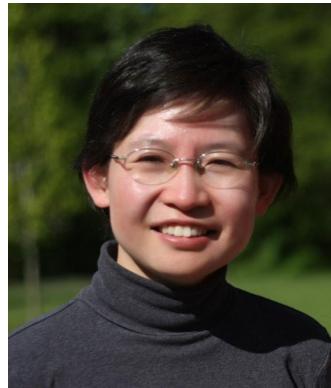
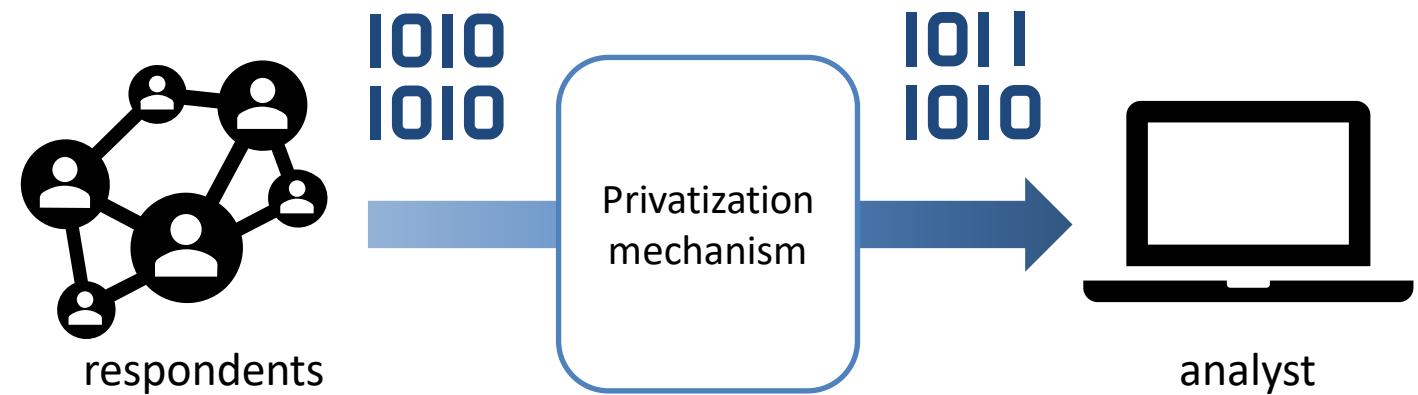

Subspace Differential Privacy



Jie Gao, Ruobin Gong, Fang-Yi Yu

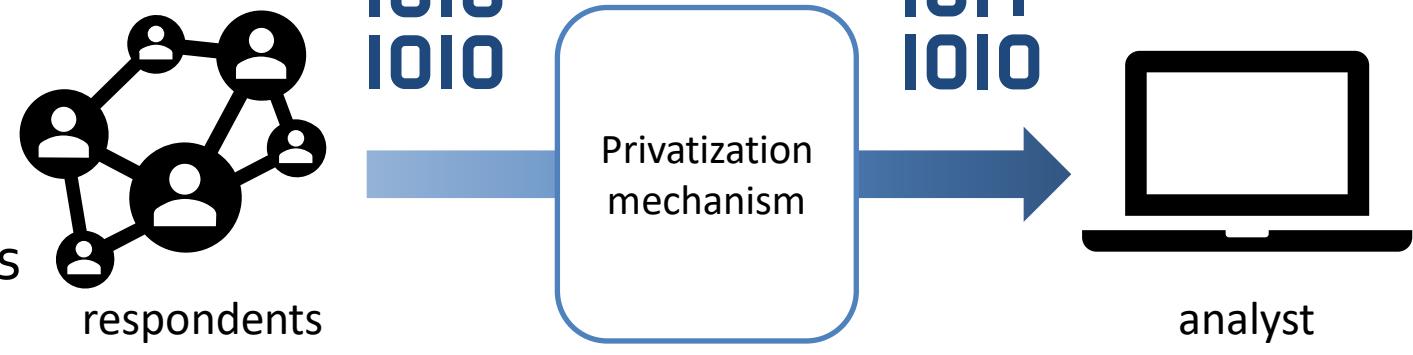
Data collection and release

- Examples
 - 2020 Census data by U.S. Census Bureau
 - Personal data in iOS or Chrome
 - Survey
- utility and privacy

