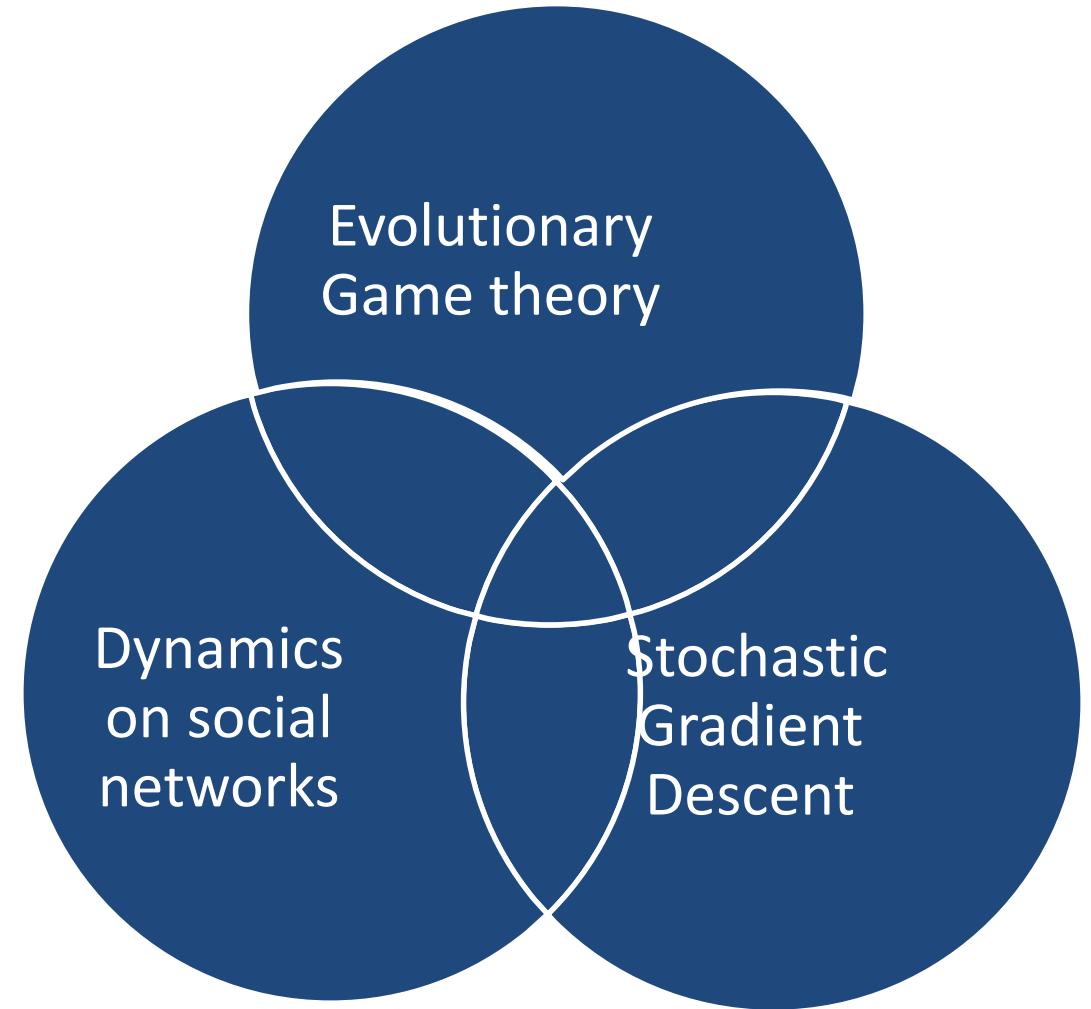

Escaping Saddle Points in Constant Dimensional Spaces: an Agent-based Modeling Perspective

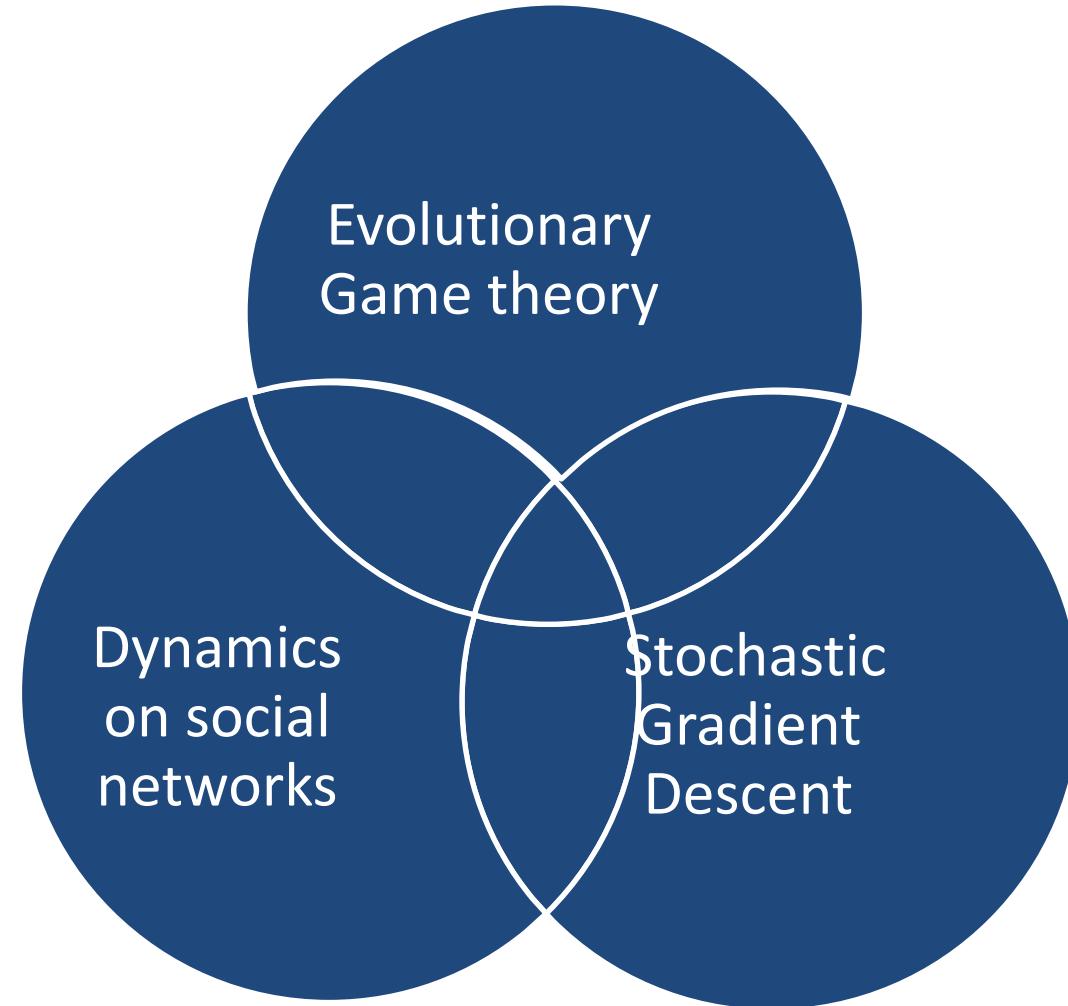
Grant Schoenebeck, University of Michigan
Fang-Yi Yu, Harvard University

Results

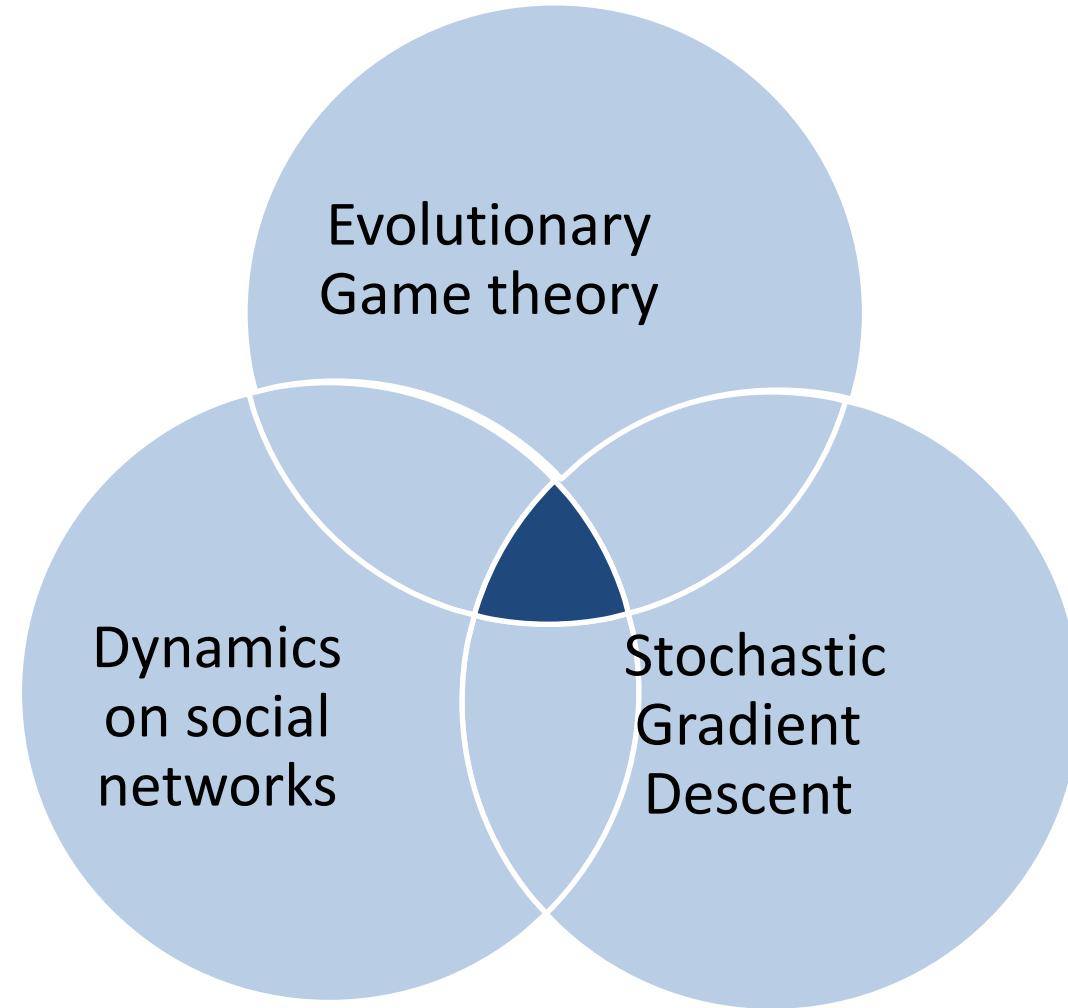
- Analyze the convergence rate of a family of stochastic processes
- Three related applications
 - Evolutionary game theory
 - Dynamics on social networks
 - Stochastic Gradient Descent



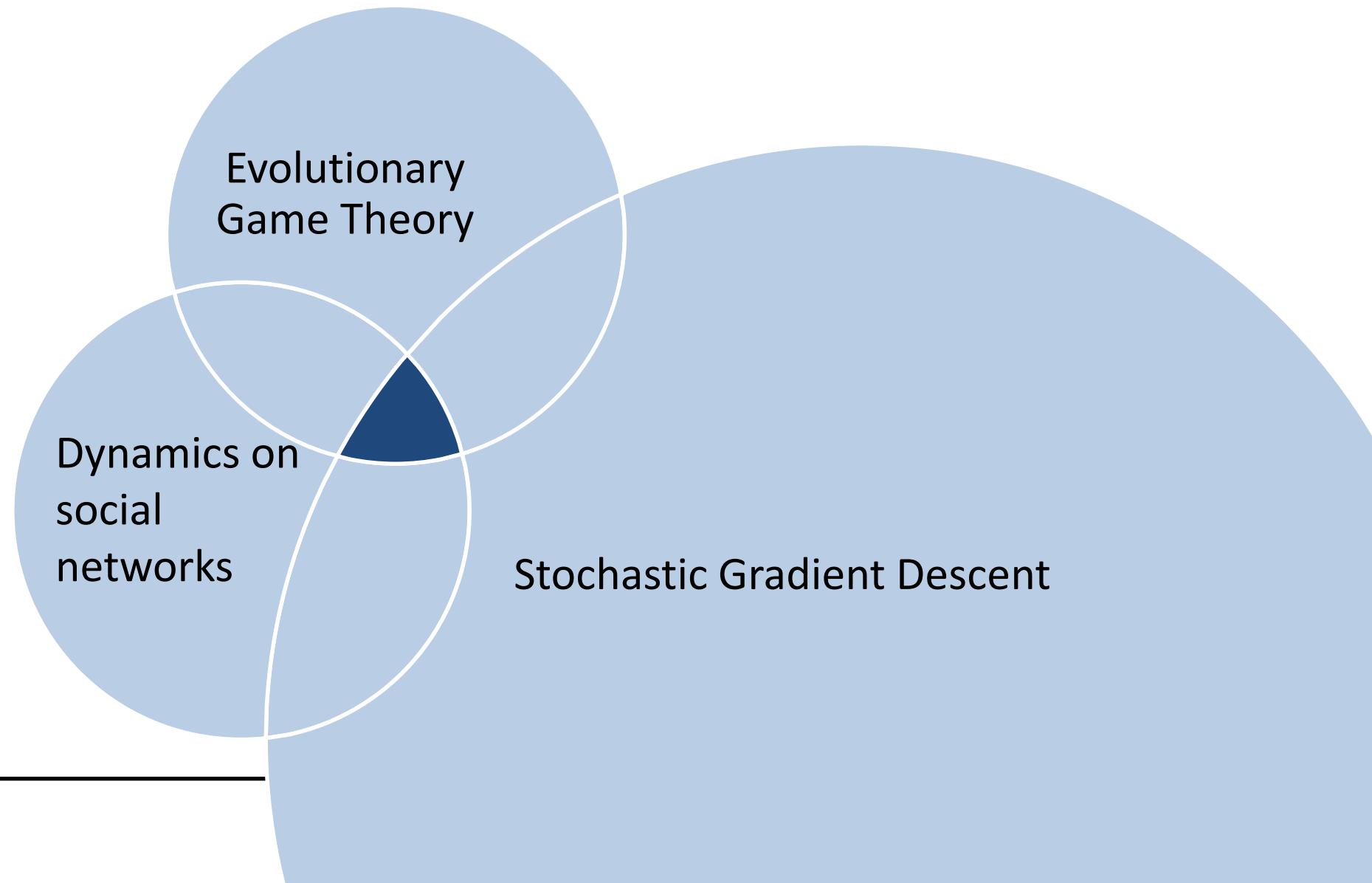
Target Audience



Target Audience

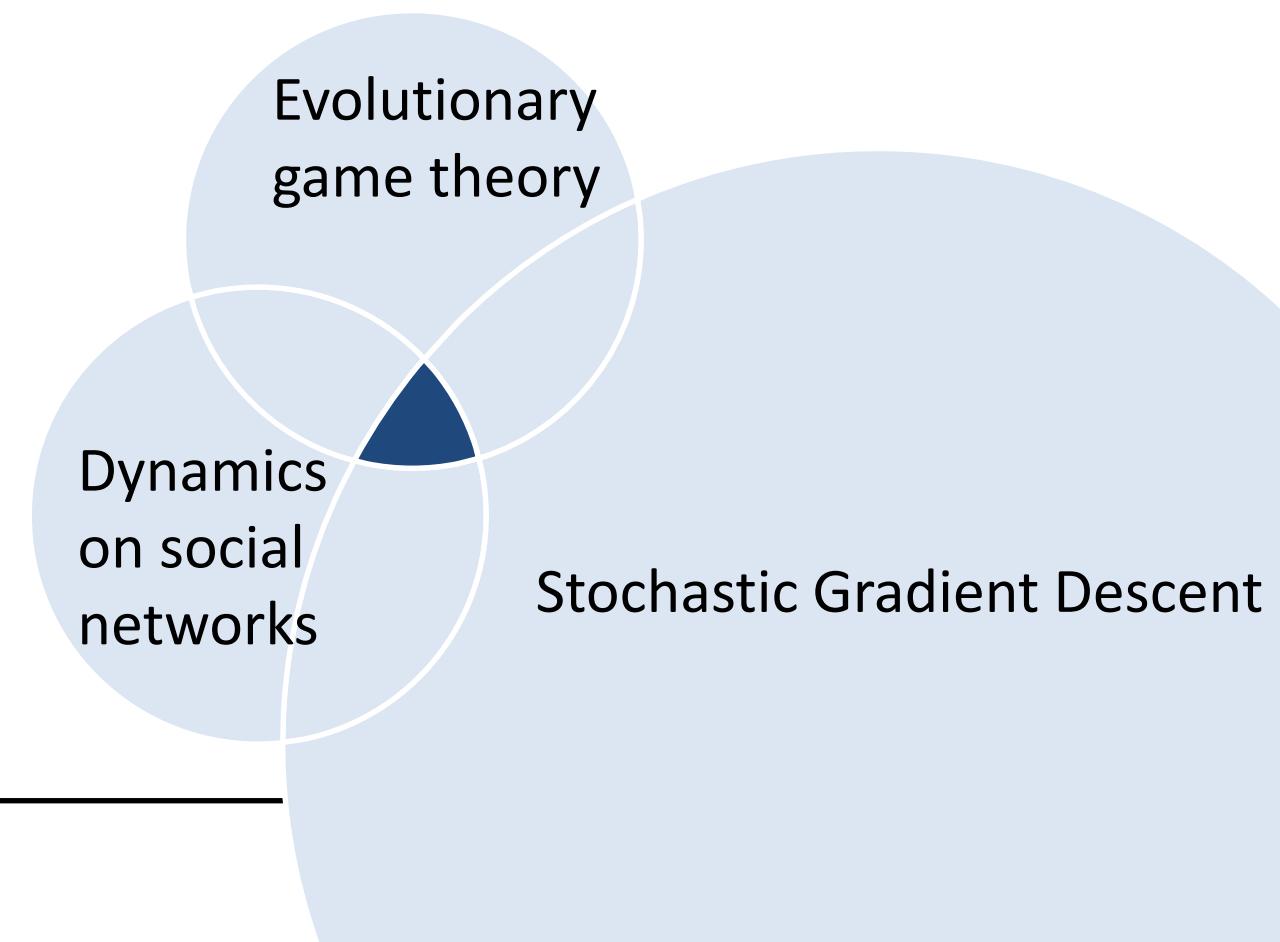


Target Audience (still not-to-scale)



