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Elicit truthful reports

High quality information from the crowd
• Peer review at conferences
• Peer grading in classrooms
• Expert forecasting
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Proper Scoring Rules: Binary

• Score an agent’s forecast on a binary random
variable on Ω = {0, 1}
• Agent reports a forecast p̂ ∈ [0, 1]
• Principal and the agent observe the

outcome w ∈ Ω
• Principal pays S(p̂,w) to the agent

• A scoring rule S is proper if for all p̂

Ew∼p[S(p,w)] ≥ Ew∼p[S(p̂,w)]
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Proper Scoring Rules

Definition
A scoring rule S is proper if for all p̂ ∈ ∆Ω,

S(p,p) ≥ S(p̂,p)

where S(p̂,p) := Ew∼p[S(p̂,w)], and strictly proper if the inequality is strict for all p̂ ̸= p.

Score a forecast on a r.v. on Ω

• Report a forecast p̂ ∈ ∆Ω

• Observe the realization w ∈ Ω

• Pay S(p̂,w)
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Proper Scoring Rules

Definition
A scoring rule S is proper if for all p̂ ∈ ∆Ω,

S(p,p) ≥ S(p̂,p)

where S(p̂,p) := Ew∼p[S(p̂,w)], and strictly proper if the inequality is strict for all p̂ ̸= p.

Examples of Proper Scoring Rules
• Log scoring rule: S(p̂,w) = ln p̂(w)

• Quadratic scoring rule: S(p̂,w) = 2p̂(w)− ∥p̂∥2 − 1
• v -shaped for binary Ω = {0, 1}: S(p̂,w) = (1− c)1[p > c,w = 1]+ c1[p̂ ≤ c ,w = 0]
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What S(p̂,w) are proper?

Theorem (Savage Representation)
The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function
G : ∆Ω → R such that

S(p̂,w) = G (p̂) +∇G (p̂) · (1w − p̂)

where ∇G is the (sub)gradient and 1w is the distribution putting probability 1 on w ∈ Ω.

Proper scoring rule = convex function
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Theorem (Savage Representation)
The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function
G : ∆Ω → R such that

S(p̂,w) = G (p̂) +∇G (p̂) · (1w − p̂)

where ∇G is the (sub)gradient and 1w is the distribution putting probability 1 on w ∈ Ω.

[Proof of ⇐]

S(p̂,p) =G (p̂) +∇G (p̂) · (Ew∼p[1w ]− p̂)
=G (p̂) +∇G (p̂) · (p − p̂) .

Because G is convex,

G (p̂) +∇G (p̂) · (p − p̂) ≤ G (p) = S(p,p).
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What S(p̂,w) are proper?

Theorem (Savage Representation)
The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function
G : ∆Ω → R such that

S(p̂,w) = G (p̂) +∇G (p̂) · (1w − p̂)

where ∇G is the (sub)gradient and 1w is the distribution putting probability 1 on w ∈ Ω.

[Proof of ⇒] Let G (p) := S(p,p). As
G (p) = maxp̂ S(p̂,p), and S(p̂,p) is affine in p,
G (p) is convex. S(p̂,p) is tangent to G at p̂, so
S(p̂,w) = G (p̂) +∇G (p̂) · (1w − p̂) for some
sub-gradient ∇G (p̂).
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Information Measures and Bregman Divergence [Gneiting and Raftery, 2007]

Given a proper scoring rule S ,

• generalized entropy
G (p) := S(p,p) = supp̂ S(p̂,p).
• divergence d(q,p) := S(p,p)− S(q,p)

• If S is strictly proper, d(q,p) > 0 unless q = p.
• Generally not symmetric, d(q,p) ̸= d(p,q).
• also known as Bregman divergence with G ,

since d(q,p) = G (p)− G (q)−∇G (q)(p − q).
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Examples of Information Measures and Divergence

Scoring rules G (p) divergence d(p̂, p)

Log p ln p + (1− p) ln(1− p) ln p
p̂ + (1− p) ln 1−p̂

1−p = DKL(p̂, p)

Quadratic −2p(1− p) 2(p − q)2

v -shaped c(1− p)1[p < c] + (1− c)p1[p ≥ c]

