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Results

• Analyze the convergence rate of 
a family of stochastic processes

• Three related applications

– Evolutionary game theory

– Dynamics on social networks

– Stochastic Gradient Descent
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ESCAPING SADDLE POINTS

Upper bounds and lower bounds



Reinforced random walk with 𝐹

A discrete time stochastic process {𝑋𝑘: 𝑘 = 0, 1, … } in ℝ𝑑 that 
admits the following representation,

𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
𝐹 𝑋𝑘 + 𝑈𝑘
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Reinforced random walk with 𝐹

A discrete time stochastic process {𝑋𝑘: 𝑘 = 0, 1, … } in ℝ𝑑 that 
admits the following representation,
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1

𝑛
𝐹 𝑋𝑘 + 𝑈𝑘

• Expected difference (drift), 𝐹 𝑋

• Unbiased noise (noise), 𝑈𝑘
• Step size, 1/𝑛
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Examples

A discrete time Markov process {𝑋𝑘: 𝑘 = 0, 1, … } in ℝ𝑑 that 
admits the following representation,

𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
𝐹 𝑋𝑘 + 𝑈𝑘

• Agent based models with 𝑛 agents

– Evolutionary games 

– Dynamics on social networks

• Heuristic local search algorithms with uniform step size 1/𝑛



Node Dynamic on complete graphs [SY18]

• Let 𝑓𝑁𝐷: 0,1 → [0,1]. 𝑛 agents interact on a complete graph

• Each agent 𝑣 has an initial binary state 𝐶0(v) ∈ {0,1}

• At round 𝑘, 

• Pick a node 𝑣 uniformly at random

• Compute the fraction of opinion 1, 𝑋𝑘 =
𝐶𝑘
−1(1)

𝑛

• Update 𝐶𝑘+1(𝑣) to 1 w.p. 𝑓𝑁𝐷 𝑋𝑘 ; 0 o.w.

<- Complete graph



Node Dynamic

Includes several existing dynamics

• Voter model

• Iterative majority [Mossel et al 14]

• Iterative 3-majority [Doerr et al 11]
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Node Dynamic

Node dynamic on complete graphs

• Let 𝑓𝑁𝐷: 0,1 → [0,1].   There are 𝑛 agents on 
a complete graph

• Each agent 𝑣 has an initial binary state 
𝐶0(v) ∈ {0,1}

• At round 𝑘, 

• Pick a node 𝑣 uniformly at random

• Compute the fraction of opinion 1, 𝑋𝑘 =
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−1(1)

𝑛

• Update 𝐶𝑘+1(𝑣) to 1 w.p. 𝑓𝑁𝐷 𝑋𝑘 ; 0 o.w.

Reinforced random walk on ℝ

• 𝑋𝑘 be the fraction of nodes in state 1 
at 𝑘.
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Node Dynamic

Node dynamic on complete graphs

• Let 𝑓𝑁𝐷: 0,1 → [0,1].   There are 𝑛 agents on 
a complete graph

• Each agent 𝑣 has an initial binary state 
𝐶0(v) ∈ {0,1}

• At round 𝑘, 

• Pick a node 𝑣 uniformly at random

• Compute the fraction of opinion 1, 𝑋𝑘 =
𝐶𝑘
−1(1)

𝑛

• Update 𝐶𝑘+1(𝑣) to 1 w.p. 𝑓𝑁𝐷 𝑋𝑘 ; 0 o.w.

Reinforced random walk on ℝ

• 𝑋𝑘 be the fraction of nodes in state 1 at 𝑘. 

• Given 𝑋𝑘, the expected number of nodes in 
state 1 after round 𝑘, is 
E[𝑛𝑋𝑘+1 ∣ 𝑋𝑘] = 𝑛𝑋𝑘 + (𝑓𝑁𝐷 𝑋𝑘 − 𝑋𝑘).

Updated to 1 from 1



Node Dynamic

Node dynamic on complete graphs
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Node Dynamic

Node dynamic on complete graphs

• Let 𝑓𝑁𝐷: 0,1 → [0,1].   There are 𝑛 agents on 
a complete graph

• Each agent 𝑣 has an initial binary state 
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• At round 𝑘, 
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𝑛
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Reinforced random walk on ℝ

• 𝑋𝑘 be the fraction of nodes in state 1 at 𝑘.

• 𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
𝑓𝑁𝐷 𝑋𝑘 − 𝑋𝑘 + 𝑈𝑘 .

Drift Noise



Question

Given 𝐹 and 𝑈, what is the limit of 𝑋𝑘 for sufficiently large 𝑛? 

𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
𝐹 𝑋𝑘 + 𝑈𝑘



Mean field approximation

𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
(𝐹 𝑋𝑘 + 𝑈 𝑋𝑘 ) 𝑥′ = 𝐹(𝑥)



Mean field approximation

If 𝑛 is large enough, for 𝑘 = 𝑂(𝑛), 𝑋𝑘 ≈ 𝑥
𝑘

𝑛
by Wormald et al 95.



Regular point

If 𝑛 is large enough, for 𝑘 = 𝑂(𝑛), 𝑋𝑘 ≈ 𝑥
𝑘

𝑛
.



Fixed point, 𝑭 𝒙∗ = 𝟎

If 𝑛 is large enough, for 𝑘 = 𝑂(𝑛), 𝑋𝑘 ≈ 𝑥
𝑘

𝑛
.



Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?
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When can the process escape a 
non-attracting fixed point?
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Escaping non-attracting fixed point

When can the process escape a 
non-attracting fixed point?