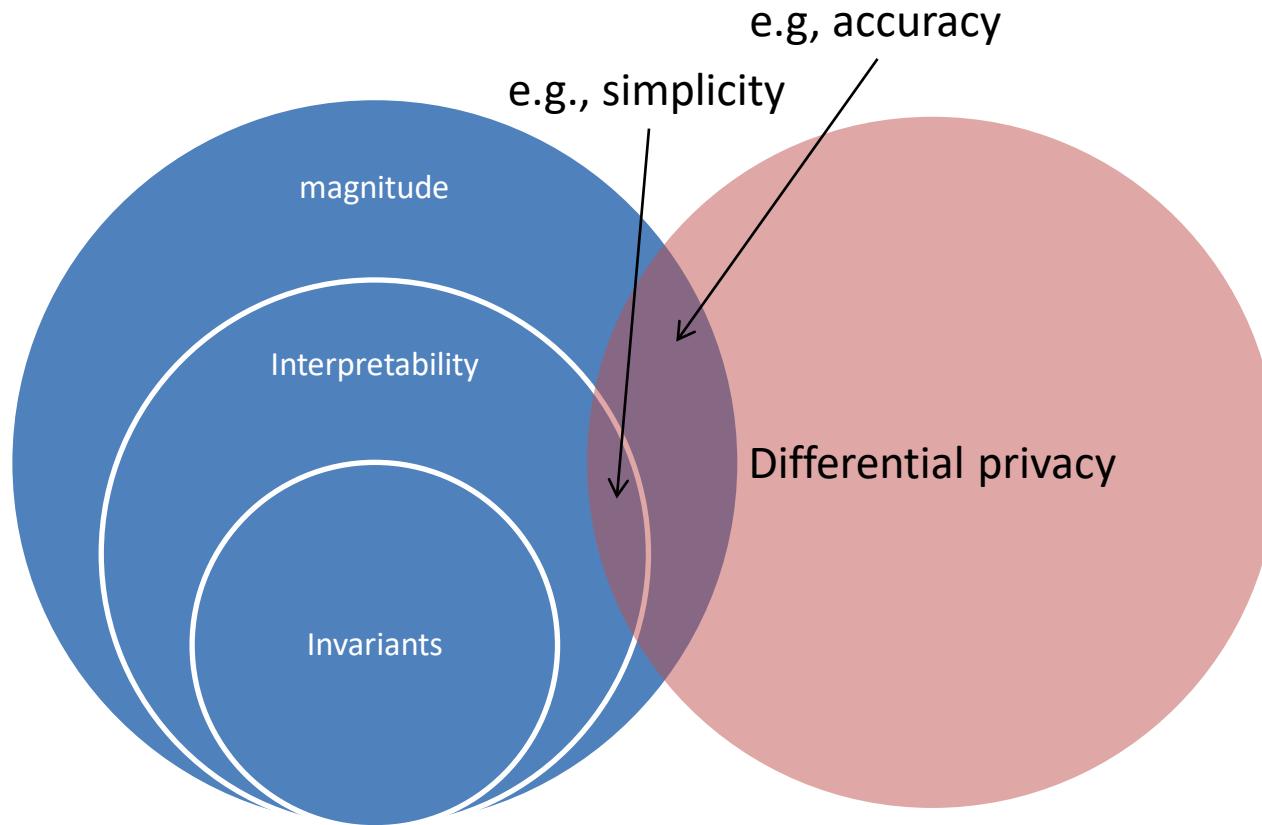


Utility of data release

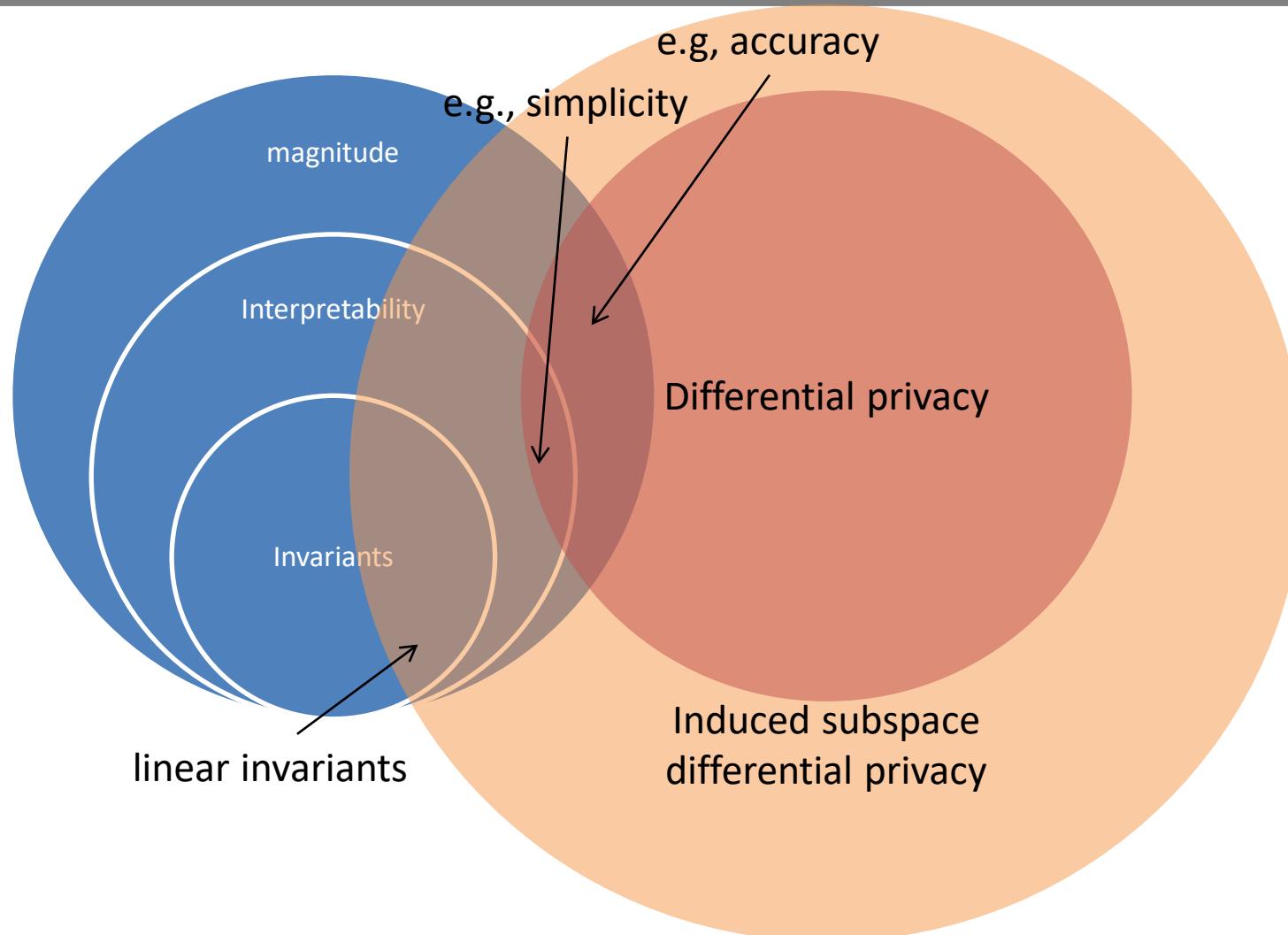
- Error magnitude
 - Mean-squared loss, zero-one loss
- Transparency and interpretability
 - Statistical inference
- External invariant constraint
 - For census data
 - population totals
 - counts of total housing units
 - group quarter and facilities