{
0 if p, q < c or p, q ≥ c

|p − c | otherwise
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Applications: Optimization of scoring rule

Peer review
1. Principle announces S

2. Agent reports p̂ ∈ [0, 1]
3. Outcome w ∈ {0, 1} reveals
4. Agent gets S(p̂,w)
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Incentivize costly forecasts

Peer review with effort
1. Principle announces S

2. Agent decides to acquire costly information P

3. Agent reports p̂ ∈ [0, 1]
4. Outcome w ∈ {0, 1} reveals
5. Agent gets S(p̂,w)
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Incentivize costly forecasts

Given a joint distribution P between w and p, the expected
payments before and after costly signal are
• Truthful prior: G (p0)

• Truthful posterior: EP [G (p)] where EP [p] = p0

• Information gain: difference of payment

EP [G (p)]− G (p0) = EP [G (p)]− G (EP [p])

The gap of Jensen’s ineq. = convexity at p0
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Optimization of scoring rule: Model [Hartline et al., 2020]

Model
Given an information structure P on (w , p), design “bounded” scoring rule S with G so
that maximize the expected gain

max
G

EP [G (p)]− G (EP [p]) such that G is convex and bounded

1. Bounded ex-post payment [Hartline et al., 2020]:
0 ≤ S(p,w) ≤ 1.

2. Bounded expected payment [Chen and Yu, 2021]:
0 ≤ G ≤ 1.
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Optimization of scoring rule: Theorem

Theorem
v -shaped scoring rules are optimal. Let p0 be the prior of the w ∈ {0, 1}, and
x 7→ max{a(x − x0) + c , b(x − x0) + c} be a v -shaped function with (x0, a, b, c).
• A v -shaped function with (p0,

−1
p0
, 1

1−p0
, 0) is optimal for the ex-ante setting.

• A v -shaped function with (p0,
−1

2max{p0,1−p0} ,
1

2max{p0,1−p0} ,
1
2) is optimal for the

ex-post setting.
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How can we handle unknown P

Peer review with effort
1. Principle announce S

2. Agent decides to acquire costly information P

3. Agent reports p̂ ∈ [0, 1]
4. Outcome reveals w ∈ {0, 1}
5. Agent gets S(p̂,w)
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Multiple possible information structures P = {P1, . . . }

Heterogeneous agents Sequential learning
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Multiple possible information structures P = {P1, . . . }

Heterogeneous agents Sequential learning
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Optimization of scoring rule: Model [Chen and Yu, 2021]

Model
Given a collection of information structure P on (w , p), design “bounded” scoring rule S
with G so that maximizes the expected gain

max
G

min
P∈P

EP [G (p)]− G (EP [p]) such that G is convex and bounded
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Optimization of scoring rule: Results

Different P leads to different optimal scoring rules
1. Singleton: a v -shaped G is optimal → turning point at prior
2. Finite P: an efficient algorithm and is piecewise linear is optimal → turning points at

support of all information structures.
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Optimization of scoring rule: Simulations

Log scoring rule perform well under Beta-Bernoulli setting
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Current Progress

1. Proper Scoring Rules
1.1 Definition of proper scoring rule
1.2 Proper scoring rule = convex function
1.3 Proper scoring rule = decision problem

Application: Monotonicity of information
Application: U-calibration

2. Generalized Scoring Rules

3. Prediction Markets
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Bayesian Decision Problem

A decision problem (A, Ω, u) consists of an action space (decisions) A, an outcome space
Ω, and a value function u : A× Ω→ R. An agent chooses an action based on belief
p ∈ ∆Ω of the outcome w to maximize the expected utility.
• Given an action a, the agent gets u(a,w) under an outcome w and
u(a,p) := Ew∼p[u(a,w)] in expectation.
• ap ∈ A is a Bayes act/best response to p if for all a, u(ap,p) ≥ u(a,p), and

U(p) := max
a∈A

u(a,p)
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Example of Decision Problem1

A journey through Rutgers
• Ω = {clear, snow},
• A = {ride,walk}.
• value function

• If we ride

u(ride, clear) =4,
u(ride, snow) =4.

