechanism
* No knowledge about Pyy =
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Contributions

Propose pairing mechanisms

1.

Elicit truthful reports from strategic agents even for general
signal spaces, X and Y

. Generalize previous mechanisms

Connect information elicitation mechanism design to
learning

Information
theory

A

Machine Game
Learning theory
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Outline

* Model and our contributions

* From mechanism to learning
— Three observations
— Challenges for learning from strategic agents
— Pairing mechanisms

* Connection to previous mechanisms
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Three observations

1. Correlated signals Pyy

2. Strategy = data processing
Pxiy 64 A

Y— XX

PXY]

3. Data processing ineq. for mutual information I(X;Y) = Ep [ln
PxPy

I(Y; X) = I(Y; X)

I(X; YN

reports [ Mechanism ]
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Mechanism to learning

* Approx. mutual information is approx. truthful
Minfo(x:y) ~[(X;Y) = I(X; Y) ~ Minfo(/x\:y)

Minfo (/x\r 5\’)\
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Outline

* Model and our contributions

* From mechanism to learning
— Three observations
— Challenges for learning from strategic agents
— Pairing mechanisms

* Connection to previous mechanisms
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Challenge for learning from strategic agents

* Approx. truthful
Mingo (6, ¥) = I(X;Y) = 1(X; V) = Mipso (X, 9)

+ Truthful

I(X;Y) |e
]-error
L

Minfo (x' y) Minfo (/x\' y)

o
error

I()?;?)

A non truthful strategy
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Challenge for learning from strategic agents

* Approx. truthful
Minfo(x:y) ~[(X;Y) = I(X; Y) ~ Minfo(/x\:y)
requires uniform estimate error bound for all strategies

+ Truthful

1(X;Y)
(X;7)

I

Many non truthful strategies
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Challenge for learning from strategic agents

* Approx. truthful
Minfo(x:J’) ~ I(X; Y) = I(X; Y) ~ Minfo(/x\:y)
requires uniform estimate error bound for all strategies

— Strategic agents
— Large signal space X X Y

s+ Truthful
[(X;Y)

Minfo (xl J’)

Non truthful
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Outline

* Model and our contributions

* From mechanism to learning
— Three observations
— Challenges for learning from strategic agents
— Pairing mechanisms

* Connection to previous mechanisms

18



Pairing Mechanism

Suppose we have a scoring function K: X’ X Y — R mapping a pair of reports to a
score. The pairing mechanism MX ..

p
1. Samples a pair on a common task, ( ),
2. Samples a pair on distinct tasks, ( ), and

3. PaysAlice and Bob
K( ) —exp K( )+ 1

xl xz naw xb naw xp naw xq T naw T naw naw naw Ty naw nan naw nan Xm

Vi |V2 | oo (T oo |V | voe [P | ooe | won | ooe [ oo | woe | voe [ oo | wve | woe [ oon | ooe | Ym0

Tasks for payment




Connection of mutual information

* Given K, the expected payment is IE[K( ) —exp K( )] +1
=E, [KXY)]—-E. . |exp(KX, )| +1

* Variational presentation of mutual information I(X;Y) = Ep,, [—ln i i 4

= sup E, [LX,V]-E, . [exp(LX, V)] +1
L: XXY-R

Pxy

and maximum happensat L = K* = In ( Pxy )
PxPy

|
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Agent’s Manipulation

ME®9) = E|R(2y,9p) — exp (R(%,,9,) )| +1 < 1(£:7) < 10%;7)

* Maximum happens only if both
-K=K*
— truthful report

* Approx. truthful only requires error bound at the truthful strategy

I(X;Y)
lefair (x» }’)

+ Truthful

ii>>§::\\;1@m

Non truthful M;Ifair (X, y)
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Pairing Mechanism

Given a scoring function K: X’ x Y — R, the pairing mechanism M},
1. Sample a pair on a common task, ( ).
2. Sample a pair on distinct tasks, ( ).
3. PayAlice and Bob
K( ) —exp K( )+ 1
X1 | X2 | oo | Xp| - [Xp| -0 [Xg Xom
Yi|Y2 |- |Vb]| - :Vp -Yq | Ym

Tasks for payment
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Pairing Mechanism (conti.)