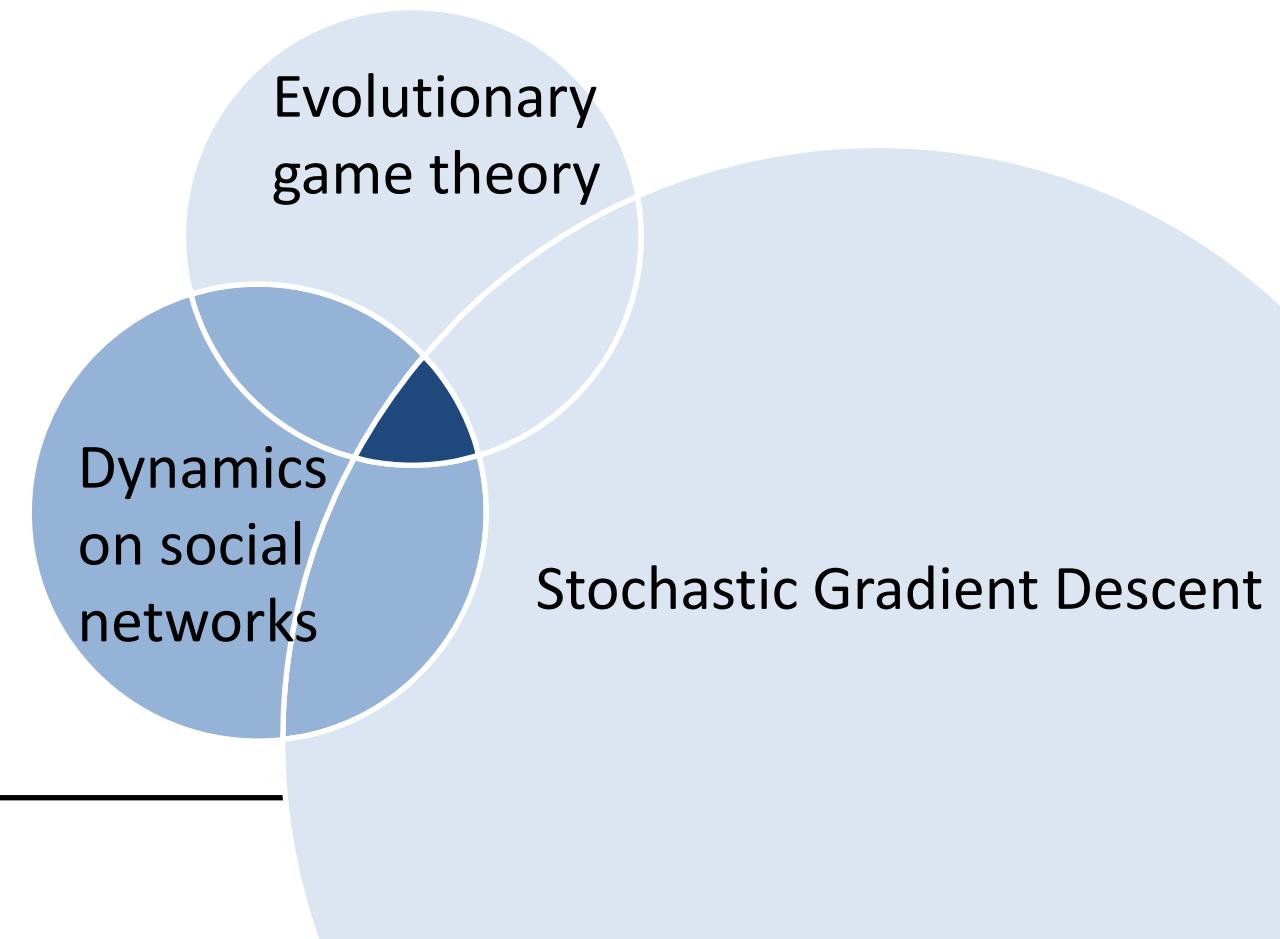
Outline

- Escaping saddle point



Outline

- Escaping saddle point
- Case study: dynamics on social networks



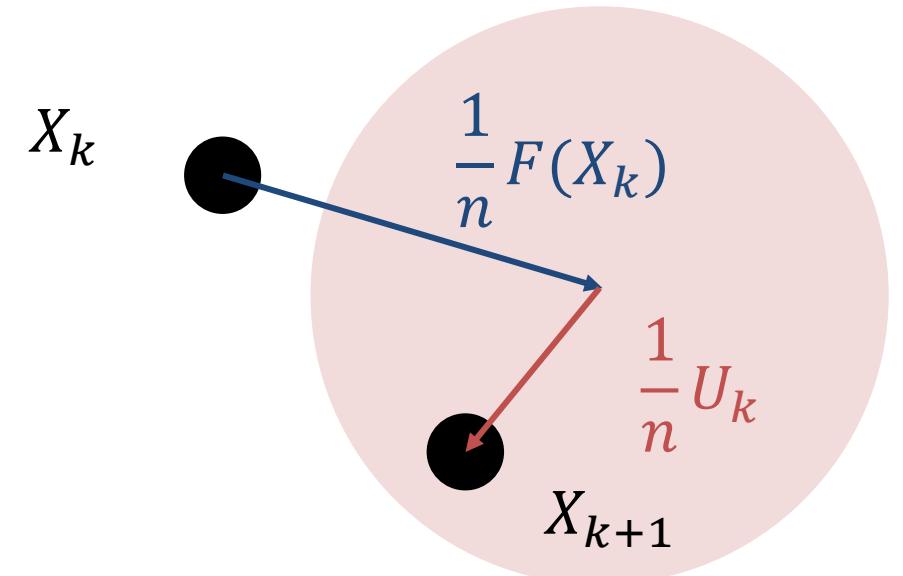
Upper bounds and lower bounds

ESCAPING SADDLE POINTS

Reinforced random walk with F

A discrete time stochastic process $\{X_k: k = 0, 1, \dots\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n}(F(X_k) + U_k)$$

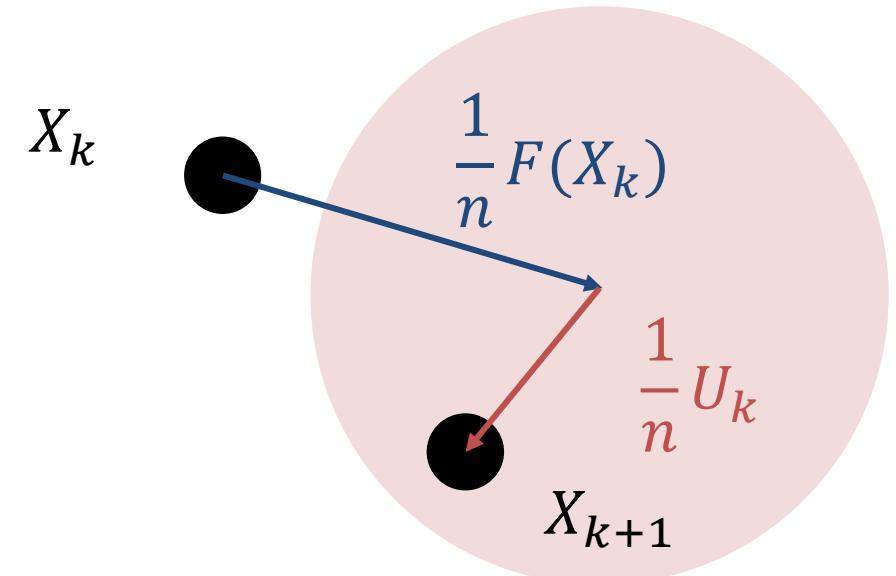


Reinforced random walk with F

A discrete time stochastic process $\{X_k: k = 0, 1, \dots\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n}(F(X_k) + U_k)$$

- Expected difference (drift), $F(X)$

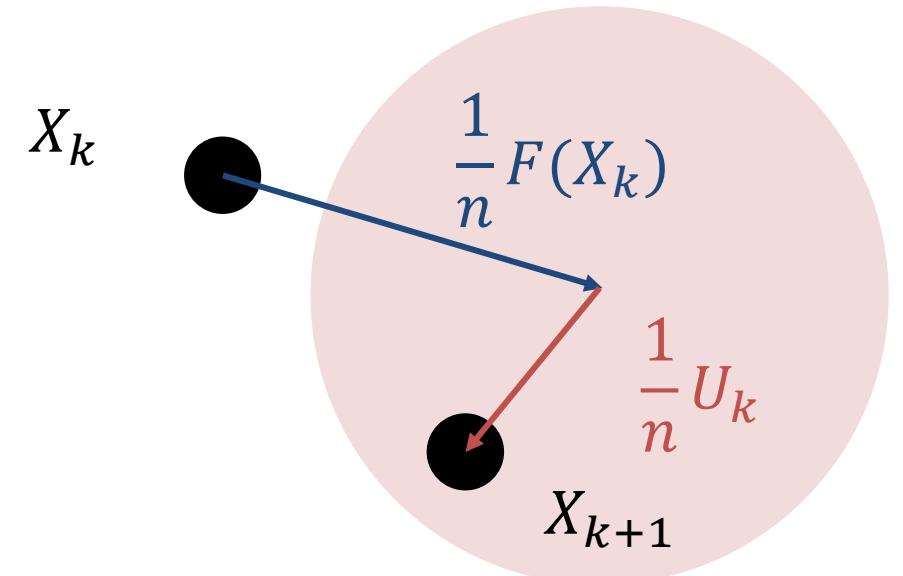


Reinforced random walk with F

A discrete time stochastic process $\{X_k: k = 0, 1, \dots\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n}(F(X_k) + U_k)$$

- Expected difference (drift), $F(X)$
- Unbiased noise (noise), U_k

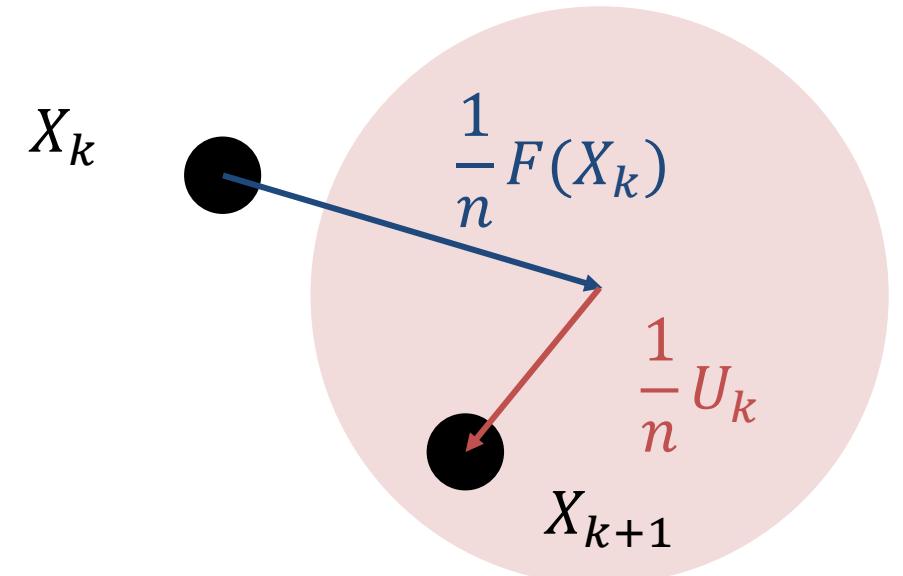


Reinforced random walk with F

A discrete time stochastic process $\{X_k: k = 0, 1, \dots\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n}(F(X_k) + U_k)$$

- Expected difference (drift), $F(X)$
- Unbiased noise (noise), U_k
- Step size, $1/n$



Examples

A discrete time Markov process $\{X_k: k = 0, 1, \dots\}$ in \mathbb{R}^d that admits the following representation,

$$X_{k+1} - X_k = \frac{1}{n} (F(X_k) + \mathbf{U}_k)$$

- Agent based models with n agents
 - Evolutionary games
 - Dynamics on social networks
- Heuristic local search algorithms with uniform step size $1/n$

Node Dynamic on complete graphs [SY18]

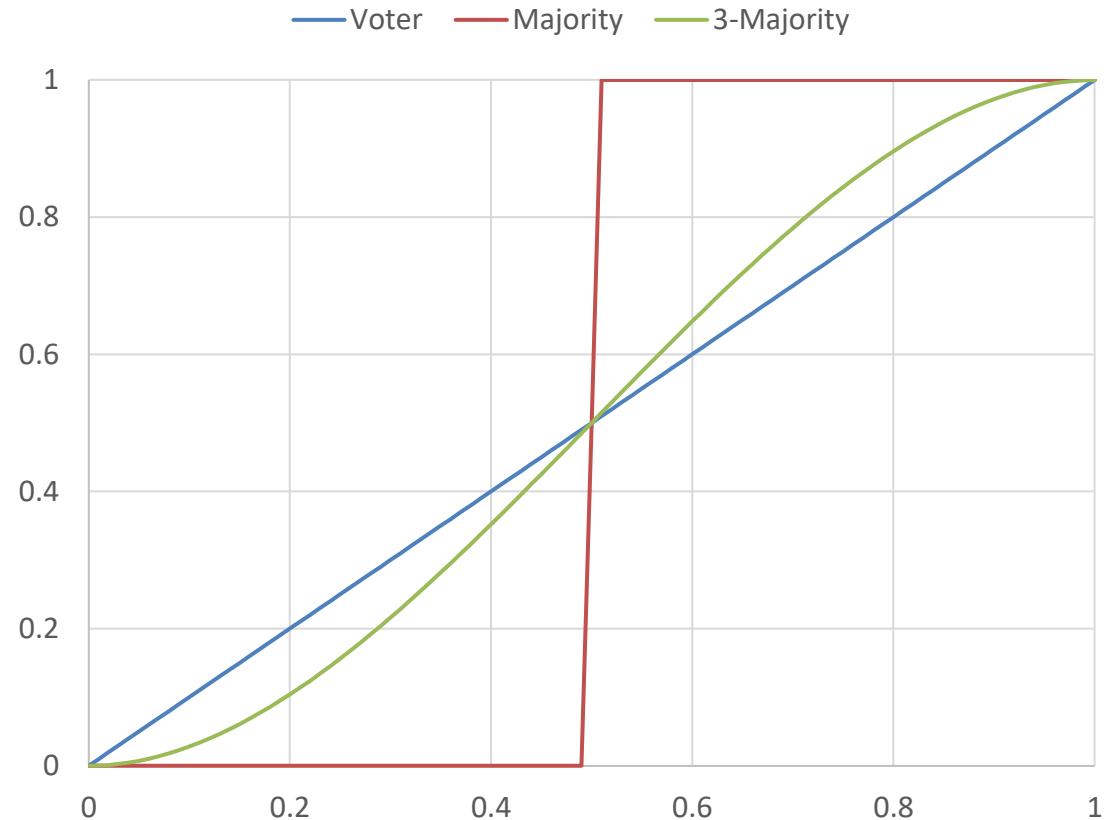
- Let $f_{ND}: [0,1] \rightarrow [0,1]$. n agents interact on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|C_k^{-1}(1)|}{n}$ <- Complete graph
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Node Dynamic

Includes several existing dynamics

- Voter model
- Iterative majority [Mossel et al 14]
- Iterative 3-majority [Doerr et al 11]

Update functions



Node Dynamic

Node dynamic on complete graphs

- Let $f_{ND}: [0,1] \rightarrow [0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|C_k^{-1}(1)|}{n}$
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Reinforced random walk on \mathbb{R}

- X_k be the fraction of nodes in state 1 at k .