• If we walk

u(walk, clear) =10,
u(ride, snow) =2.

u(ride, p) = 4

1Credit: Adapted from Bo Waggoner’s slides.
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Example of Decision Problem1

A journey through Rutgers
• Ω = {clear, snow},
• A = {ride,walk}.
• value function

• If we ride

u(ride, clear) =4,
u(ride, snow) =4.

• If we walk

u(walk, clear) =10,
u(ride, snow) =2.

U(p) = max
a=ride, walk

u(a, p) = max{4, 10− 8p}

1Credit: Adapted from Bo Waggoner’s slides.
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Example of Decision Problem1

A journey through Rutgers
• Ω = {clear, snow},
• A = {ride,walk}.
• value function

• If we ride

u(ride, clear) =4,
u(ride, snow) =4.

• If we walk

u(walk, clear) =10,
u(ride, snow) =2.

ap =

{
walk if p < 3/4
ride otherwise.

1Credit: Adapted from Bo Waggoner’s slides.
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Proper Scoring Rules = Decision Problem

Theorem
For any decision problem (A, Ω, u) there exists a proper scoring rule S : ∆Ω ×Ω→ R with
G so that for all belief p

G (p) = U(p)

Proof. Set S(p̂,w) := u(ap̂,w) and use revelation principal. □
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Proper Scoring Rules = Decision Problem

Theorem
For any decision problem (A, Ω, u) there exists a proper scoring rule S : ∆Ω ×Ω→ R with
G so that for all belief p

G (p) = U(p)

Proof. Set S(p̂,w) := u(ap̂,w) and use revelation principal. □

Note that a scoring rule is a special case of decision problem where the action space
A = ∆Ω.
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Proper Scoring Rules = Decision Problem

Theorem
For any decision problem (A, Ω, u) there exists a proper scoring rule S : ∆Ω ×Ω→ R with
G so that for all belief p

G (p) = U(p)

Decision problem
• Ω = {clear, snow},
• A = {ride,walk}, and

•

u(ride, clear) =4,
u(ride, snow) =4,
u(walk, clear) =10,
u(ride, snow) =2.

Proper Scoring rule
• Ω = {clear, snow},
• ∆Ω = [0, 1] probability of snow
• S(p̂,w) = u(ap̂,w) =

10 if p̂ ≤ 3/4,w = clear
2 if p̂ ≤ 3/4,w = snow
4 otherwise.

v -shaped scoring rule!
25 / 117



Applications: Monotonicity of information

Given a decision problem (A, Ω, u), which do you prefer?
• a signal s (e.g., COVID test), and get a posterior of the outcome ps = Pr[w | s], or
• prior p = Pr[w].

Theorem (Information never harms)

E[u(aps ,w)] ≥ E[u(ap,w)]

Proof.

E[u(aps ,w)] =E[G (ps)] (decision problem = proper scoring rule)
≥G (Eps) (G is convex)
=E[u(ap,w)]. (decision problem = proper scoring rule)

□
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Applications: U-calibration [Kleinberg et al., 2023]

How can we measure the quality of a sequence of forecasts and outcomes (pt ,wt) for
agents with unknown decision problems?
• Given a decision problem u, the regret of following (best responding) the forecasts is

Regu = max
a

∑
t

u(a,wt)−
∑
t

u(apt ,wt) = max
q

∑
t

S(q,wt)−
∑
t

S(pt ,wt)

• U-calibration error is the worst regret on all bounded decision problems U ,

UCal = sup
u∈U

Regu = sup
S bounded proper

[
max
q

∑
t

S(q,wt)−
∑
t

S(pt ,wt)

]
.

• U-calibration̸= ℓ1-Calibration
• ℓ1-calibration punishes everywhere
• U-calibration is budgeted (recall that for the scoring rule design: G cannot be too

curved). In particular, U-calibration ≈ V -calibration.
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Scoring rule design = mechanism design2

Scoring rule design

max
scoring rule

E[ objective]

s.t scoring rule is proper and bounded

A scoring rule is proper iff
1. utility of agent’s forecast is convex
2. score evaluates state on supporting

plane of utility

Mechanism Design

max
mechanism

E[ objective]

s.t mechanism is i.c. and feasible

A mechanism incentive compatible
iff [Rochet, 1985]