Utility and differential privacy



Utility and differential privacy



Outline

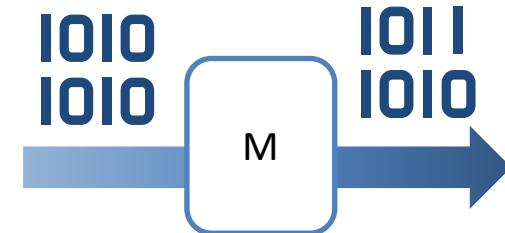
- Setting and challenges
 - Linear invariants
 - Differential privacy and induced subspace differential privacy (ISDP)
- Two approaches for DP to ISDP
 - Projection
 - Extension
- Discussion
 - Optimality
 - Statistical Considerations and Implementation

Outline

- **Setting and challenges**
 - Linear invariants
 - Differential privacy and induced subspace differential privacy (ISDP)
- Two approaches for DP to ISDP
 - Projection
 - Extension
- Discussion
 - Optimality
 - Statistical Considerations and Implementation

Invariants and differential privacy

- Setting
 - histogram $x \in \mathbb{N}^{\mathcal{X}}$,
 - a counting query $A: \mathbb{N}^{\mathcal{X}} \rightarrow \mathbb{N}^d$,
 - random mechanism $M: \mathbb{N}^{\mathcal{X}} \rightarrow \mathbb{N}^d$
- ϵ -DP: for all adjacent histograms x and x' and outcome y
$$\Pr[M(x) = y] \leq e^\epsilon \Pr[M(x') = y]$$
- Linear invariant with a linear function $C: \mathbb{N}^d \rightarrow \mathbb{N}^{d_c}$
$$CM(x) = CA(x), \forall x \in \mathbb{N}^{\mathcal{X}}$$



DP and invariants are incompatible.

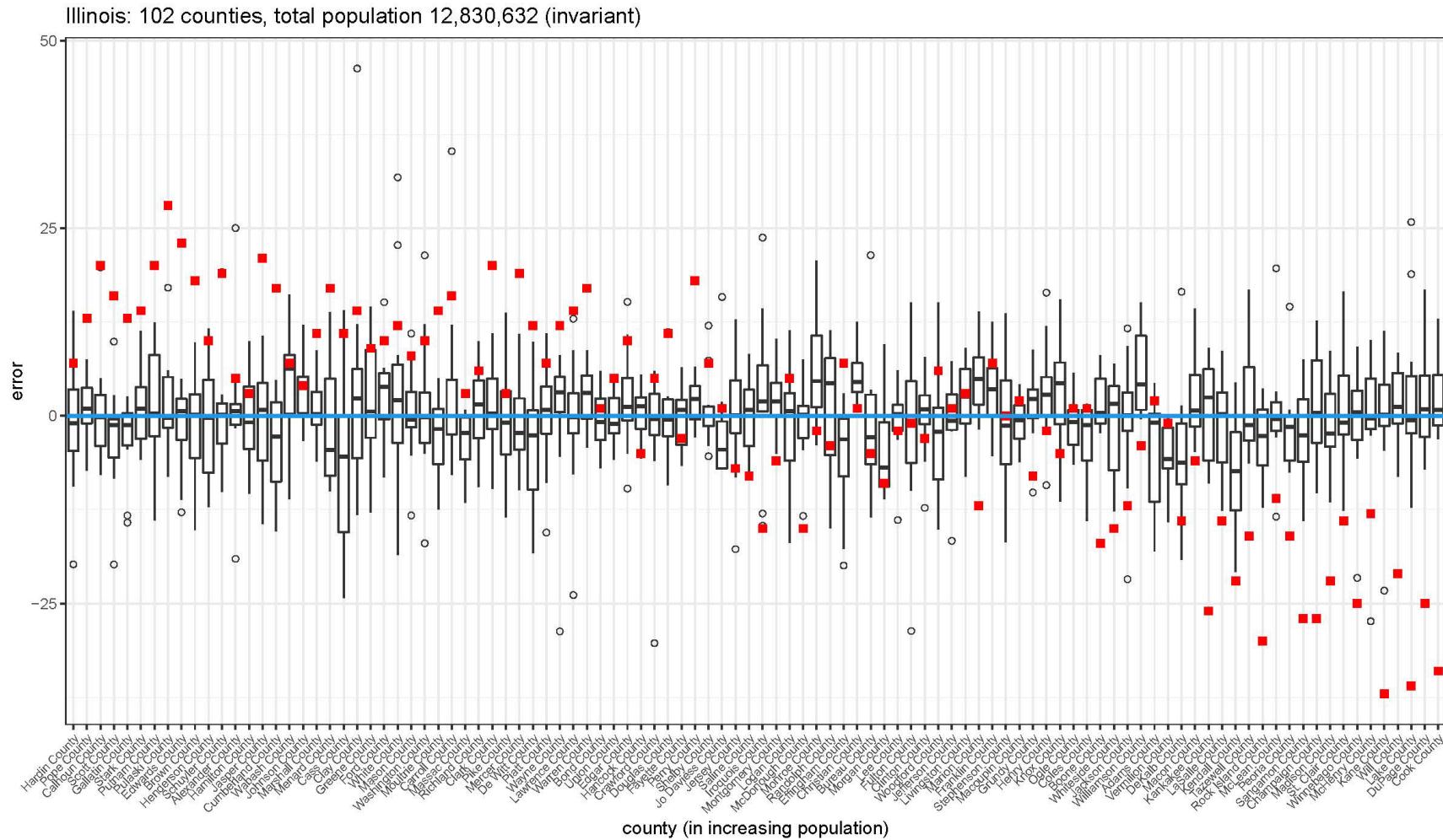
- Let the set of database be \mathbb{N}^4 , A be the histogram, and C be the sum of the first two coordinate
- Two adjacent databases $x = (1,2,3,4)$ and $x' = (2,2,3,4)$
- If M is invariant with C , then
$$\Pr[CM(x) = 3] = 1 \text{ but } \Pr[CM(x') = 3] = 0$$