Node Dynamic

Node dynamic on complete graphs

- Let $f_{ND}: [0,1] \rightarrow [0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|\underline{C}_k^{-1}(1)|}{n}$
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Reinforced random walk on \mathbb{R}

- X_k be the fraction of nodes in state 1 at k .
- Given X_k , the expected number of nodes in state 1 after round k , is $E[nX_{k+1} | X_k] = nX_k + (f_{ND}(X_k) - X_k)$.

Node Dynamic

Node dynamic on complete graphs

- Let $f_{ND}: [0,1] \rightarrow [0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|C_k^{-1}(1)|}{n}$
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Reinforced random walk on \mathbb{R}

- X_k be the fraction of nodes in state 1 at k .
- Given X_k , the expected number of nodes in state 1 after round k , is $E[nX_{k+1} | X_k] = nX_k + (f_{ND}(X_k) - X_k)$.
Updated to 1 from 1

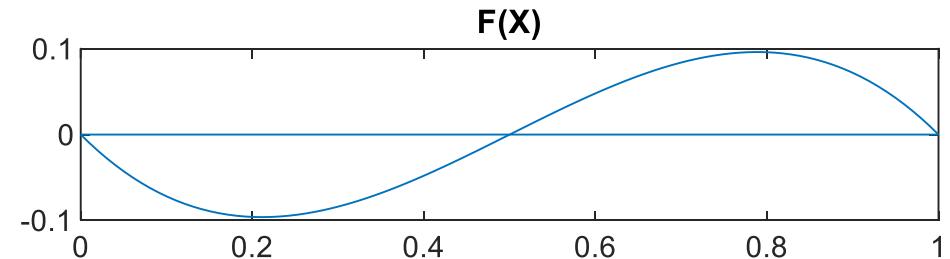
Node Dynamic

Node dynamic on complete graphs

- Let $f_{ND}: [0,1] \rightarrow [0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|\mathcal{C}_k^{-1}(1)|}{n}$
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Reinforced random walk on \mathbb{R}

- X_k be the fraction of nodes in state 1 at k .
- $E[X_{k+1} | X_k] - X_k = \frac{1}{n} (f_{ND}(X_k) - X_k)$.
Drift $F(X_k)$



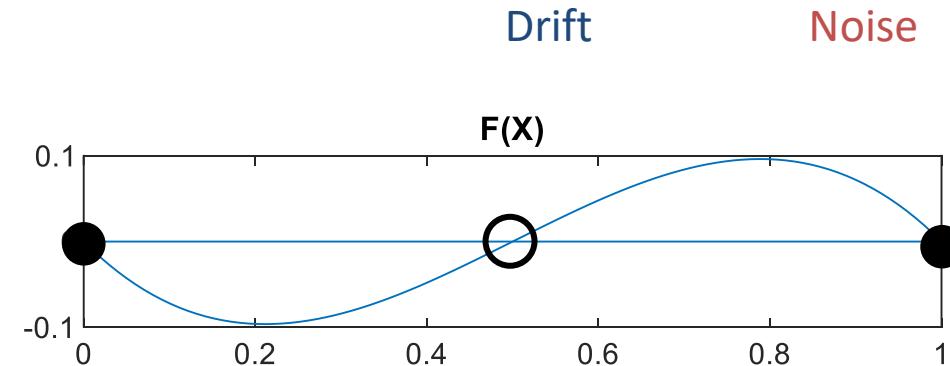
Node Dynamic

Node dynamic on complete graphs

- Let $f_{ND}: [0,1] \rightarrow [0,1]$. There are n agents on a complete graph
- Each agent v has an initial binary state $C_0(v) \in \{0,1\}$
- At round k ,
 - Pick a node v uniformly at random
 - Compute the fraction of opinion 1, $X_k = \frac{|C_k^{-1}(1)|}{n}$
 - Update $C_{k+1}(v)$ to 1 w.p. $f_{ND}(X_k)$; 0 o.w.

Reinforced random walk on \mathbb{R}

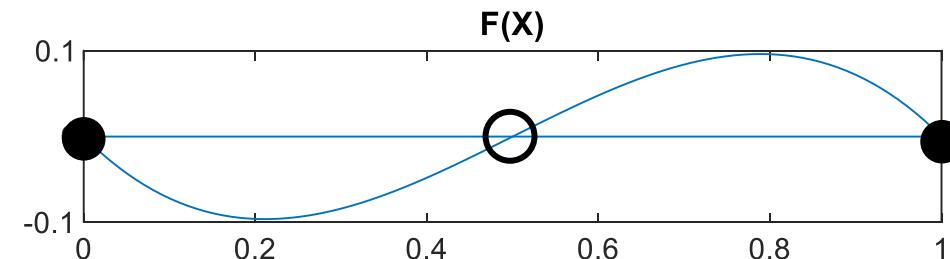
- X_k be the fraction of nodes in state 1 at k .
- $X_{k+1} - X_k = \frac{1}{n}((f_{ND}(X_k) - X_k) + U_k)$.



Question

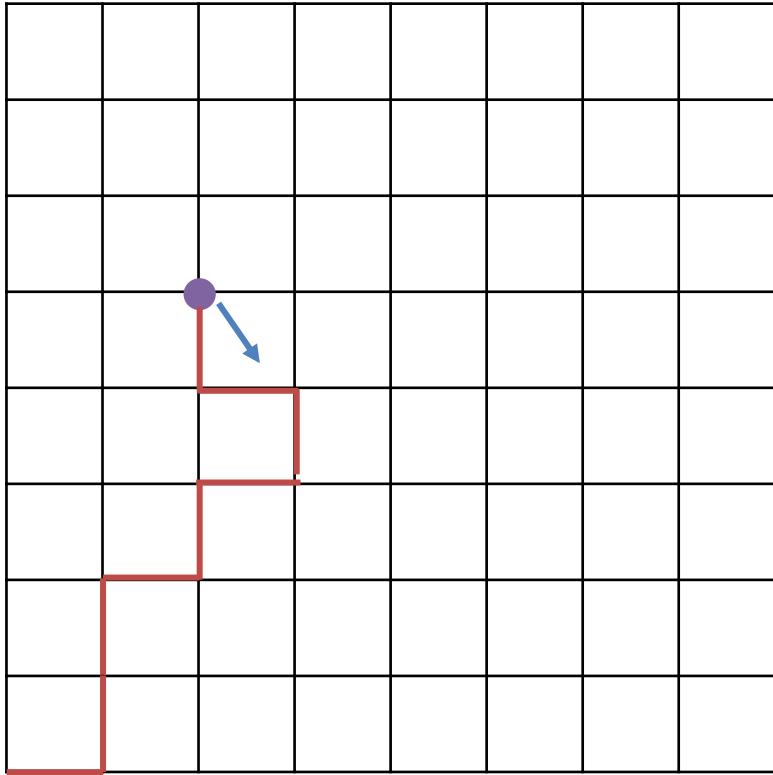
Given F and U , what is the limit of X_k for sufficiently large n ?

$$X_{k+1} - X_k = \frac{1}{n} (F(X_k) + U_k)$$

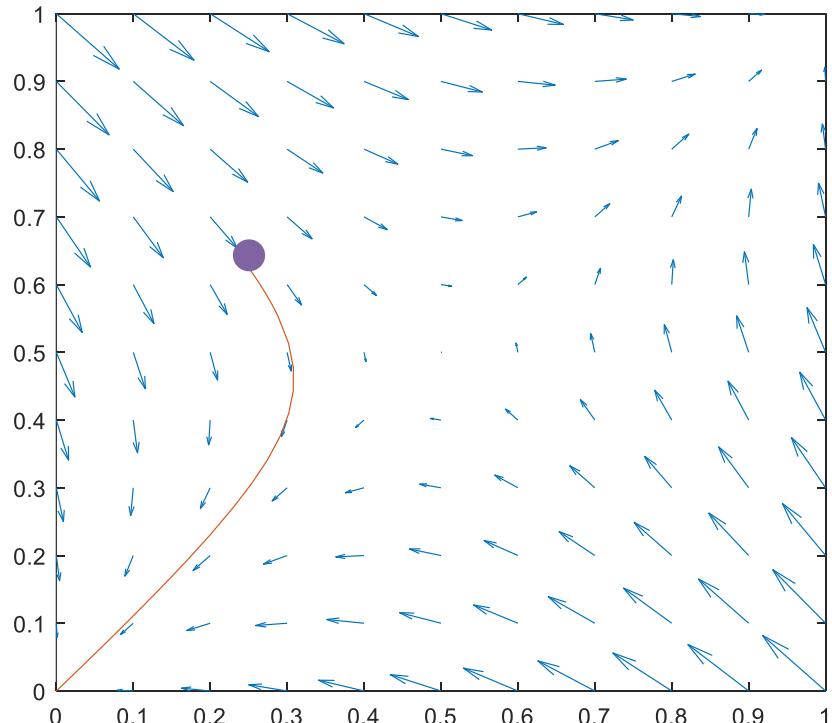


Mean field approximation

$$X_{k+1} - X_k = \frac{1}{n}(F(X_k) + U(X_k))$$



$$x' = F(x)$$

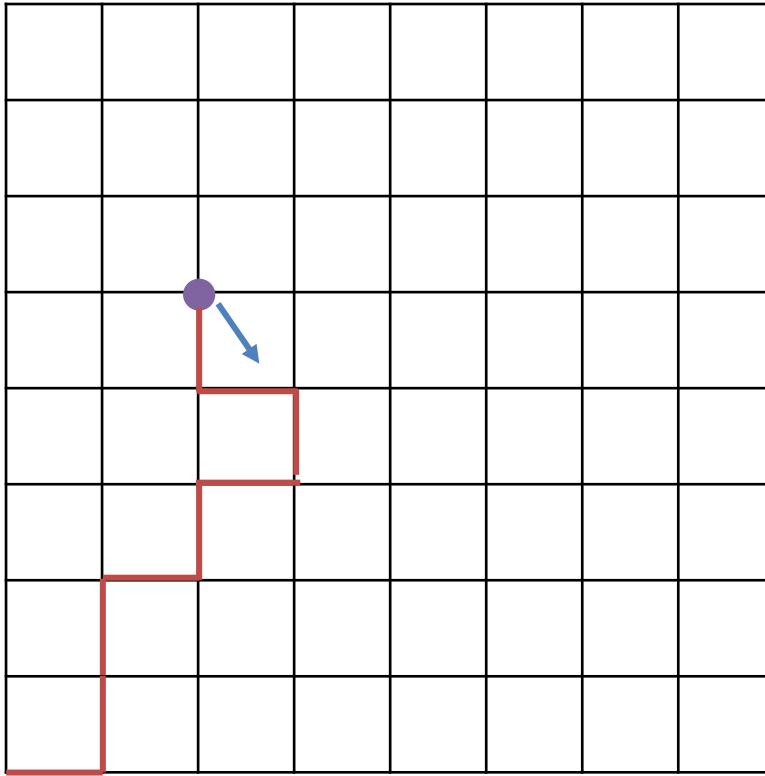
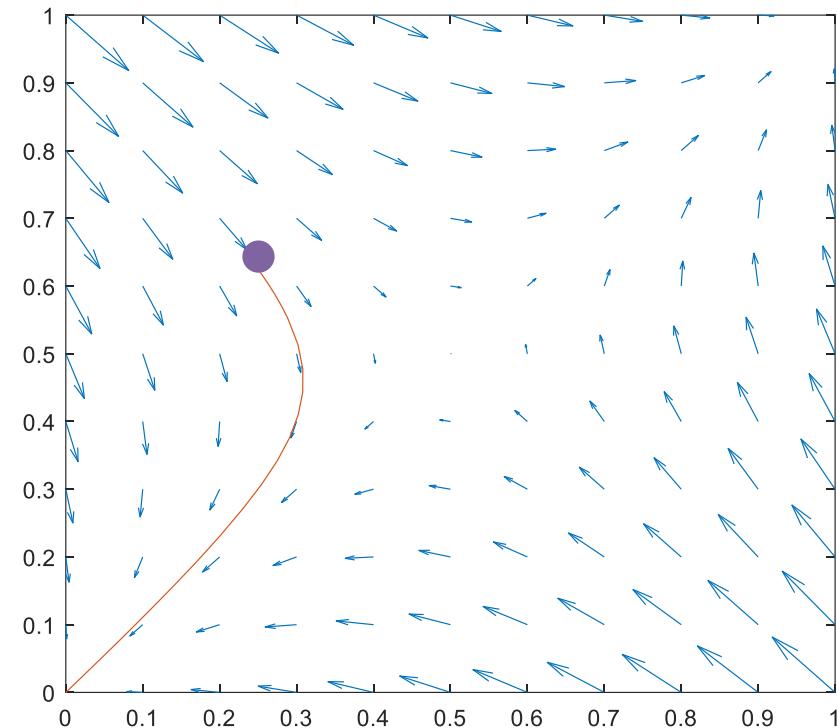


Mean field approximation

If n is large enough, for $k = O(n)$, $X_k \approx x \left(\frac{k}{n} \right)$ by Wormald et al 95.

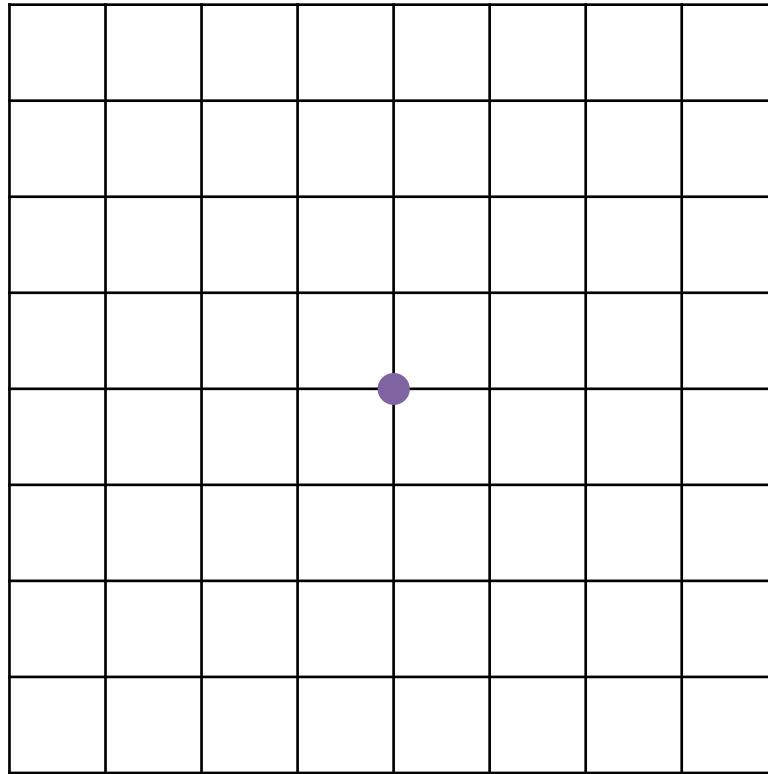
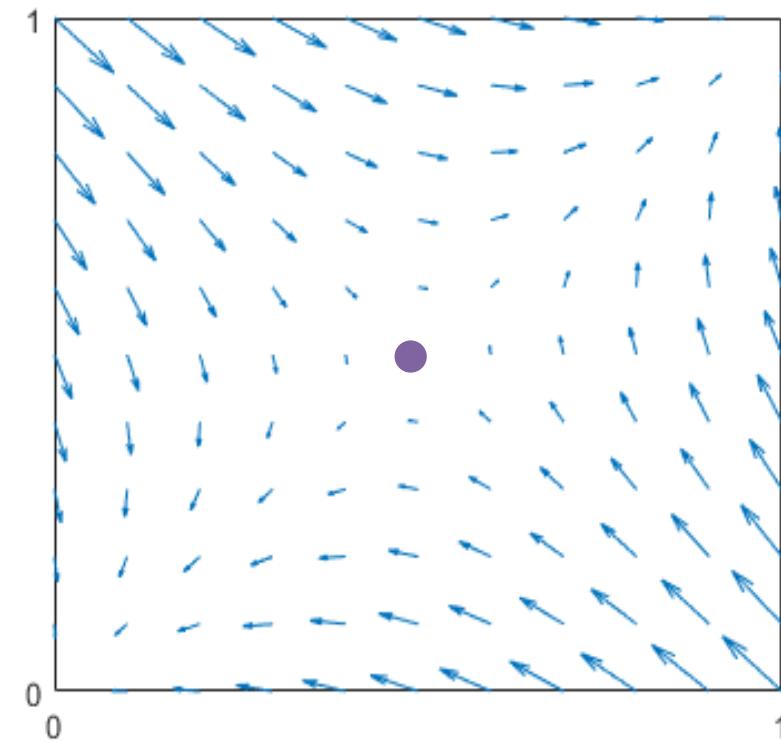
Regular point

If n is large enough, for $k = O(n)$, $X_k \approx x \left(\frac{k}{n} \right)$.