1. utility of agent’s forecast is convex
2. allocation is sub-gradient of utility (with

payment, gives supporting hyperplane)

2Credit: Adapted from Jason Hartline’s slides. Also check out [Frongillo and Kash, 2014]
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules
2.1 Property Elicitation—from forecast to property
2.2 Application: Peer Prediction
2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets
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Beyond scoring forecast

Scoring rule S Decision problem u General loss function ℓ
Report forecast p̂ ∈ ∆Ω action a ∈ A r ∈ R
Observe outcome w ∈ Ω outcome w ∈ Ω observation y ∈ Y
Reward S(p̂,w) u(a,w) −ℓ(r , y)

• Property elicitation: Can we directly elicit a specific property of a distribution (e.g.,
quantile, mean, variance)?
• Surrogate scoring rule, peer prediction: Rather than the true outcome w , can we use

a noisy or stochastically related observation?
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Property Elicitation: Definition

Definition
A property/statistic is a function Γ : ∆Ω → R. A (generalized) scoring rule
S : R× Ω→ R elicits Γ if

Γ(p) = argmax
r∈R

Ew∼pS(r ,w).

Moreover, Γ is elicitable if there exists S that elicit it.

Goal: Ask for statistics rather than full distributions, e.g., mean, variance, median, and
ensure that S(Γ(p),p) ≥ S(r ,p) for all r ∈ R.
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Property Elicitation: Threshold property

Threshold property
• (Forecast) What is the probability of snow tomorrow?
• (Property) Is the probability of snow larger than 3/4? Γ(p) = 1[p > 3/4]
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• (Forecast) What is the probability of snow tomorrow?
• (Property) Is the probability of snow larger than 3/4? Γ(p) = 1[p > 3/4]

create a decision problem to score property (do you ride?)

Decision problem u

• Ω = {clear, snow},
• A = {ride,walk}, and

•


u(ride, clear) = 4,
u(ride, snow) = 4,
u(walk, clear) = 10,
u(ride, snow) = 2.
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Property Elicitation: Threshold property

Threshold property
• (Forecast) What is the probability of snow tomorrow?
• (Property) Is the probability of snow larger than 3/4? Γ(p) = 1[p > 3/4]

create a decision problem to score property (do you ride?)

Scoring rule for property S

• Ω = {clear, snow},
• A = {0, 1}, and

•


S(1, clear) = 4,
S(1, snow) = 4,
S(0, clear) = 10,
S(1, snow) = 2.
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Elicit General threshold property

Threshold property
Is the probability of snow larger than c? (Γ(p) = 1[p > c] and R = {0, 1}.)


S(1, clear) = 0,
S(1, snow) = 1− c,

S(0, clear) = c,

S(1, snow) = 0.

v -shaped binary Ω: S(p̂,w) = (1− c)1[p > c,w = 1] + c1[p̂ ≤ c ,w = 0]
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Elicit Mode

Mode
Γ(p) = argmaxw p(w) and R = Ω.

• Idea: create a decision problem to score property
• S(r ,w) = 1[r = w ]
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Elicit Mean

Mean of real-valued random variable
How much snow do you expect will fall tomorrow? (Γ(p) = Ew∼p[w ] and R = R.)

• Idea: create a loss function to score property
• As the expectation minimizes the squared loss, we can take S(r ,w) = −∥r − w∥2

that elicits mean.
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Property for real-valued random variable

• We can derive scoring rules from loss functions in ML

Statistic/Property Γ scoring rule for Γ loss function
Mean −(r − w)2 square loss
Median −|r − w | absolute
α-quantile −(r − w)(1[r ≥ w ]− α) Pinball
Mode 1[r = w ] zero-one loss

• Are all property elicitable? The variance is not (directly) elicitable in general.
Proof.3 Consider a Bernoulli on {0, 1} with p. Suppose that a scoring rule S elicits the
variance.
• For p = 1, w = 1 surely and the optimal report is 0, S(r , 1) ≤ S(0, 1) for all r .
• For p = 0, w = 0 surely, and S(r , 1) ≤ S(0, 0) for all r .

