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Results

* Analyze the convergence rate of
a family of stochastic processes

* Three related applications
— Evolutionary game theory

— Dynamics on social networks
— Stochastic Gradient Descent
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Upper bounds and lower bounds

ESCAPING SADDLE POINTS




Reinforced random walk with F

A discrete time stochastic process {X;,:k = 0,1, ...} in R® that
admits the following representation,

1
Xp+1 — X = E(F(Xk) + Uy)

Xk
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Reinforced random walk with F

A discrete time stochastic process {X;,:k = 0,1, ...} in R® that
admits the following representation,

1
Xp+1 — X = E(F(Xk) + Uy)

» Expected difference (drift), F(X)

* Unbiased noise (noise), U, i

* Stepsize, 1/n




Examples

A discrete time Markov process {X,.:k = 0,1, ...} in R% that

admits the following representation,
1
Xjer1 = Kk = (F(Xi) + Uy)

* Agent based models with n agents
— Evolutionary games
— Dynamics on social networks

* Heuristic local search algorithms with uniform step size 1/n




Node Dynamic on complete graphs [SY18]

* Let fyp:10,1] = [0,1]. n agents interact on a complete graph
* Each agent v has aninitial binary state Cy(v) € {0,1}
* Atroundk,

* Pick a node v uniformly at random

. . cr (1
* Compute the fraction of opinion 1, X, = | "n( )| <- Complete graph

* Update Ci41(v) to 1 w.p. fap(Xy); 0 o.w.




Node Dynamic

Includes several existing dynamics

* Voter model

* Iterative majority [Mossel et al 14]
* lterative 3-majority [Doerr et al 11]
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Node Dynamic

Node dynamic on complete graphs Reinforced random walk on R
* Letfyp:[0,1] » [0,1]. Therearenagentson e« X, be the fraction of nodes in state 1
a complete graph at k.

* Each agent v has aninitial binary state
Co(v) € {0,1}

 Atroundk,
* Pickanode v uniformly at random

* Compute the fraction of opinion 1, X}, =
[cet ()]

n

» Update Cy11(v) to 1 w.p. fyp(X%); 0 o.w.
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Node Dynamic

Node dynamic on complete graphs Reinforced random walk on R
* Letfyp:[0,1] = [0,1]. There are n agents on * X, bethe fraction of nodes in state 1 at k.
a complete graph 1
PIEFESTep o E[Xprr | Xic] = Xie = = (o (i) — Xoo).

* Each agent v has aninitial binary state

Co(v) € {0,1} Drift F (X})
 Atroundk, o F(X)
* Pickanode v uniformly at random
« Compute the fraction of opinion 1, X, = °
c t () -0.1 ' ' ' '
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n

» Update Cy11(v) to 1 w.p. fyp(X%); 0 o.w.




Node Dynamic

Node dynamic on complete graphs Reinforced random walk on R
* Letfyp:[0,1] = [0,1]. There are n agents on * X, bethe fraction of nodes in state 1 at k.
a complete graph 1
PIEREIIAP ¢ Xiwr — Xie = (o (i) = Xi0) + Up).

* Each agent v has aninitial binary state
Co(v) € {0,1}
 Atroundk, F(X)

0.1 . . . .
* Pickanode v uniformly at random \‘
« Compute the fraction of opinion 1, X}, = ‘\ /

-1
|t (D) -0.1
—_ 0 0.2 0.4 0.6 0.8 1

n

» Update Cy11(v) to 1 w.p. fyp(X%); 0 o.w.

Drift Noise




Question

Given F and U, what is the limit of X, for sufficiently large n?

1
Xp+1 — X = E(F(Xk) + Uy)
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Mean field approximation

1
Xis1 — X = E(F(Xk) + U(Xy))
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Mean field approximation

If nis large enough, fork = 0(n), X}, = x (%) by Wormald et al gs.