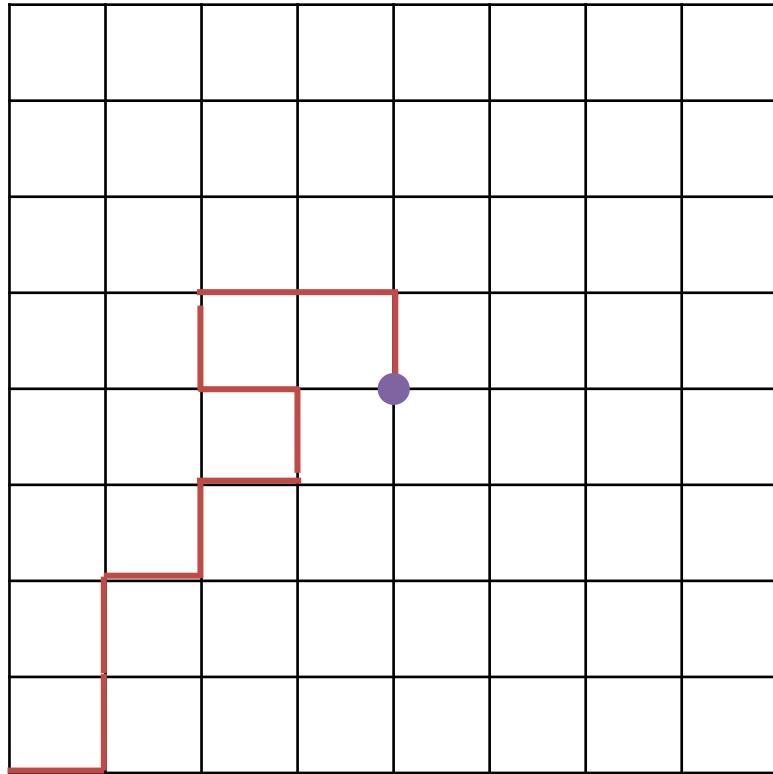
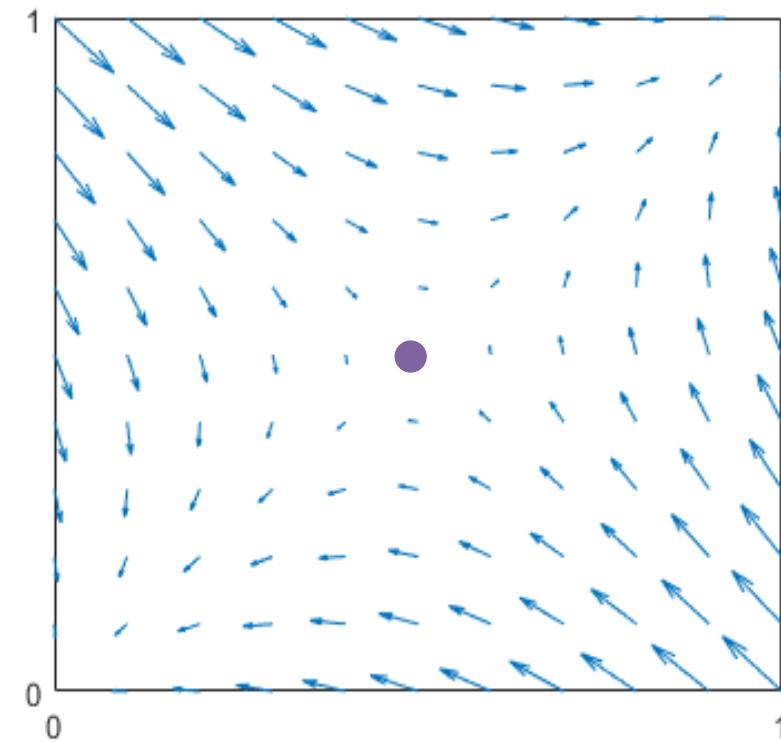
Fixed point, $F(x^*) = 0$

If n is large enough, for $k = O(n)$, $X_k \approx x \left(\frac{k}{n} \right)$.



Escaping non-attracting fixed point

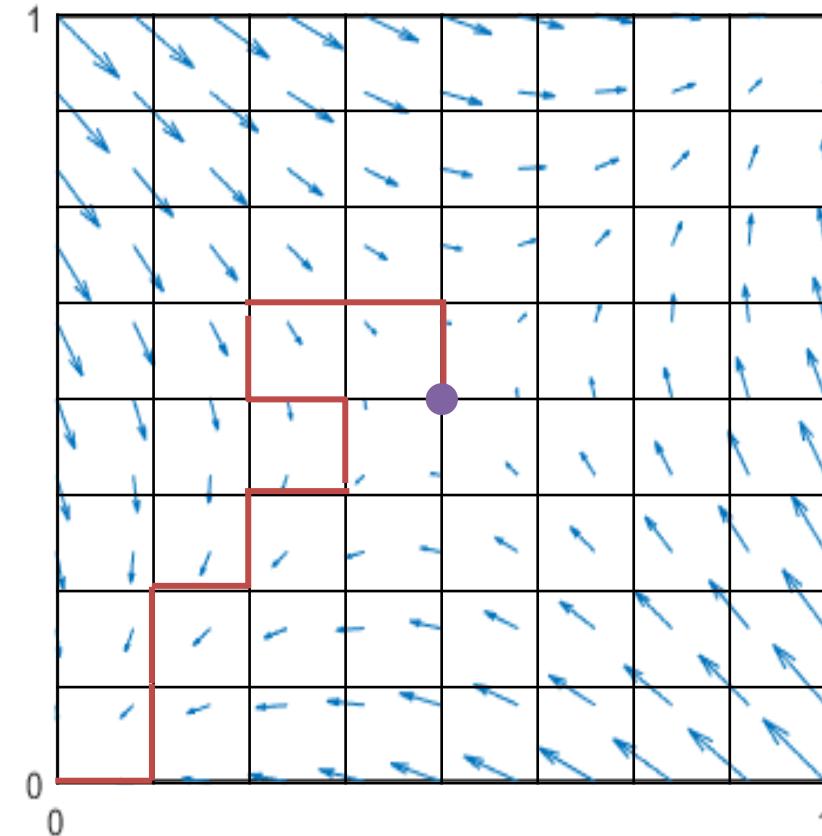
When can the process escape a non-attracting fixed point?



Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?

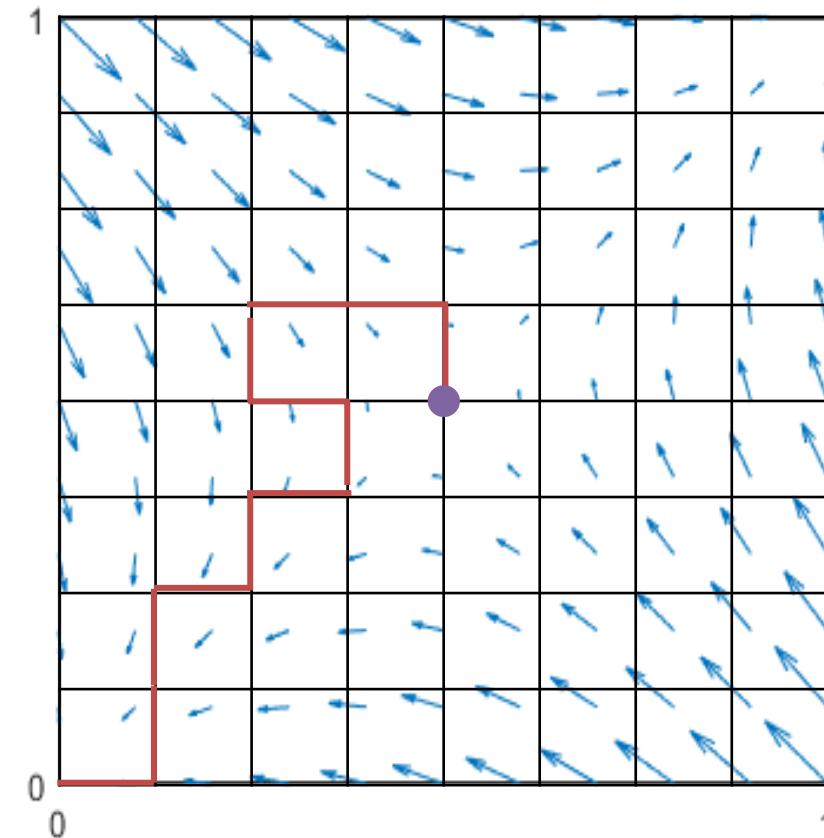
1. $\Theta(n)$
2. $\Theta(n \log n)$
3. $\Theta(n (\log n)^4)$
4. $\Theta(n^2)$



Escaping non-attracting fixed point

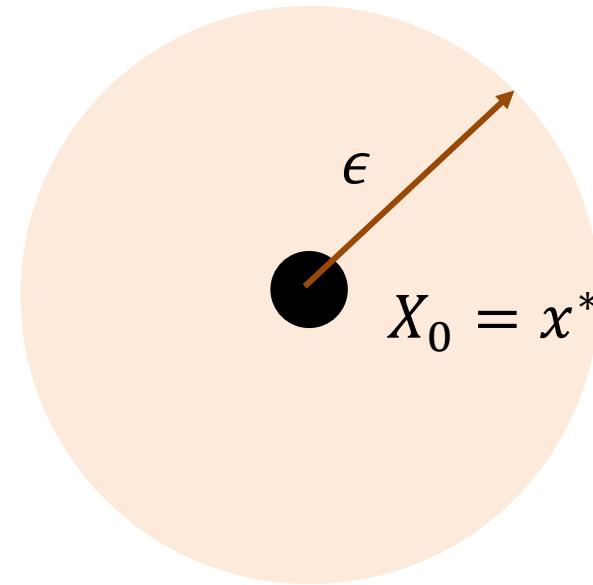
When can the process escape a non-attracting fixed point?

1. $\Theta(n)$
2. $\Theta(n \log n)$
3. $\Theta(n (\log n)^4)$
4. $\Theta(n^2)$



Lower bound

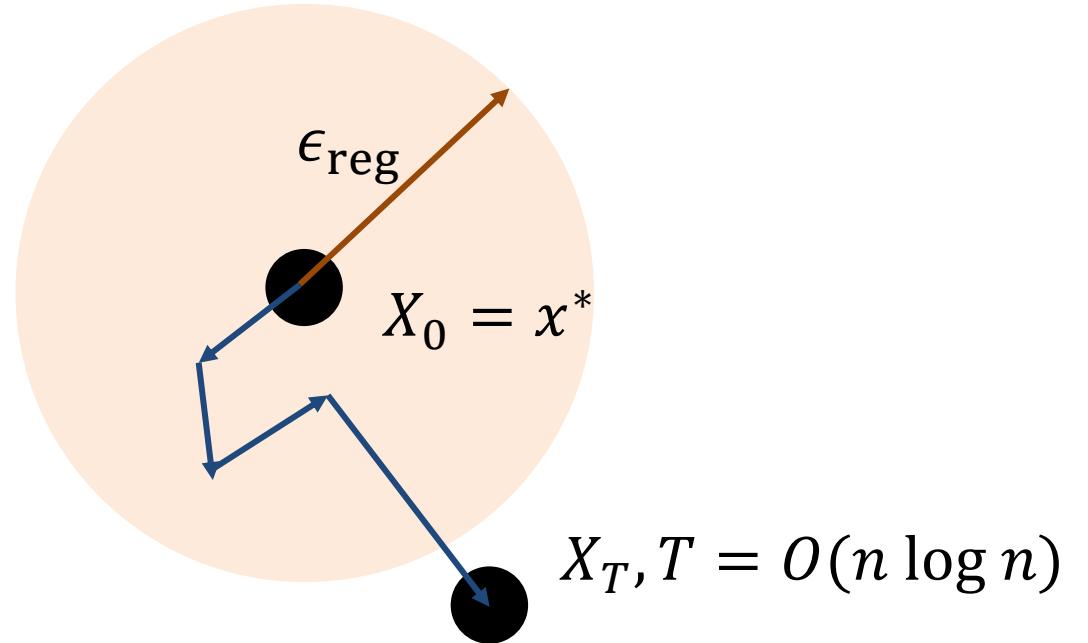
Escaping saddle point region takes **at least** $\Omega(n \log n)$ steps.



Upper bound

Escaping saddle point region takes at most $O(n \log n)$ steps.

If

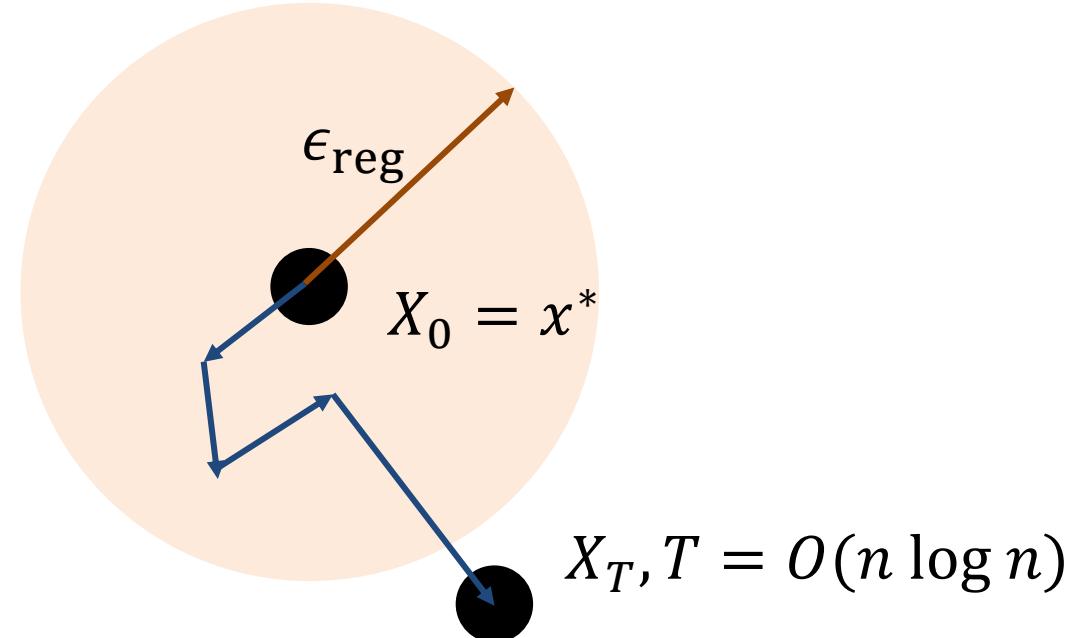


Upper bound

Escaping saddle point region takes **at most** $O(n \log n)$ steps.

If

- Noise, U_k
 - Martingale difference
 - bounded
 - Noisy (covariance matrix is large)
- Expected difference, $F \in \mathcal{C}^2$
 - x^* is hyperbolic

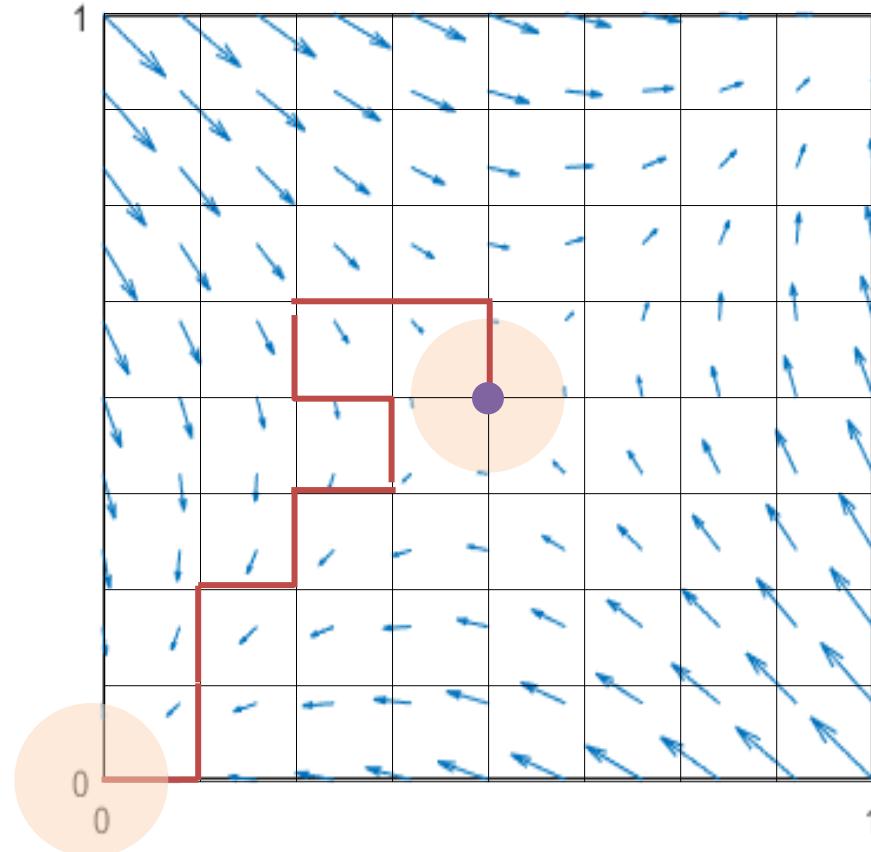


Gradient-like dynamics

Converges to an attracting fixed-point region in $O(n \log n)$ steps.