S(r , p) = p · S(r , 1) + (1− p) · S(r , 0) ≤ S(0, p) for all r and p. □
3Adapted from Bo’s blog
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Elicit Finite-valued properties [Lambert and Shoham, 2009]

• Given a property Γ : ∆Ω → R, a level set consists
of distributions that have the same correct
answer Γ−1(r).

• Which do you think are elicitable?
• Γ is elicitable if and only if Γ is power diagram

(weighted vornoi diagram): Given a set of points
ci ∈ ∆Ω and weights di ∈ R,
celli := {p : ∥ci −p∥2−di ≤ ∥cj −p∥2−dj , ∀j}.)

Γ(p) = 1[p > 3/4]
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• Given a property Γ : ∆Ω → R, a level set consists
of distributions that have the same correct
answer Γ−1(r).
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Elicit Finite-valued properties [Lambert and Shoham, 2009]

Theorem
A finite-valued property Γ is elicitable if and only if {Γ−1(r) : r ∈ R} is a power diagram
of ∆Ω for some set of weighted sites (cr , dr )r∈R.

Proof. ⇐) Given a power diagram with (cs , ds)s∈R, let S(r ,w) := 2⟨1w , cr ⟩+ dr − ∥cr∥2
for all r ∈ R and w ∈ Ω. We show the score elicit the following property

Γ(p) = {r : ∥cr − p∥2 − dr ≤ ∥cs − p∥2 − ds , ∀s}.

For all r , s ∈ R and p with r ∈ Γ(p) and s /∈ Γ(p)

Ew∼p[S(s,w)] =2⟨cs ,p⟩+ ds − ∥cs∥2

=∥p∥2 − ∥p − cs∥2 + ds

<∥p∥2 − ∥p − cr∥2 + dr = Ew∼p[S(r ,w)].

□
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Elicit Finite-valued properties [Lambert and Shoham, 2009]

Theorem
A finite-valued property Γ is elicitable if and only if {Γ−1(r) : r ∈ R} is a power diagram
of ∆Ω for some set of weighted sites (cr , dr )r∈R.

Proof. ⇒) If S elicits Γ, let cr := 1
2(S(r ,w))w∈Ω ∈ R|Ω|, and dr = ∥cr∥2 ∈ R. Now we

show r ∈ Γ(p) if and only if ∥cr − p∥2 − dr ≤ ∥cs − p∥2 − ds , ∀s. For all r , s and p with
r ∈ Γ(p),

∥cs − p∥2 − ds =∥cs∥2 − 2⟨cs ,p⟩+ ∥p∥2 − ds

=− 2⟨cs ,p⟩+ ∥p∥2 (dr = ∥cr∥2)
=− Ew∼p[S(s,w)] + ∥p∥2 (Ew∼p[S(s,w)] = 2⟨cs ,p⟩)
≥− Ew∼p[S(r ,w)] + ∥p∥2 (Ew∼p[S(r ,w)] ≥ Ew∼p[S(s,w)])

=∥cr − p∥2 − dr

□
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules
2.1 Property Elicitation—from forecast to property
2.2 Application: Peer Prediction

PP through Proper Scoring Rule [Miller et al., 2005]
Three extensions

2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets
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Application: Peer prediction

• Proper scoring rules require the outcome w which is always not observable
• Subjective: Are you happy? Do prefer ChatGPT or Gemini?
• Private: What is your commute time?

• Peer prediction: As agents’ signals are often dependent, we can use their report to
elicit agents’ truthful reports.
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Peer prediction through proper scoring rule [Miller et al., 2005]

Alice and Bob have signals in x ∈ X and y ∈ Y respectively jointly sampled from P .
• Alice and Bob report x̂ and ŷ .
• Compute their posteriors P(· | x̂),P(· | ŷ) on a scoring rule S ,

MA(x̂ , ŷ) = S(P(· | x̂), ŷ) and MB(x̂ , ŷ) = S(P(· | ŷ), x̂).

• Pros and cons
• Truthful: Ensure truth-telling is a Bayesian Nash equilibrium4, since S is proper

E[MA(x , y)] = S(p,p) ≥ S(p̂,p) = E[MA(x̂ , y)] with p = P(· | x), p̂ = P(· | x̂)

• Minimal: Agents only report their signals.
• Not detailed-free: Require the knowledge of P.