Regular point

If nislarge enough, fork = 0(n), X}, = x (E)
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Fixed point, F(x*) = 0

x(%)-
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If nis large enough, for k = 0(n), X
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Escaping non-attracting fixed point

When can the process escape a non-attracting fixed point?
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When can the process escape a
non-attracting fixed point?

1.

Escaping non-attracting fixed point

O(n)

2. O(nlogn)
3.
4. 0(n?)
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non-attracting fixed point?
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Lower bound

Escaping saddle point region takes at least Q(nlogn) steps.

/
onx*




Upper bound

Escaping saddle point region takes at most O(nlogn) steps.
If

X7, T =0(nlogn)




Upper bound

Escaping saddle point region takes at most O(nlogn) steps.
If
* Noise, Uy

— Martingale difference

— bounded

— Noisy (covariance matrix is large)

 Expected difference, F € C*
— x™ is hyperbolic

X7, T =0(nlogn)




Gradient-like dynamics

Converges to an attracting fixed-point region in O(nlogn)

steps.
If
* Noise, Uy,
— Martingale difference
— bounded
— Noisy
e Expected difference, F € C*

— Fixed points are hyperbolic
— Potential function
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Ohish
Dynamics on social networks

(DIS)AGREEMENT IN PLANTED COMMUNITY
NETWORKS




Echo chamber

Beliefs are amplified through interactions in segregated systems




Echo chamber

Beliefs are amplified through interactions in segregated systems




Echo chamber

Beliefs are amplified through interactions in segregated systems

Gich—get—richs Q/r:unity structuD
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Question

What is the given a rich-get-richer opinion
formation and the level of intercommunity connectivity?




Node Dynamic [Schoenebeck, Yu 18]

Fixed a graph G = (V, E) opinion set
10,1}

Given an initial configuration

Xy Ve {0,1}

At roundt,

A node v is picked uniformly at random

-

.

The update of opinion only depends on the
fraction of opinions amongst its neighbors

~

TXeo1(v) =

J

N




Node Dynamic ND(G'fNDIXO)

* Fixed a (weighted) graph G = (V, E) -

TXe1(w) =

opinion set {0,1}, an update function /
fnp
* Given aninitial configuration
Xy Ve {0,1}
* Atroundt,
*

* Anodevis picked uniformly at random

* X:w)=1w.p. fap (Txt_l(v)) I
= (0 otherwise




Planted Community

* A weighted complete graph with n nodes, K(n, p)
— Two communities with equal size
— An edge has weight p if in the same community and 1 — p o.w.
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Planted Community

* A weighted complete graph with n nodes, K(n, p)
— Two communities with equal size
— An edge has weight p if in the same community and 1 — p o.w.
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Question

* What is the interaction between rich-get-richer opinion
formation and the level of intercommunity connectivity?




Question

* What is the interaction between rich-get-richer opinion
formation and the level of intercommunity connectivity?
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Strong Community Structure

* There exists an initial state such that the process cannot reach
consensus fast.

—— 3-Majority
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Weak Community Structure

 For allinitial states, the process reaches consensus fast.
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Our Dichotomy Theorem

* Given a smooth rich-get-richer function fyp € C#, and a
planted community graph ¢ = K(n,p). The
of ND(G, fyp,Xp) has two cases:

O(nlogn) exp(QQ(n))
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Node dynamic

(1,1)
* A Markov chain on 2-d grid
* (0,0) and (z,1) are consensus
states - o
7
— o o ) o E
community 2 | ® n n
(0, 0)

community 1




Our Dichotomy Theorem

3-majority with p = 0.5

3-majority with p =1
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- @ attracting point

Our Dichotomy Theorem
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3-majority with p
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3-majority with p = 0.7

Our Dichotomy Theorem
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3-majority with p = 0.88
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Our Dichotomy Theorem

Attracting point
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Fast consensus

Xpoq — Xp = %(FND()?R) + U(X,)) reach an attracting fixed point in
O(nlogn)
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Question?
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