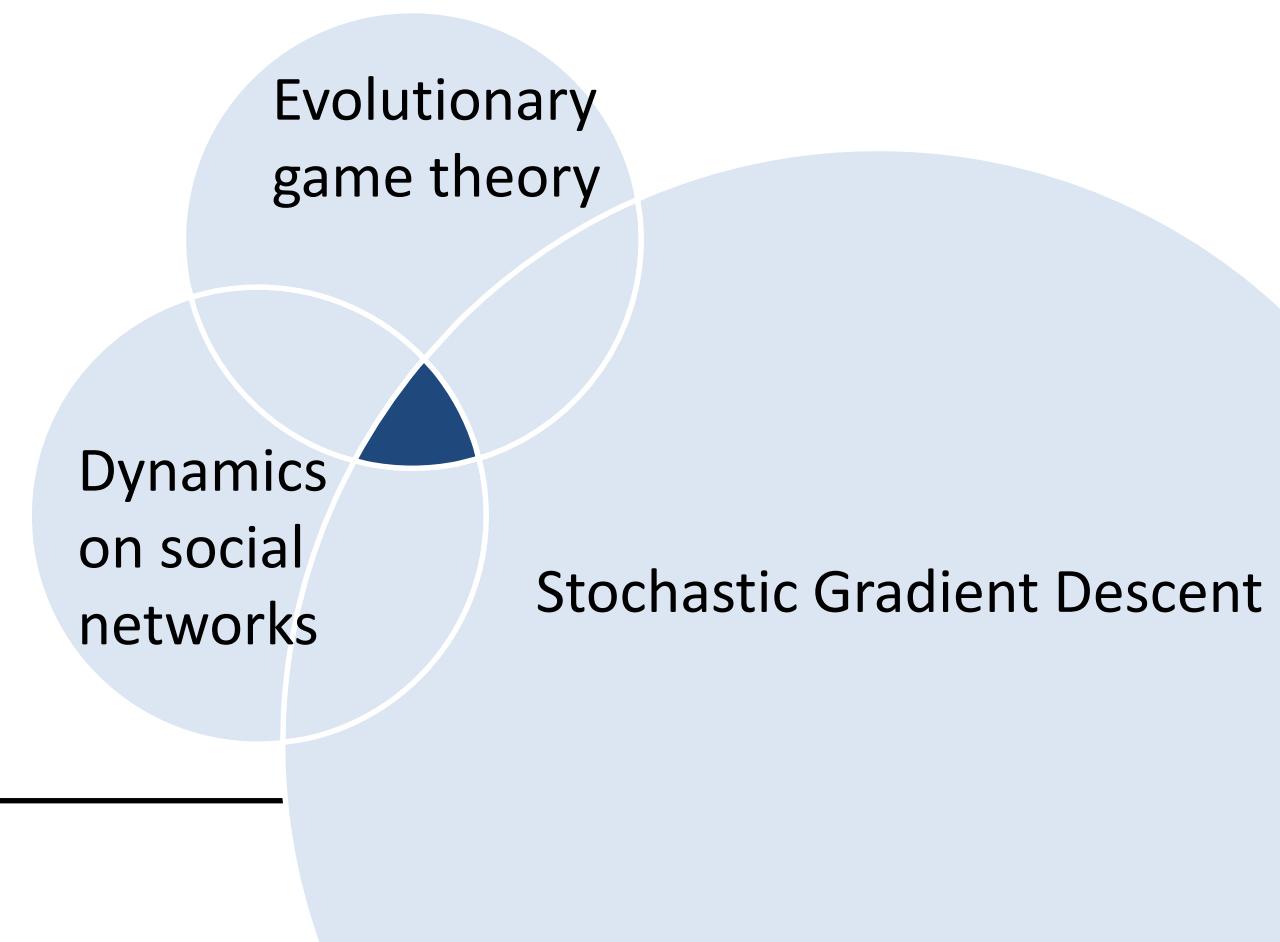
If

- Noise, U_k
 - Martingale difference
 - bounded
 - Noisy
- Expected difference, $F \in \mathcal{C}^2$
 - Fixed points are hyperbolic
 - Potential function



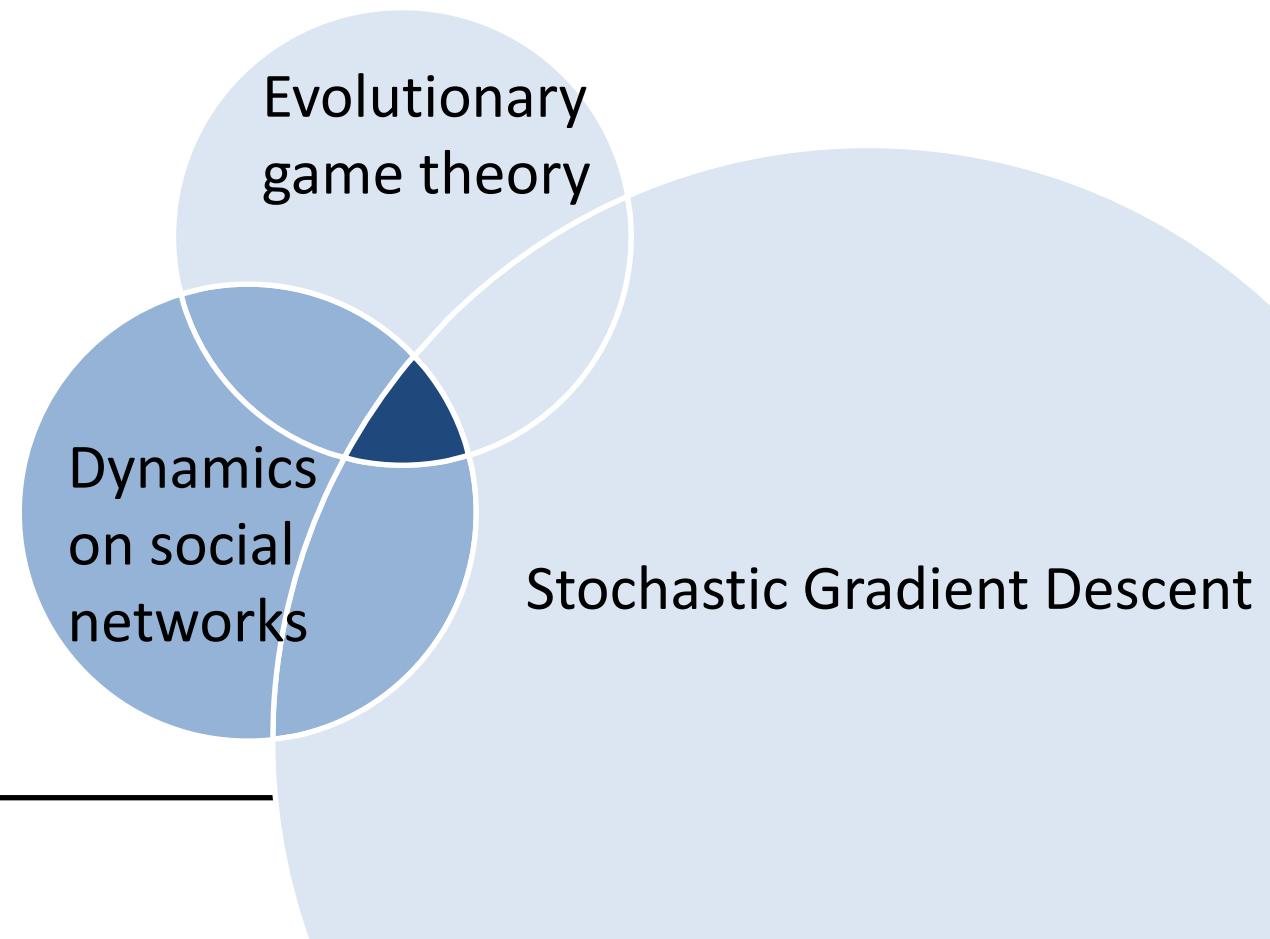
Outline

- Escaping saddle point



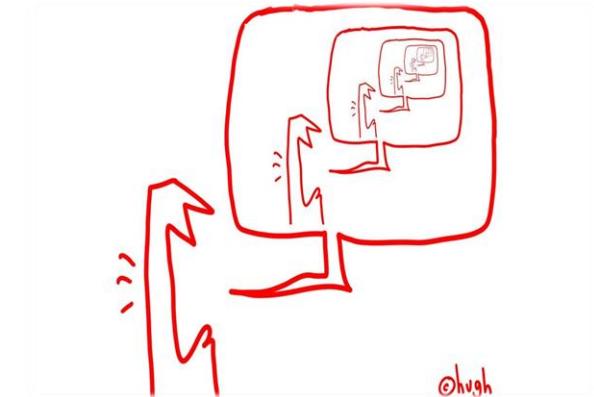
Outline

- Escaping saddle point
- Case study: dynamics on social networks



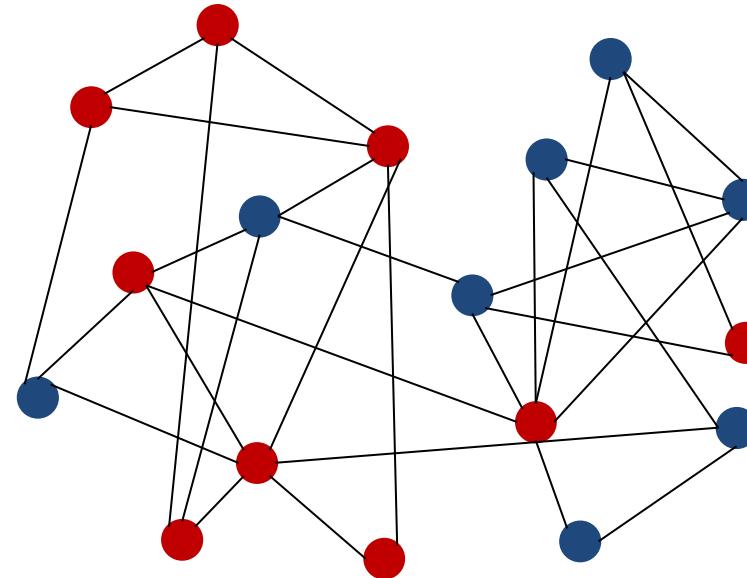
Dynamics on social networks

(DIS)AGREEMENT IN PLANTED COMMUNITY NETWORKS



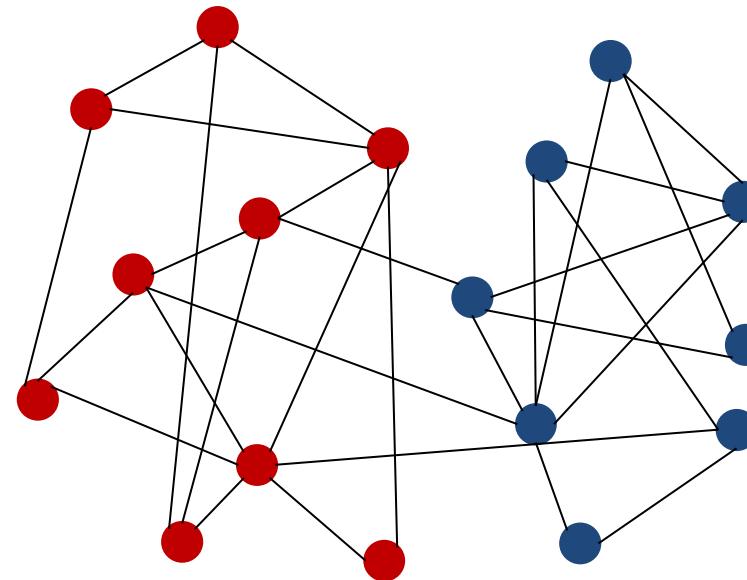
Echo chamber

Beliefs are amplified through interactions in *segregated systems*



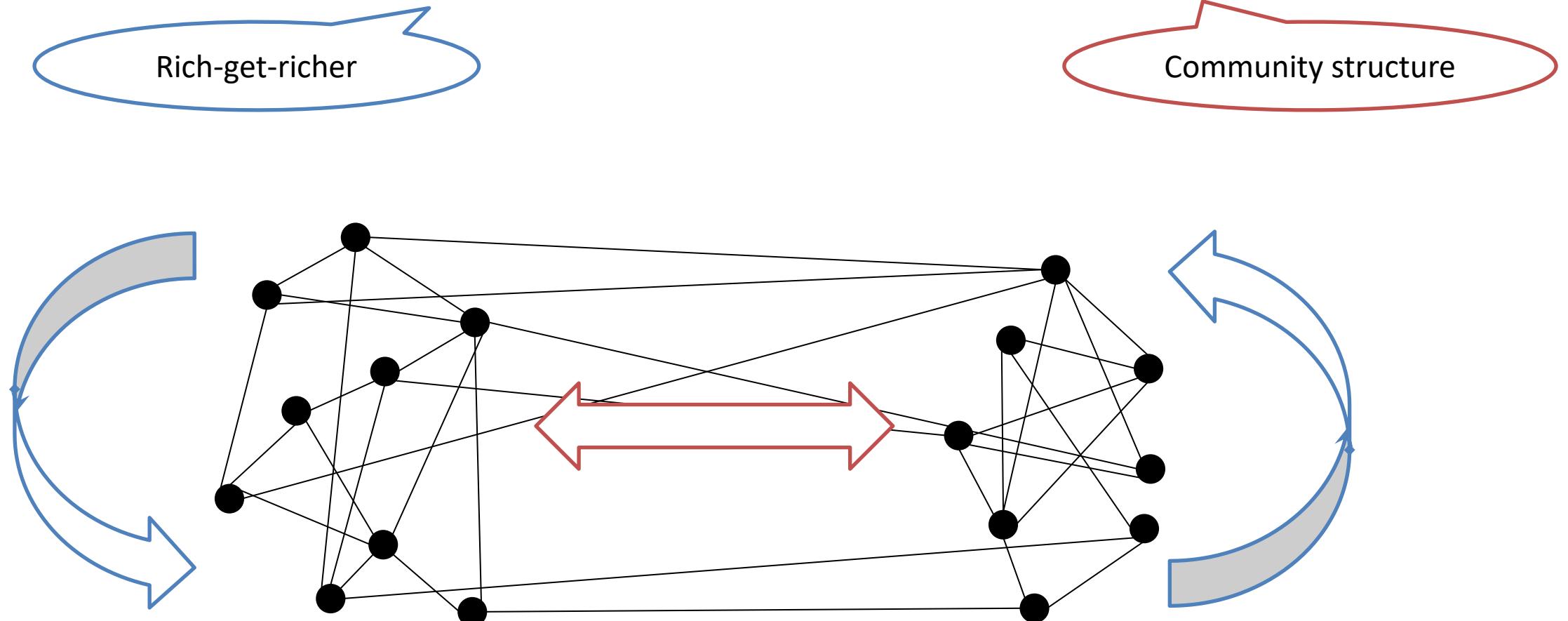
Echo chamber

Beliefs are amplified through interactions in *segregated systems*



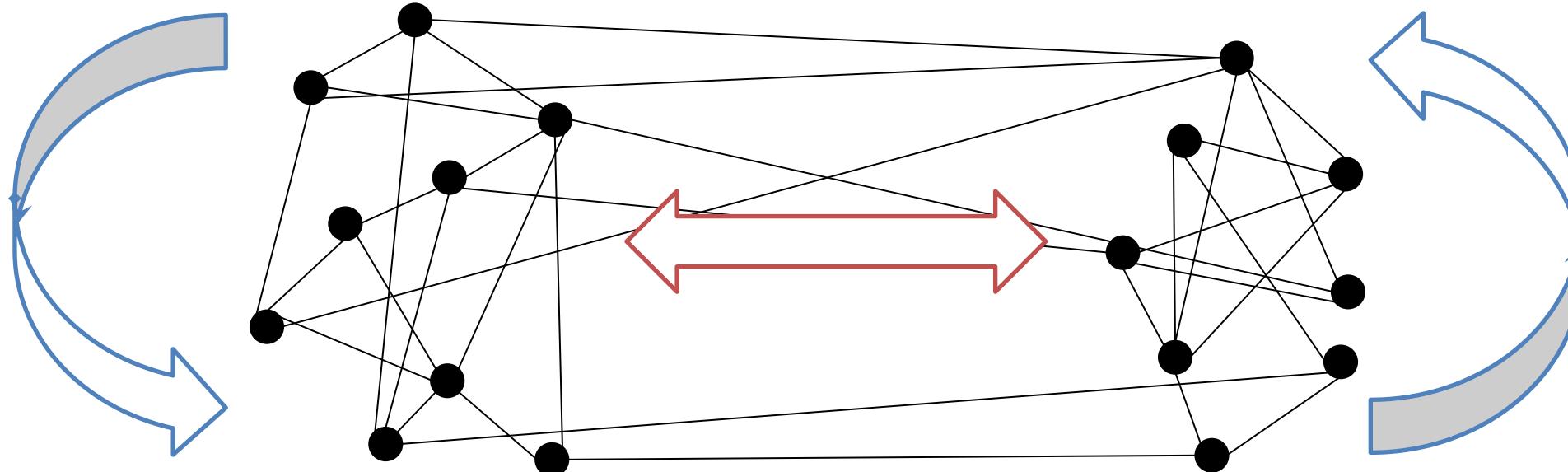
Echo chamber

Beliefs are amplified through interactions in segregated systems



Question

What is the **consensus time** given a **rich-get-richer** opinion formation and the level of **intercommunity connectivity**?