Estimate ideal scoring rule K™ from tasks for learning.
Sample a pair on a common task, (,,, v,) .
Sample a pair on distinct tasks, (i, V).

Pay Alice and Bob
K(Copv) — eXpK(xp;yq) +1

Tasks for payment Tasks for learning
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Pairing mechanism (conti.): K* = log

* Plug-in estimator

Pxy

P

e Optimization K* = argmaxy {IEPX,Y [K(x,y)] — Ep,p, [exp K (x, y)]}

— Empirical risk minimization
— Standard optimization
— Deep neural network...

pxy =1/2

¥, Beb's signal

probability density function

x, Alice's signal

0.08

006

004

0.02

¥, Beb's signal

| | | |
I [ ] -

24



Variational method for strategic learning

Challenges of strategic learning

Mingo(x,9) = 1(X;Y) = 1(X; V)
~ Minfo (f, :/y\)

requires uniform error bound

1.
2.

Strategy spaces are large
Agents are strategic

Variational representation
I(X;Y) = sup Ep,,[L] — Ep,p, le"] +1

becomes learning ideal scoring rules K*

1. Sufficient to bound the error at the
truthful strategy

2. Agents want to help us to learn.
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Outline

* Model and our contributions

* From mechanism to learning
— Three observations
— Challenges for learning from strategic agents
— Pairing mechanisms

* Connection to previous mechanisms
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Related Works in Multi-task Peer Prediction

* Mutual information framework
— Binary positive correlated signals [Dasqgupta, Ghosh 2013]

— Correlated agreement mechanism [Shnyder et al 2016; Agarwal et al
2017]

— Co-training mechanism [Kong, Schoenebeck 2018]
— Mutual information framework [Kong, Schoenebeck 2019]

* Others
— Determinant mechanism [Kong 2020]
— Surrogate scoring rule mechanism [Chen et al 2020]




Mutual information framework

Binary positive correlated signals < \

Correlated agreement
mechanism

Co-training mechanism

Co-training mechanism

k— Mutual information frameword

Mutual information framework \ \




Contributions

If Py yis stochastic relevant, our
pairing mechanism can elicit
agents to report truthfully.

* General signal spaces, X and Y

* Mechanism design to learning
reduction Co-training mechanism

N
n/

\ Pairing mechanis
\ Mutual information frameword




Special cases ®(a) = |a — 1|

* Total variational distance
—d(@a)=|la—1
—®*(b) = bif |b| < 1; o0, 0.W.
— d'(a) = sign(a—1)

* Pairing mechanism
— Payment

K(Zp,9p) — K(2p,9,)
— ®-ideal scoring function

dPxy .
b’ = sign(Pyy > PxPy)




Special cases ®(a) = |a — 1|

CA mechanism

* Total variational distance
— ®(@) = |la—1|
— ®*(b) =bif|b| < 1; 0, 0.w.
— @'(a) =sign(a—1)
* Pairing mechanism
— Payment
K(/x\b;j’\b) _ K(/x\pij'\q)
— ®-ideal scoring function

/ dPXY .
CI) dPXPY — Slgn(PXY > PXpy)

Dasgupta Ghosh

* Binary and positive correlated signals.
Forallz =10,1

Pxy(z,z) > Px(2)Py(2)
* Pairing mechanism
— Payment
2(1[% = ¥pl - 1[551? = yq])
— K*(x,y) = sign(Pyy(x,y) >
Py(xX)Py(y)) =2-1[x =y] - 1




Comparisons of Peer Prediction mechanisms

* Pairing mechanism pays an
approximation of mutual
information

* CA mechanism is the pairing
mechanism with
d(a) = |a—1]

K Pairing mechanisry
K Mutual information frameword




Comparisons of Peer Prediction mechanisms

* Pairing mechanism pays an
approximation of mutual
information

* CA mechanism is the pairing
mechanism with

CI)(a) — |a o 1| Co-training mechanism

* Co-training mechanism |
dPyy ZP(WlX)P(WlY) ~— y

— \ Pairing mechanis
P(W) APy
K*= @' Mutual information framework

dPyPy,
w
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