M cannot be differentially private

‘‘Post-processing’’ on DP for invariants

- A common method to impose invariants is via “post-processing” using optimization/distance minimization, e.g. Census TopDown (Abowd et al., 2019).
- Issues
 - Not differentially private anymore
 - Systematic bias and obscurity

Systematic bias of ``post-processing''



Induced subspace differential privacy

Relax differential privacy for linear invariant

- Given $M: \mathbb{N}^{\mathcal{X}} \rightarrow \mathbb{N}^d$ and a linear function $C: \mathbb{N}^d \rightarrow \mathbb{N}^{d_c}$

$$M(x) = M_{\parallel}(x) + M_{\perp}(x)$$

where $M_{\parallel}(x) \in \text{row}(C)$ and $M_{\perp}(x) \in \text{null}(C) = N$

- Linear invariant C implies $CM_{\parallel}(x) = CM(x) = CA(x)$ is fixed.
- Subspace DP asks $M_{\perp}(x) = \Pi_N M(x)$ is differentially private

Induced subspace differential privacy

Induced subspace differential privacy

Given $\epsilon, \delta \geq 0$, a query $A : \mathcal{X}^* \rightarrow \mathbb{R}^n$ and a linear equality invariant $C : \mathbb{R}^n \rightarrow \mathbb{R}^{n_c}$ with *null space* $\mathcal{N} := \{v \in \mathbb{R}^n : Cv = 0\}$, a mechanism $M : \mathcal{X}^* \rightarrow \mathbb{R}^n$ is (ϵ, δ) -*induced subspace differentially private* for query A and an invariant C if

1. M is \mathcal{N} -subspace (ϵ, δ) -differentially private, i.e.

$$\Pr [\Pi_{\mathcal{N}} M(\mathbf{x}) \in S] \leq e^\epsilon \Pr [\Pi_{\mathcal{N}} M(\mathbf{x}') \in S] + \delta$$

for all $\mathbf{x} \sim \mathbf{x}'$ and $S \subseteq \mathcal{V}$, and

2. M satisfies the linear equality invariant C , i.e.

$$\Pr [CM(\mathbf{x}) = CA(\mathbf{x})] = 1.$$

Outline

- Setting and challenges
 - Linear invariants
 - Differential privacy and subspace differential privacy
- **Two approaches for DP to ISDP**
 - Projection
 - Extension
- Discussion
 - Optimality
 - Statistical Considerations and Implementation