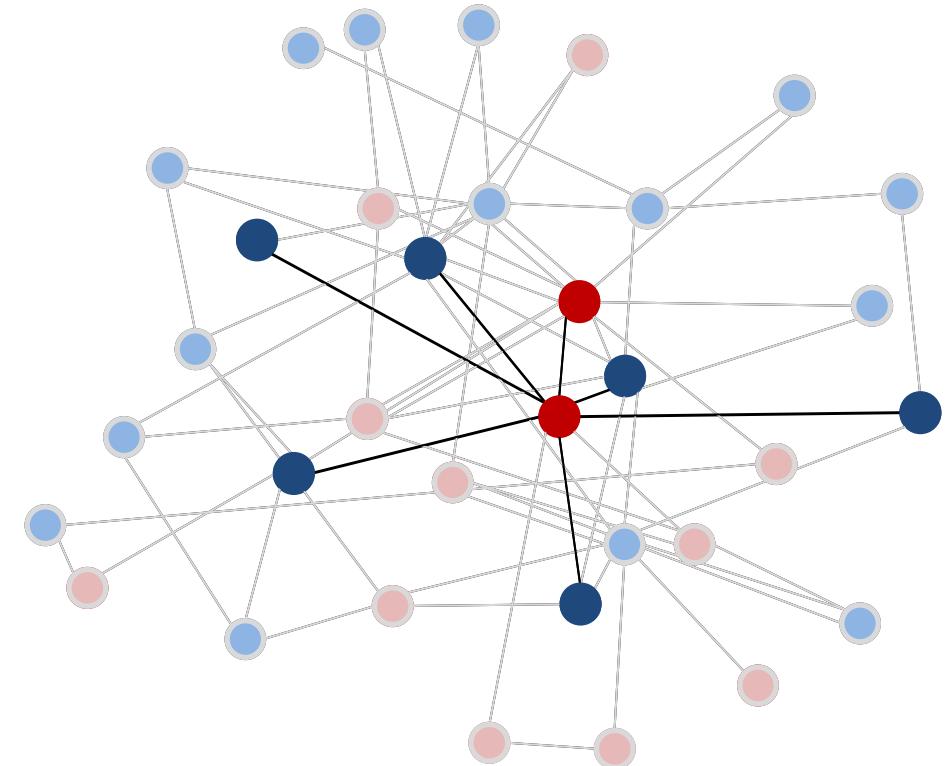


Node Dynamic [Schoenebeck, Yu 18]

- Fixed a graph $G = (V, E)$ opinion set $\{0,1\}$
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t ,
 - A node v is picked uniformly at random

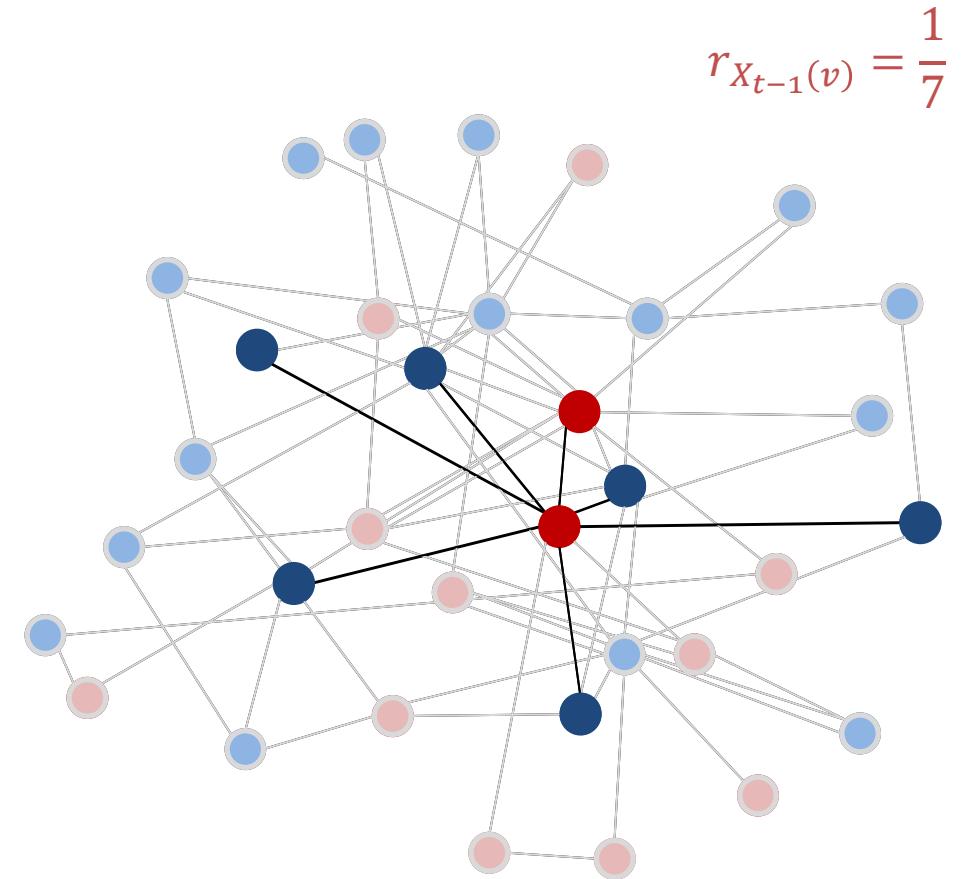
The update of opinion only depends on the **fraction** of opinions amongst its neighbors

$$r_{X_{t-1}(v)} = \frac{1}{7}$$



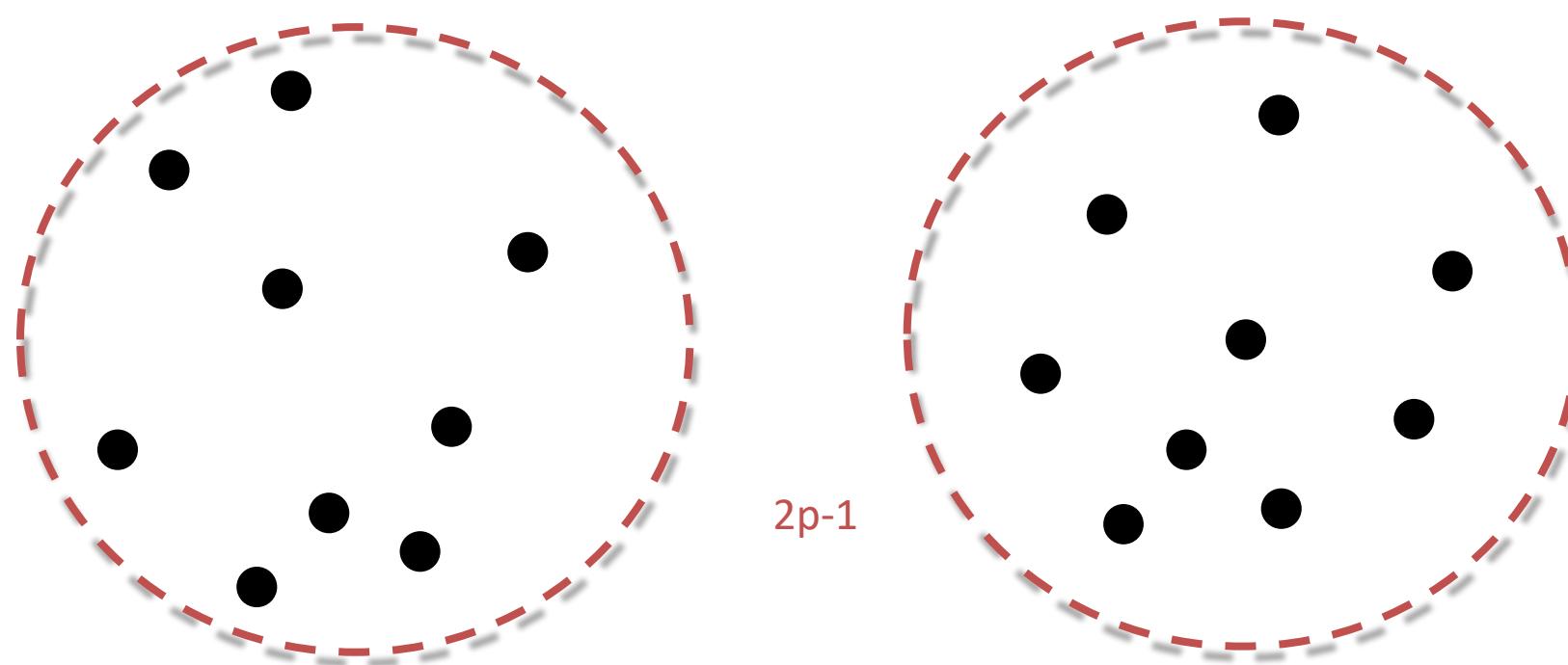
Node Dynamic ND(G, f_{ND}, X_0)

- Fixed a (weighted) graph $G = (V, E)$ opinion set $\{0,1\}$, **an update function** f_{ND}
- Given an initial configuration $X_0: V \mapsto \{0,1\}$
- At round t ,
 - A node v is picked uniformly at random
 - $X_t(v) = 1$ w.p. $f_{ND}(r_{X_{t-1}(v)})$;
 $= 0$ otherwise



Planted Community

- A weighted complete graph with n nodes, $K(n, p)$
 - Two communities with equal size
 - An edge has weight p if in the same community and $1 - p$ o.w.

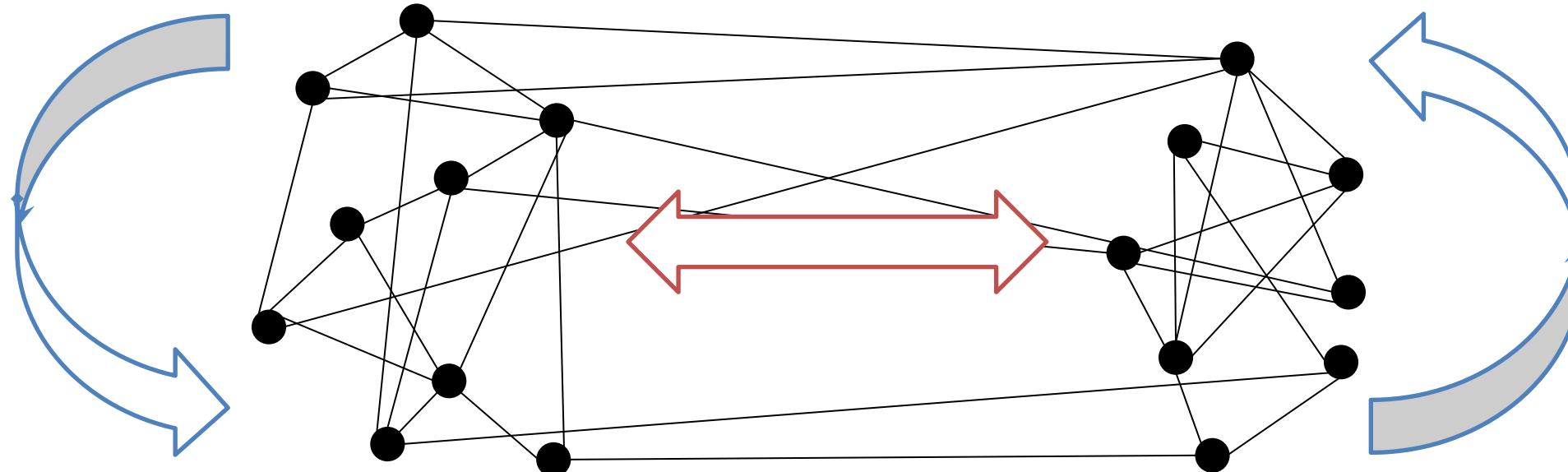


Planted Community

- A weighted complete graph with n nodes, $K(n, p)$
 - Two communities with equal size
 - An edge has weight p if in the same community and $1 - p$ o.w.

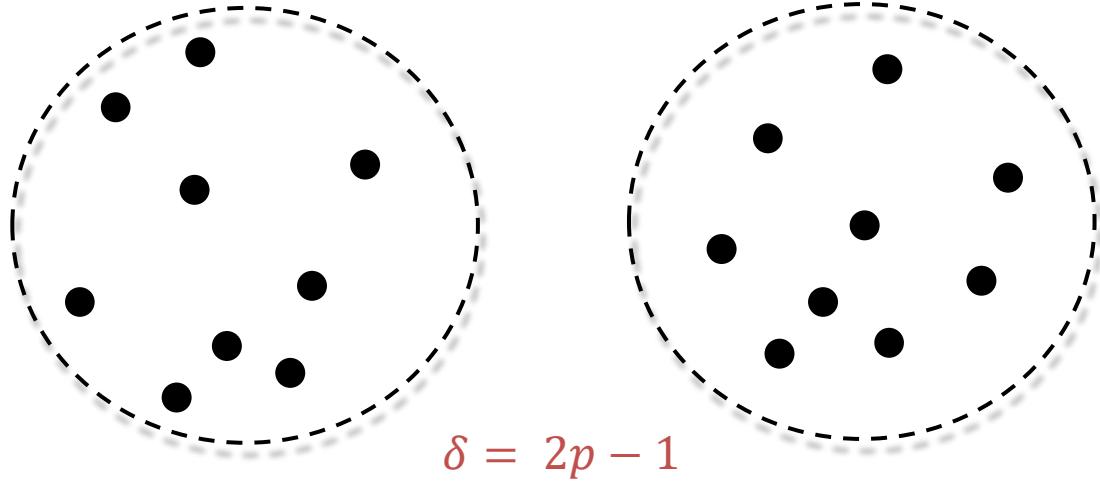
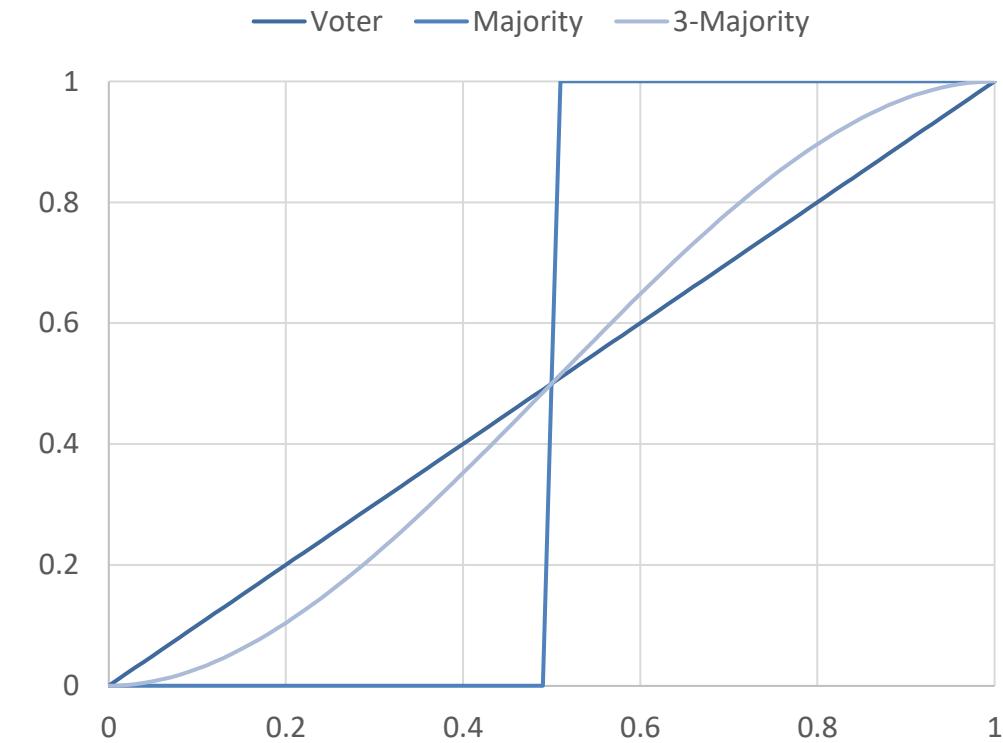
Question

- What is the interaction between rich-get-richer opinion formation and the level of **intercommunity connectivity**?



