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Data collection and release
• Examples

– 2020 Census data by U.S. Census Bureau
– Personal data in iOS or Chrome
– Survey

• utility and privacy

Privatization 
mechanism

respondents analyst



Utility of data release
• Error magnitude

– Mean-squared loss, zero-one loss

• Transparency and interpretability
– Statistical inference

• External invariant constraint
– For census data

• population totals
• counts of total housing units
• group quarter and facilities

Privatization 
mechanism

respondents analyst



Utility and differential privacy
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Invariants and differential privacy
• Setting

– histogram 𝑥𝑥 ∈ ℕ𝒳𝒳,
– a counting query 𝐴𝐴:ℕ𝒳𝒳 → ℕ𝑑𝑑,
– random mechanism 𝑀𝑀:ℕ𝒳𝒳 → ℕ𝑑𝑑

• 𝜖𝜖-DP: for all adjacent histograms 𝑥𝑥 and 𝑥𝑥𝑥 and outcome 𝑦𝑦
Pr[𝑀𝑀 𝑥𝑥 = 𝑦𝑦] ≤ 𝑒𝑒𝜖𝜖 Pr 𝑀𝑀 𝑥𝑥′ = 𝑦𝑦

• Linear invariant with a linear function 𝐶𝐶:ℕ𝑑𝑑 → ℕ𝑑𝑑𝑐𝑐
𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝐶𝐶𝐶𝐶 𝑥𝑥 ,∀𝑥𝑥 ∈ ℕ𝒳𝒳

M



DP and invariants are incompatible.
• Let the set of database be ℕ4, 𝐴𝐴 be the histogram, and 𝐶𝐶 be 

the sum of the first two coordinate
• Two adjacent databases 𝑥𝑥 = (1,2,3,4) and 𝑥𝑥′ = (2,2,3,4)
• If 𝑀𝑀 is invariant with 𝐶𝐶, then

Pr 𝐶𝐶𝐶𝐶 𝑥𝑥 = 3 = 1 𝑏𝑏𝑏𝑏𝑏𝑏 Pr 𝐶𝐶𝑀𝑀 𝑥𝑥′ = 3 = 0

𝑀𝑀 cannot be differentially private



``Post-processing’’ on DP for invariants
• A common method to impose invariants is via “post-

processing” using optimization/distance minimization, e.g. 
Census TopDown (Abowd et al., 2019).

• Issues
– Not differentially private anymore
– Systematic bias and obscurity



Systematic bias of ``post-processing’’



Induced subspace differential privacy
Relax differential privacy for linear invariant
• Given 𝑀𝑀:ℕ𝒳𝒳 → ℕ𝑑𝑑 and a linear function 𝐶𝐶:ℕ𝑑𝑑 → ℕ𝑑𝑑𝑐𝑐

𝑀𝑀 𝑥𝑥 = 𝑀𝑀∥ 𝑥𝑥 + 𝑀𝑀⊥(𝑥𝑥)
where 𝑀𝑀∥ 𝑥𝑥 ∈ 𝑟𝑟𝑟𝑟𝑟𝑟(𝐶𝐶) and 𝑀𝑀⊥ 𝑥𝑥 ∈ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐶𝐶 = 𝑁𝑁
– Linear invariant 𝐶𝐶 implies 𝐶𝐶𝑀𝑀∥ 𝑥𝑥 = 𝐶𝐶𝐶𝐶 𝑥𝑥 = 𝐶𝐶𝐶𝐶 𝑥𝑥 is fixed.
– Subspace DP asks 𝑀𝑀⊥ 𝑥𝑥 = Π𝑁𝑁𝑀𝑀(𝑥𝑥) is differentially private



Induced subspace differential privacy
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Two approaches for DP to ISDP

Projection framework

• Converting an existing DP mechanism 
𝑀𝑀 to ISDP
ℳ 𝑥𝑥 : = 𝐴𝐴 𝑥𝑥 + Π𝑁𝑁(𝑀𝑀 𝑥𝑥 − 𝐴𝐴 𝑥𝑥 )

• Project the noise into null space
• Projected Gaussian

𝐴𝐴 𝑥𝑥 + Π𝑁𝑁𝑒𝑒
the variance of 𝑒𝑒 is of order Δ2(𝐴𝐴)

Extension framework

• Choose a DP mechanism �𝑀𝑀 for query 
Π𝑁𝑁𝐴𝐴 𝑥𝑥

ℳ 𝑥𝑥 ≔ Π𝑅𝑅𝐴𝐴 𝑥𝑥 + �𝑀𝑀 𝑥𝑥
• Augmenting a smaller private query 

invariant-compatibly
• Extended Gaussian

𝐴𝐴 𝑥𝑥 + 𝑄𝑄𝑁𝑁𝑒𝑒
– 𝑄𝑄𝑁𝑁 is a rotation matrix of 𝑁𝑁
– the variance of 𝑒𝑒 is of order Δ2(𝑄𝑄𝑁𝑁⊤𝐴𝐴)
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Discussion

• Optimality
– optimal DP for query Π𝑁𝑁𝐴𝐴 = optimal 

ISDP for 𝐴𝐴 and invariant 𝐶𝐶
– Optimal ISDP from the correlated 

Gaussian mechanism (Nikolov et al 13)

• Unbiasedness
– Projected and extended 

Gaussian/Laplace mechanism are 
unbiased

• Transparency and statistical 
intelligibility



Future directions
• General invariants 

– Inequality
– Discrete output space

• Trade off between utility and privacy
magnitude

Interpretability 

Invariants
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