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Data collection and release

* Examples

— 2020 Census data by U.S. Census Bureau

— Personal data in iOS or Chrome

— Survey

* utility and privacy
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Utility of data release

* Error magnitude
— Mean-squared loss, zero-one loss

* Transparency and interpretability
— Statistical inference

 External invariant constraint 1010 1011
— For census data 1010 ) 1010
* population totals F:::f:\'azf::r’: ‘
* counts of total housing units —
respondents \_ _J analyst

* group quarter and facilities




Utility and differential privacy

e.g, accuracy

e.g., simplicity

Interpretability




Utility and differential privacy
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Induced subspace
linear invariants differential privacy
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* Setting and challenges

— Linear invariants

— Differential privacy and induced subspace differential privacy (ISDP)
* Two approaches for DP to ISDP

— Projection

— Extension
* Discussion

— Optimality

— Statistical Considerations and Implementation
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Invariants and differential privacy

* Setting
— histogram x € N*, 010 ol
— a counting query A: N* — N¢, lolo| ~|l0I0

— random mechanism M: N* — N¢
 ¢-DP: for all adjacent histograms x and x’ and outcome y
PriM(x) = y] < e“Pr[M(x’) = y]
e Linear invariant with a linear function C: N¢ —» N%
CM(x) = CA(x),Vx € N*




DP and invariants are incompatible.

* Let the set of database be N*, A be the histogram, and C be
the sum of the first two coordinate

* Two adjacent databases x = (1,2,3,4) and x" = (2,2,3,4)
* If M isinvariant with C, then
Pr[CM(x) = 3] = 1butPr[CM(x’) =3]=0

M cannot be differentially private




""Post-processing” on DP for invariants

* A common method to impose invariants is via “post-
processing” using optimization/distance minimization, e.qg.
Census TopDown (Abowd et al., 2019).

* Issues
— Not differentially private anymore
— Systematic bias and obscurity




Systematic bias of * "post-processing”

lllinois: 102 counties, total population 12,830,632 (invariant)
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Induced subspace differential privacy

Relax differential privacy for linear invariant

 Given M:N* — N¢ and a linear function C: N4 — N9
M(x) = My(x) + M (x)
where M (x) € row(C)and M, (x) € null (C) = N
— Linear invariant C implies CM;(x) = CM(x) = CA(x) is fixed.
— Subspace DP asks M, (x) = IIyM (x) is differentially private




Induced subspace differential privacy

Induced subspace differential privacy

Given¢,0 > 0,a query A: X" — R" and a linear equality invariant C : R" — R
with null space N := {v € R" : Cv = 0}, a mechanism M : X* — R" is
(€, 0)-induced subspace differentially private for query A and an invariant C if

1. Mis N-subspace (e, &)-differentially private, i.e.
PriNyM(x) € S] < e PrNyM(x') €S| +6

forall x ~ x"and S C V, and

2. M satisfies the linear equality invariant C, i.e.

Pr[CM(x) = CA(x)] = 1.
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* Two approaches for DP to ISDP
— Projection
— Extension




Two approaches for DP to ISDP

Projection framework

* Converting an existing DP mechanism
M to ISDP
Mx):= A(x) + Iy(M(x) — A(x))

* Project the noise into null space

* Projected Gaussian
A(x) + Iye
the variance of e is of order A, (A)

Extension framework

Choose a DP mechanism M for query
yA(x)

M(x) = HzA(x) + M(x)
Augmenting a smaller private query
invariant-compatibly

Extended Gaussian
A(x) + Qye

— @y is arotation matrix of N
— the variance of e is of order A, (QnA)
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* Discussion
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— Statistical Considerations and Implementation




Discussion

* Optimality

- O pti m a | D P fo r q U e ry HNA = O pti m a | lllinois: 102 counties, total population 12,830,632 (invariant)
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ISDP for A and invariant C °

— Optimal ISDP from the correlated |-
Gaussian mechanism (Nikolov et al 13)
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Future directions

* General invariants
— Inequality
— Discrete output space

magnitude

* Trade off between utility and privacy

Interpretability
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