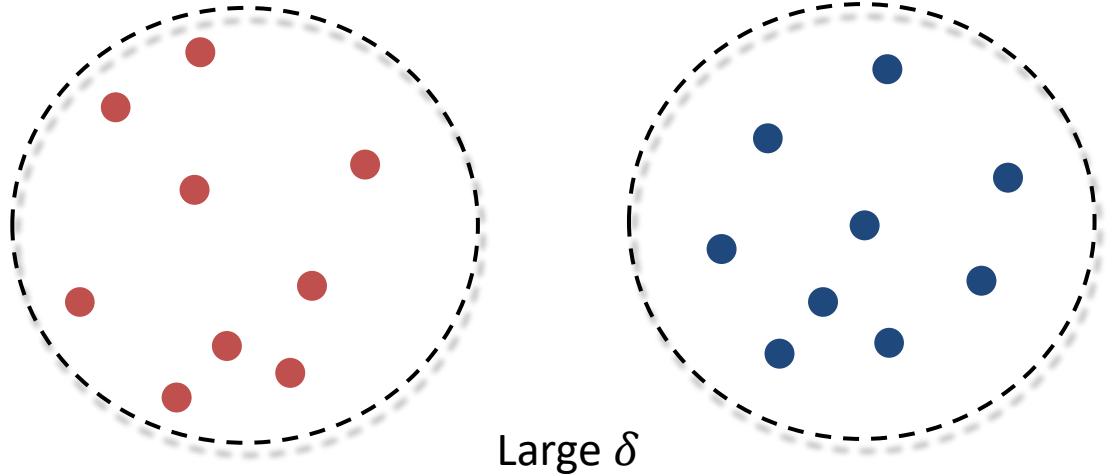
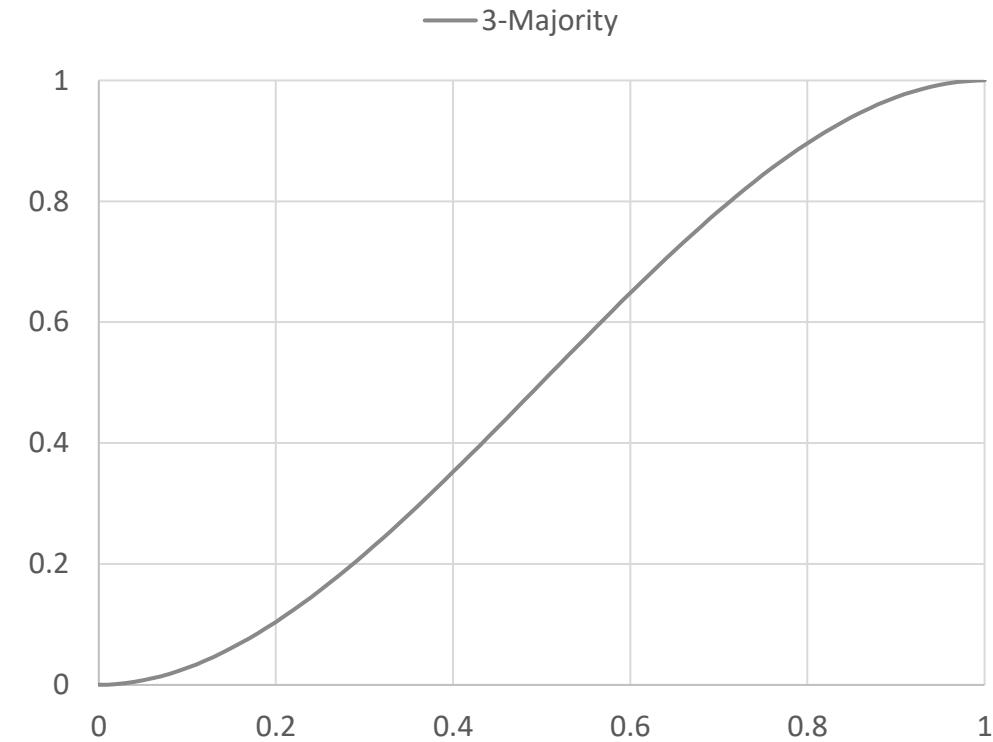
Question

- What is the interaction between rich-get-richer opinion formation and the level of **intercommunity connectivity**?



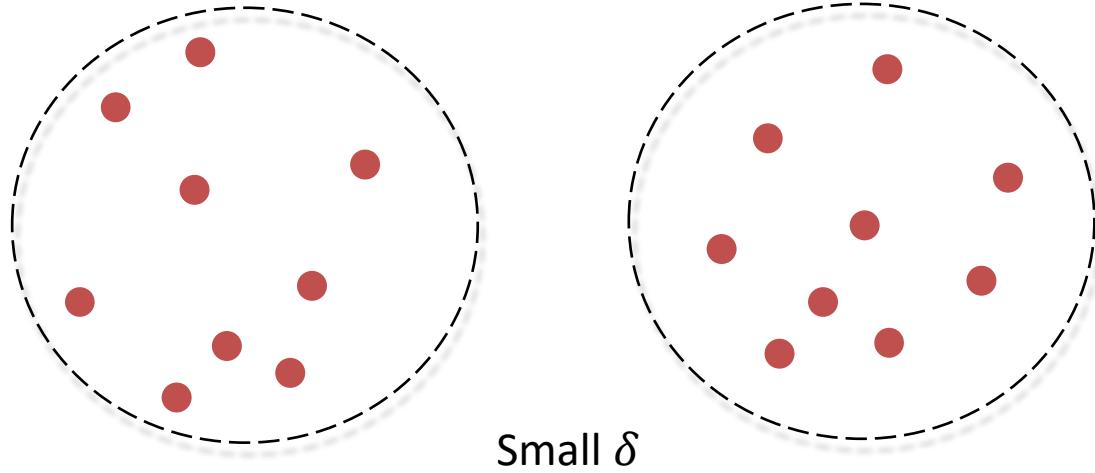
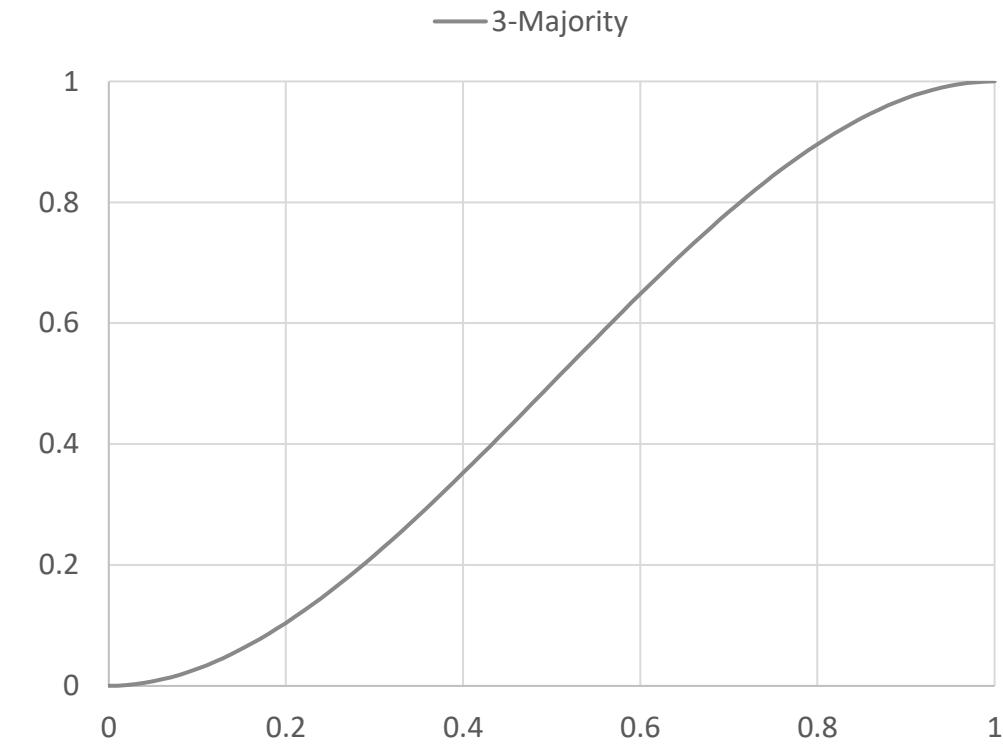
Strong Community Structure

- There exists an initial state such that the process cannot reach consensus fast.



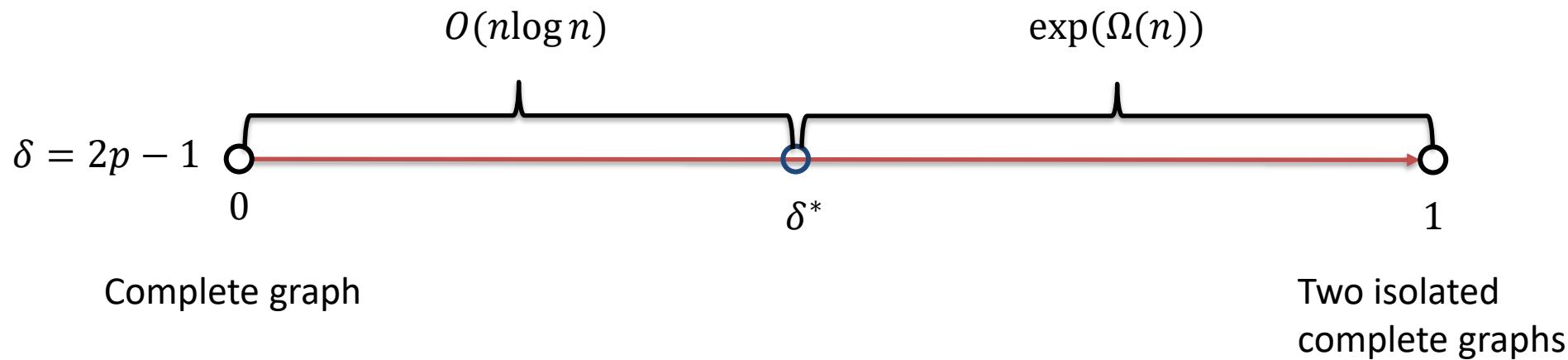
Weak Community Structure

- For all initial states, the process reaches consensus fast.



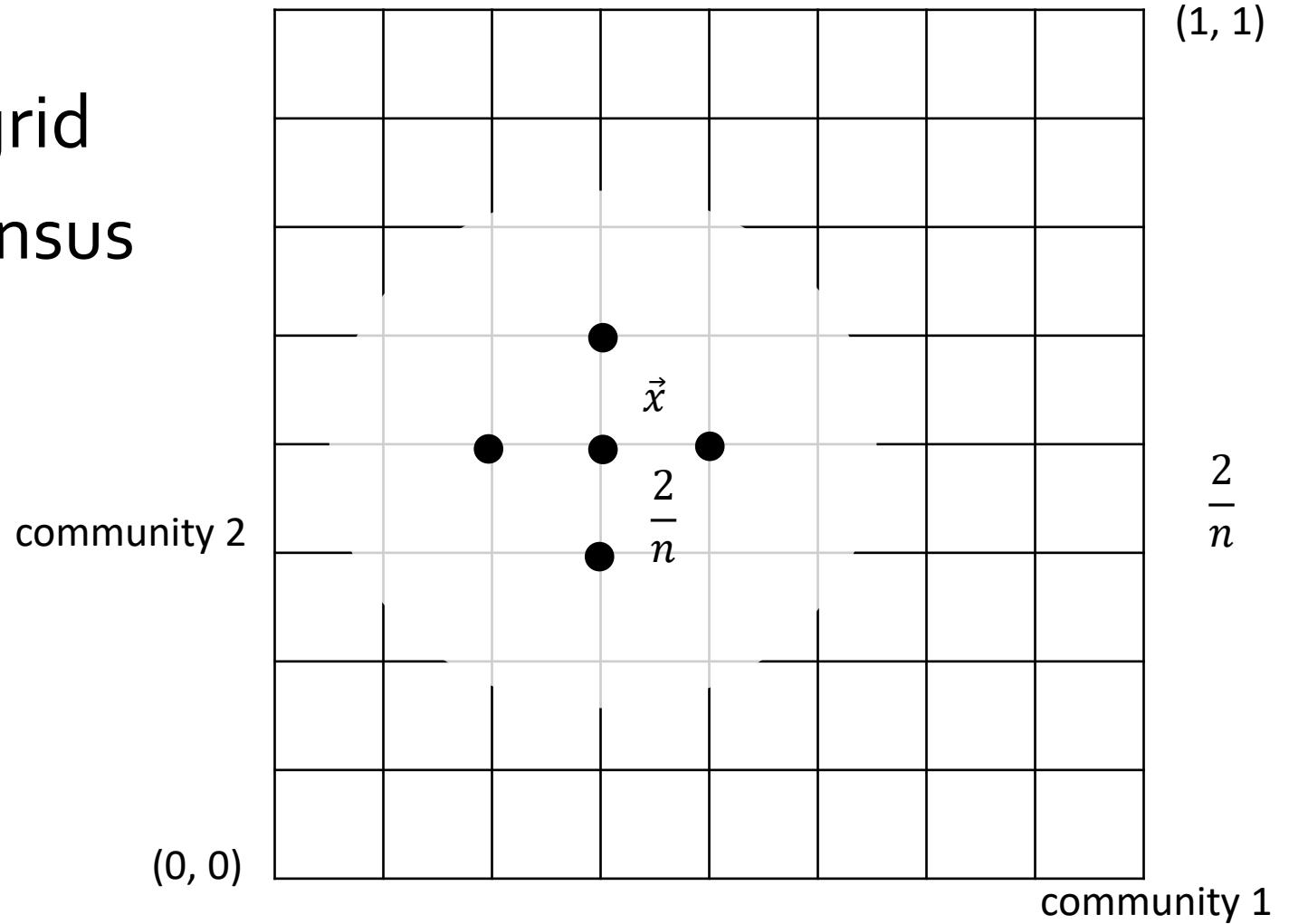
Our Dichotomy Theorem

- Given a smooth rich-get-richer function $f_{ND} \in \mathcal{C}^2$, and a planted community graph $G = K(n, p)$. The **maximum expected consensus time** of $ND(G, f_{ND}, X_0)$ has two cases:

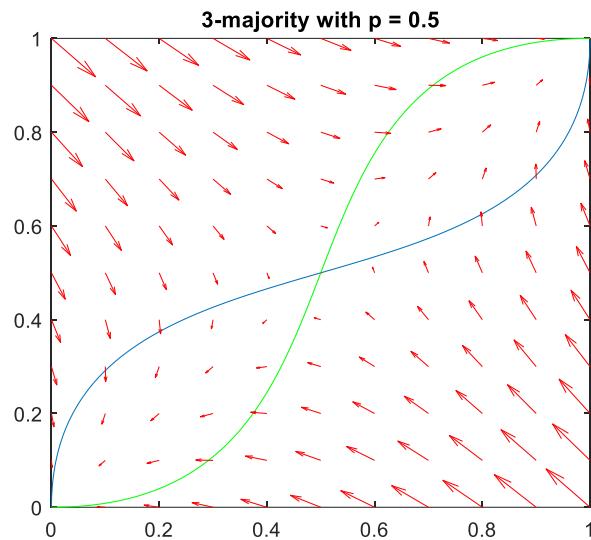
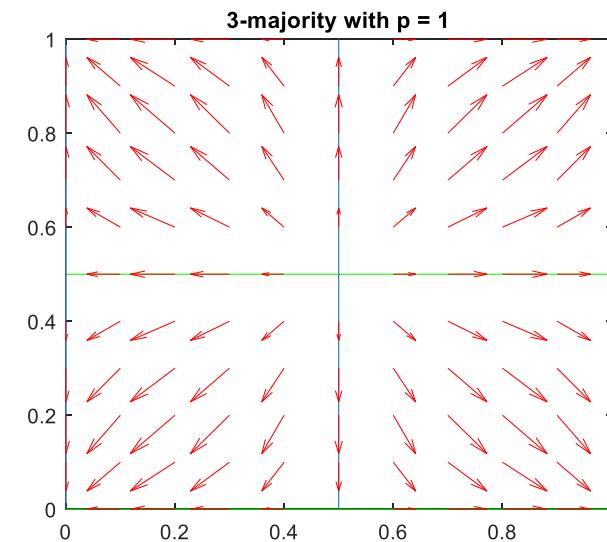
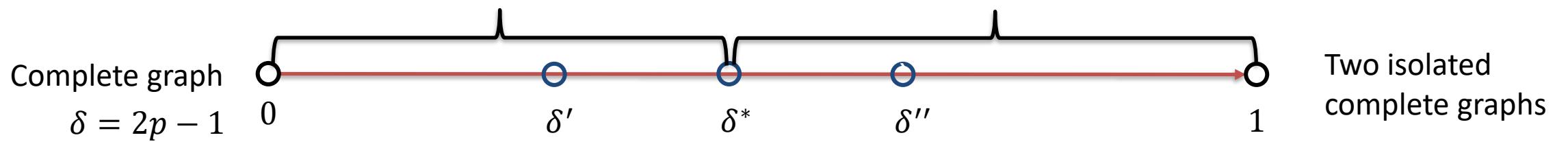