Two approaches for DP to ISDP

Projection framework

- Converting an existing DP mechanism M to ISDP

$$\mathcal{M}(x) := A(x) + \Pi_N(M(x) - A(x))$$

- Project the noise into null space
- Projected Gaussian

$$A(x) + \Pi_N e$$

the variance of e is of order $\Delta_2(A)$

Extension framework

- Choose a DP mechanism \hat{M} for query $\Pi_N A(x)$

$$\mathcal{M}(x) := \Pi_R A(x) + \hat{M}(x)$$

- Augmenting a smaller private query invariant-compatibly
- Extended Gaussian

$$A(x) + Q_N e$$

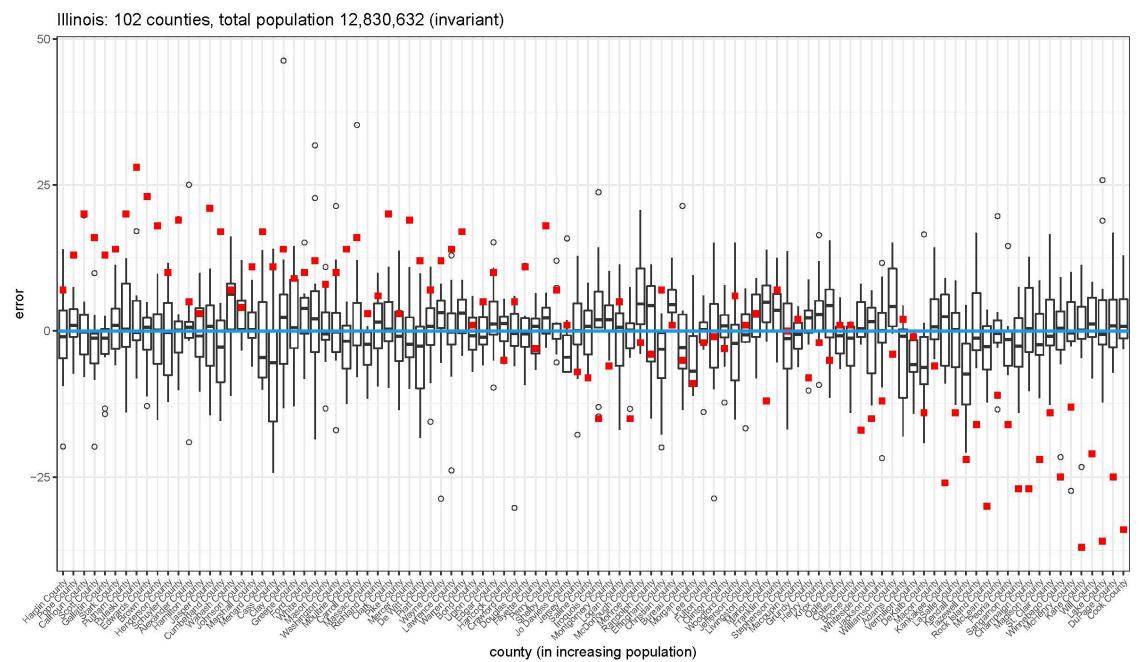
- Q_N is a rotation matrix of N
- the variance of e is of order $\Delta_2(Q_N^\top A)$

Outline

- Setting and challenges
 - Linear invariants
 - Differential privacy and subspace differential privacy
- Two approaches for DP to ISDP
 - Projection
 - Extension
- **Discussion**
 - Optimality
 - Statistical Considerations and Implementation

Discussion

- Optimality
 - optimal DP for query $\Pi_N A$ = optimal ISDP for A and invariant C
 - Optimal ISDP from the correlated Gaussian mechanism (Nikolov et al 13)
- Unbiasedness
 - Projected and extended Gaussian/Laplace mechanism are unbiased
- Transparency and statistical intelligibility



Future directions

- General invariants
 - Inequality
 - Discrete output space
- Trade off between utility and privacy