1. Θ 𝑛

2. 𝚯(𝒏 𝒍𝒐𝒈𝒏)

3. Θ 𝑛 log 𝑛 4

4. Θ 𝑛2



Lower bound

Escaping saddle point region takes at least Ω(𝑛 log 𝑛) steps.

𝑋0 = 𝑥∗

𝜖



Upper bound

Escaping saddle point region takes at most O(𝑛 log 𝑛) steps.  

If 

𝑋0 = 𝑥∗

𝜖reg

𝑋𝑇 , 𝑇 = 𝑂(𝑛 log 𝑛)



Upper bound

Escaping saddle point region takes at most O(𝑛 log 𝑛) steps.  

If 

• Noise, 𝑈𝑘
– Martingale difference

– bounded

– Noisy (covariance matrix is large)

• Expected difference, 𝐹 ∈ 𝒞2

– 𝑥∗ is hyperbolic

𝑋0 = 𝑥∗

𝜖reg

𝑋𝑇 , 𝑇 = 𝑂(𝑛 log 𝑛)



Gradient-like dynamics

Converges to an attracting fixed-point region in O(𝑛 log 𝑛)
steps.  

If

• Noise, 𝑈𝑘
– Martingale difference

– bounded

– Noisy 

• Expected difference, 𝐹 ∈ 𝒞2

– Fixed points are hyperbolic

– Potential function



Outline

• Escaping saddle point

Stochastic Gradient Descent

Dynamics 
on social 
networks

Evolutionary 
game theory



Outline

• Escaping saddle point

• Case study: dynamics on social networks

Stochastic Gradient Descent

Dynamics 
on social 
networks

Evolutionary 
game theory



(DIS)AGREEMENT IN PLANTED COMMUNITY 
NETWORKS 

Dynamics on social networks



Echo chamber

Beliefs are amplified through interactions in segregated systems



Echo chamber

Beliefs are amplified through interactions in segregated systems



Echo chamber

Beliefs are amplified through interactions in segregated systems

Rich-get-richer Community structure



Question

What is the consensus time given a rich-get-richer opinion 
formation and the level of intercommunity connectivity?



Node Dynamic [Schoenebeck, Yu 18]

• Fixed a graph 𝐺 = (𝑉, 𝐸) opinion set 
{0,1}

• Given an initial configuration 
𝑋0:V ↦ {0,1}

• At round t, 
• A node v is picked uniformly at random

The update of opinion only depends on the 
fraction of opinions amongst its neighbors

𝑟𝑋𝑡−1 𝑣 =
1

7



Node Dynamic 𝐍𝐃(𝐺, 𝑓𝑵𝑫, 𝑋𝟎)

• Fixed a (weighted) graph 𝐺 = (𝑉, 𝐸)
opinion set {0,1}, an update function 
𝒇𝑵𝑫

• Given an initial configuration 
𝑋0:V ↦ {0,1}

• At round t, 
• A node v is picked uniformly at random

• 𝑿𝒕 𝒗 = 1w.p. 𝒇𝑵𝑫 𝒓𝑿𝒕−𝟏 𝒗 ; 

= 0 otherwise

𝑟𝑋𝑡−1 𝑣 =
1

7



Planted Community

• A weighted complete graph with n nodes, 𝐾(𝑛, 𝑝)

– Two communities with equal size

– An edge has weight 𝑝 if in the same community and 1 − 𝑝 o.w.

2p-1
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• A weighted complete graph with n nodes, 𝐾(𝑛, 𝑝)

– Two communities with equal size

– An edge has weight 𝑝 if in the same community and 1 − 𝑝 o.w.

𝛿 = 2𝑝 − 1

0 1

Complete graph 
Two isolated 
complete graphs



Question

• What is the interaction between rich-get-richer opinion 
formation and the level of intercommunity connectivity?



Question

• What is the interaction between rich-get-richer opinion 
formation and the level of intercommunity connectivity?
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Strong Community Structure

• There exists an initial state such that the process cannot reach 
consensus fast.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

3-Majority

Large 𝛿



Weak Community Structure

• For all initial states, the process reaches consensus fast.
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Our Dichotomy Theorem

• Given a smooth rich-get-richer function 𝑓𝑁𝐷 ∈ 𝒞2, and a 
planted community graph 𝐺 = 𝐾(𝑛, 𝑝). The maximum 
expected consensus time of ND(𝐺, 𝑓𝑁𝐷, 𝑋𝟎) has two cases:

𝛿 = 2𝑝 − 1

0 𝛿∗ 1

𝑂(𝑛log 𝑛) exp(Ω(𝑛))

Complete graph Two isolated 
complete graphs



Node dynamic
(1, 1)

(0, 0)

Ԧ𝑥

2

𝑛

• A Markov chain on 2-d grid

• (0,0) and (1,1) are consensus
states

community 1

community 2

2

𝑛



Our Dichotomy Theorem

0 𝛿∗ 1𝛿′
`

𝛿′′
Complete graph Two isolated 

complete graphs
𝛿 = 2𝑝 − 1



Our Dichotomy Theorem

0 𝛿∗ 1𝛿′
`

𝛿′′
Complete graph Two isolated 

complete graphs

saddle point
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Our Dichotomy Theorem

0 𝛿∗ 1𝛿′
`

𝛿′′

Attracting point

saddle point repelling point



Fast consensus

𝑋𝑘+1 − 𝑋𝑘 =
1

𝑛
(𝐹𝑁𝐷 𝑋𝑘 + 𝑈 𝑋𝑘 ) reach an attracting fixed point in 

𝑂(𝑛 log 𝑛)

0 𝛿∗ 1𝛿′
`

𝛿′′



Question?