Node dynamic

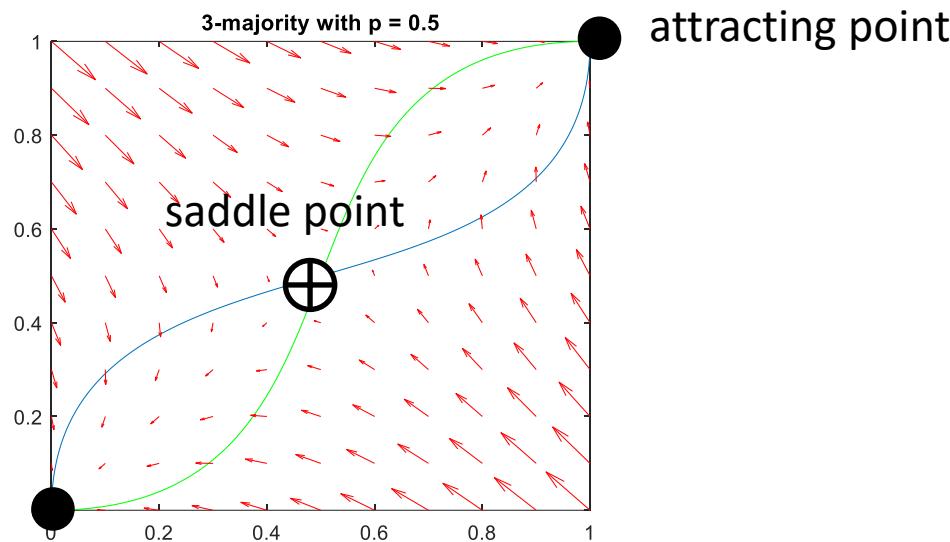
- A Markov chain on 2-d grid
- (0,0) and (1,1) are consensus states



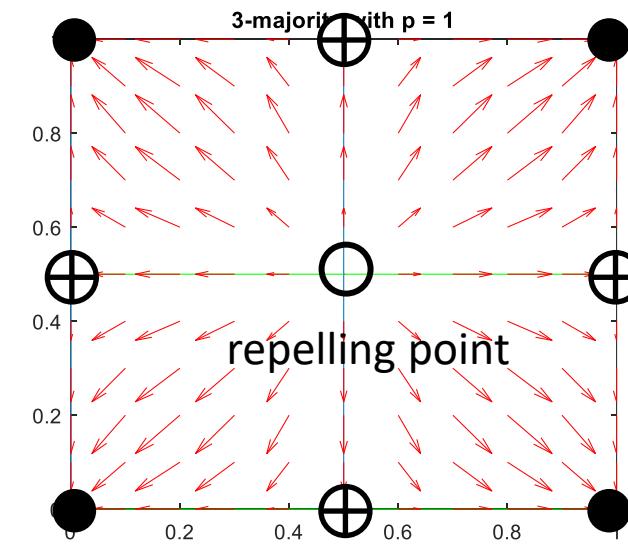
Our Dichotomy Theorem



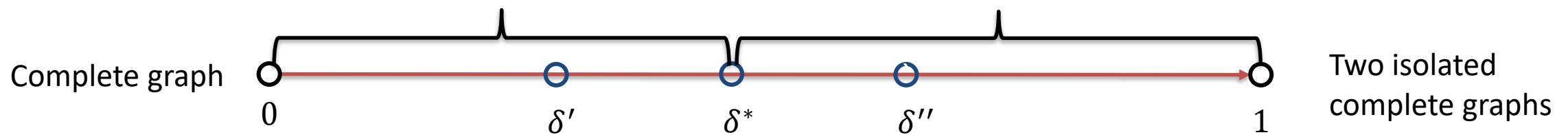
Our Dichotomy Theorem



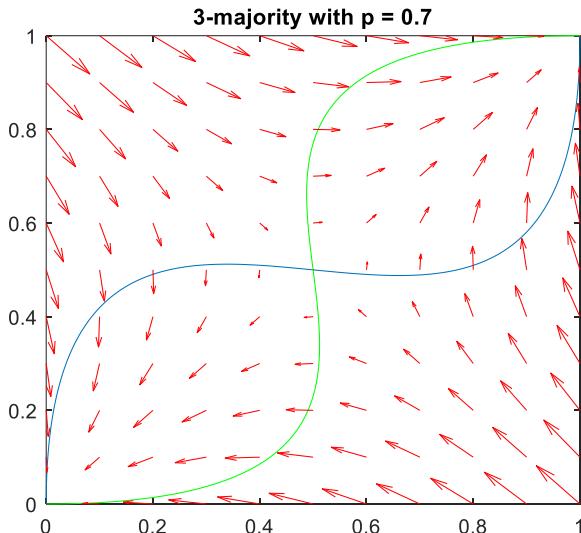
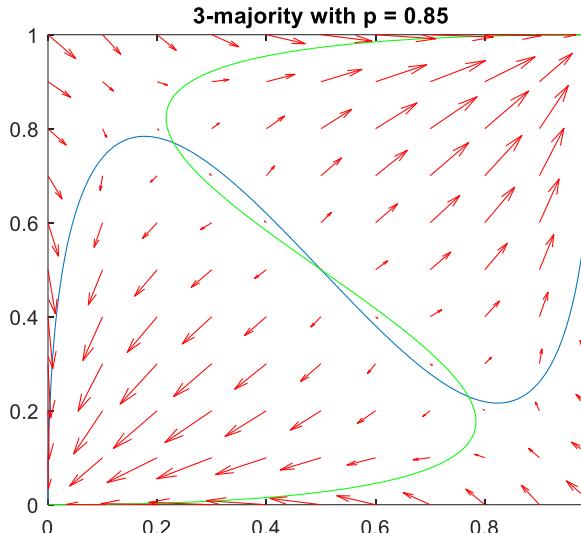
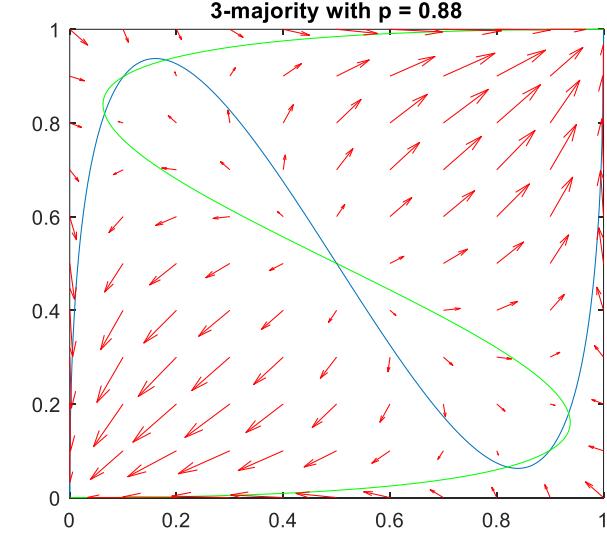
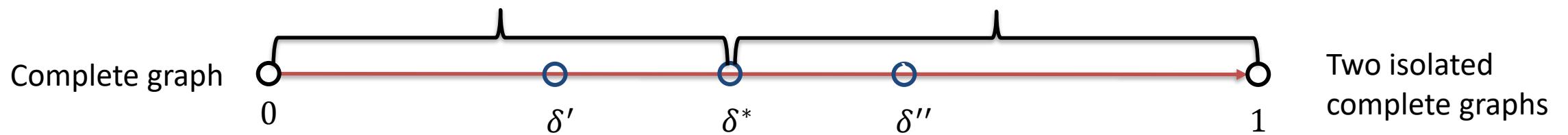
attracting point



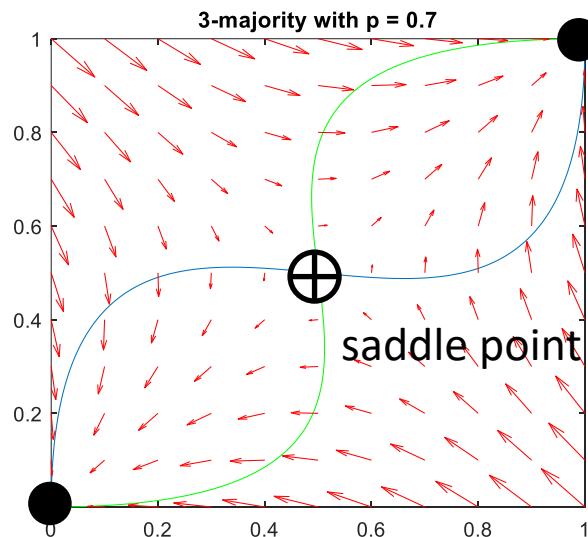
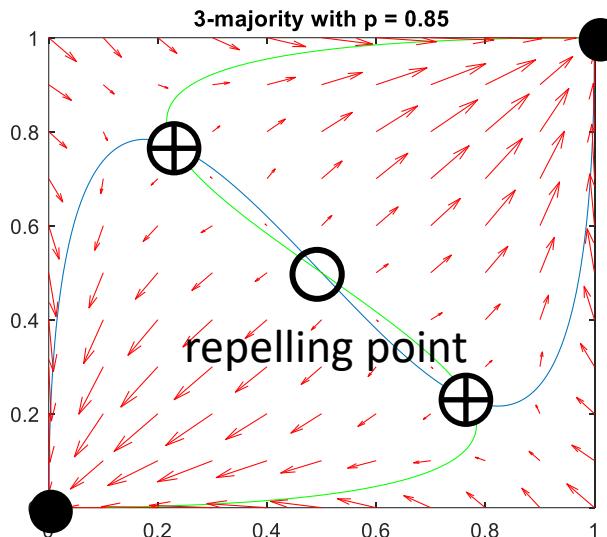
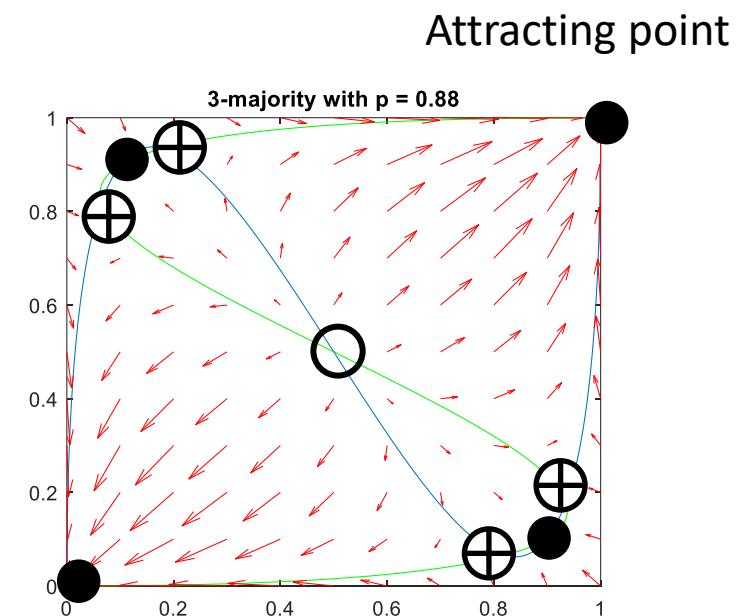
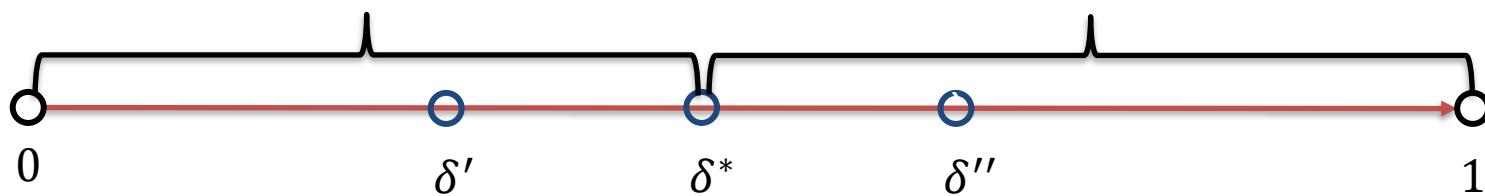
repelling point



Our Dichotomy Theorem

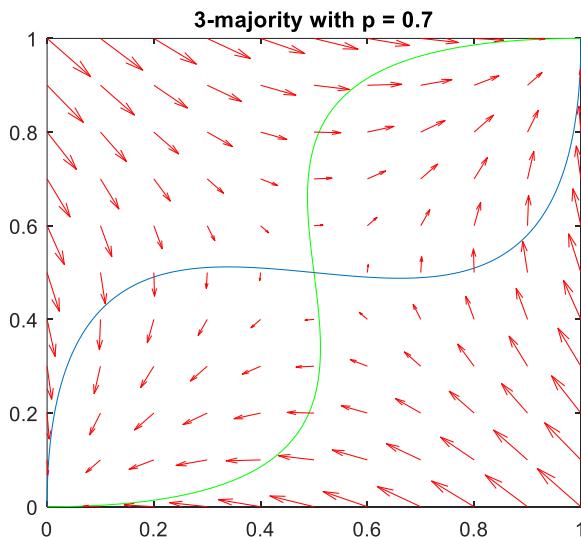
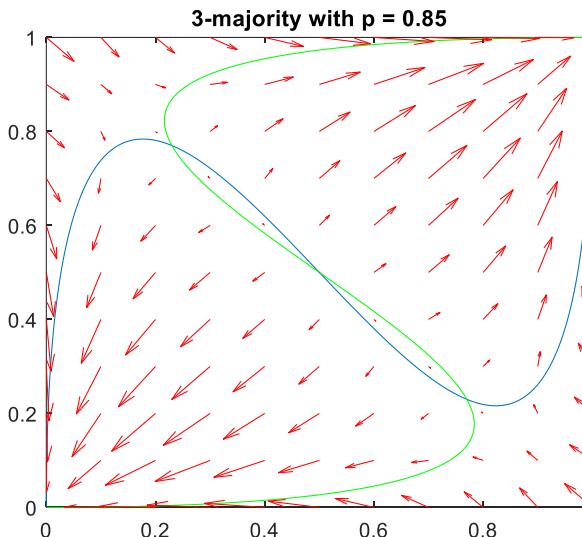
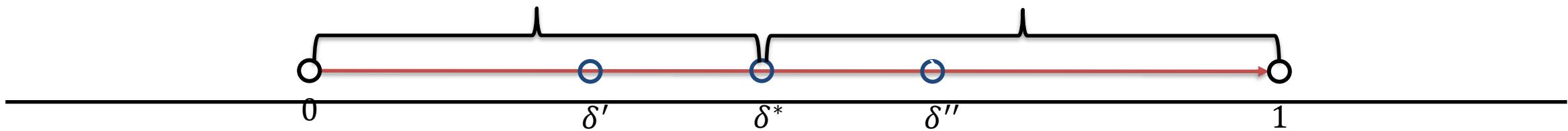


Our Dichotomy Theorem

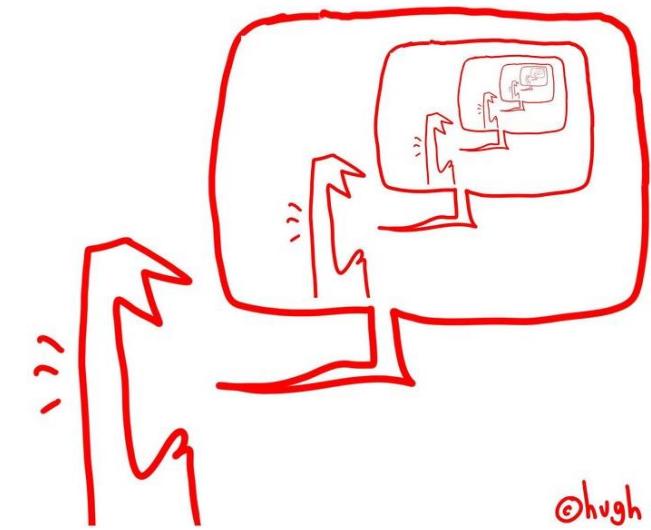


Fast consensus

$\vec{X}_{k+1} - \vec{X}_k = \frac{1}{n}(F_{ND}(\vec{X}_k) + U(\vec{X}_k))$ reach an attracting fixed point in $O(n \log n)$



Question?



@hugh