4The truth-telling is a strict BNE when P is stochastic relevant.
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Three tricks

Can we relax the knowledge of P?
1. Partial knowledge: restrict the possible P to a subset P, e.g., self dominating,

self-predicting
2. Non-minimal: Ask agents to report not only signal but forecast or second order

forecast [Prelec, 2004]
3. Learn P from iid

reports+DPI [Kong and Schoenebeck, 2019, Schoenebeck and Yu, 2020] or
LLM [Lu et al., 2024]
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Peer Prediction and property elicitation [Frongillo and Witkowski, 2017]

Can we characterize all truthful minimal mechanisms M under P?
• Truthful reporting is a property of posterior Γ(p) = x if and only if

p ∈ Dx := {P(· | x) : P ∈ P} ⊆ ∆Y .
• Example: Output agreement algorithm

• X = Y = {0, 1}
• P consists of self-dominance distribution P(z | z) > P(z ′ | z) for all z , z ′ ∈ {0, 1}.
• D1 = {p : p > (1− p)} and D0 = {p : p < 1/2}
• Γ(p) = 1[p > 1/2] = mode
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Non-minimal peer prediction mechanism [Schoenebeck and Yu, 2023]

• Given a proper scoring rule, agents can play one of three roles
• Expert: makes prediction.
• Source: provides information to the expert.
• Target: reports his signal and get predicted.

• We can design mechanisms by randomize agent’s rules.
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Source Differential peer prediction mechanism

Given a proper scoring rule S , in a source-DPP, three agents play one of three roles
• Expert makes predictions p, p+ and gets sum of the scores S(p, t) + S(p+, t)

• Source provides signal to improve p+ and get the difference S(p+, t)− S(p, t)

• Target reports signal t and gets zero
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Target Differential peer prediction mechanism

Given a log scoring rule, in target-DPP, three agents play one of three roles
• Expert makes two predictions and gets sum of the scores
• Source provides information for the second prediction and gets zero
• Target gets the difference
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Connection to other peer prediction mechanism

Theorem ([Schoenebeck and Yu, 2023])
Source and Target-DPP are strongly truthful:
• Truth-telling is a strict Bayesian Nash equilibrium.
• Truth-telling has the highest total payment (strictly better than non-permutation

ones’)

New view point of BTS [Prelec, 2004]:
• Everyone plays the target and also provides the first prediction.
• We can learn an improved prediction if there are many symmetric agents.
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules
2.1 Property Elicitation—from forecast to property
2.2 Application: Peer Prediction
2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets
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Beyond scoring forecast

• Proper scoring rule: score a forecast p̂ ∈ ∆Ω using the outcome w ∈ Ω

• Property elicitation: score a property r ∈ R using the outcome
• Do we need direct access to the true outcome w?
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Surrogate scoring rule [Liu et al., 2023]

Can we incentivize high-quality prediction when the ground truth is unavailable?
• Motivation: “How likely a study can be replicated?”

• Forecasters are asked to provide a probabilistic prediction.
• The SCORE program crowdsourced this question for 3000 studies to hundreds of

researchers, while only a small fraction will have a real replication test.
• We may use other’s report to derive a noisy ground truth.
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Surrogate scoring rule

• Idea: We can treat an observation y ∈ Y as surrogate of w if we know the
conditional probability of y given w T ∈ RΩ×|Y|.
• Surrogate scoring rule: For all proper scoring rule S : ∆Ω × Ω→ R and invertible T ,

S̃(p̂, y) =
∑
z

T−1(y , z)S(p̂, z)

• If Y = Ω = {0, 1} with Pr[y = 1|w = 0] = e− and Pr[y = 0|w = 1] = e+,

S̃(p̂, 0) =
1

1− e− − e+
(
(1− e−)S(p̂, 0)− e+S(p̂, 1)

)
S̃(p̂, 1) =

1
1− e− − e+

(
−e+S(p̂, 0) + (1− e+)S(p̂, 1)

)
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Surrogate scoring rule

Theorem
If T ∈ RΩ×|Y| has full row rank, the expectation of S̃(p̂, ·) = T−1S(p̂, ·) equals
Ew∼p[S(p̂,w)] for all p and p̂.

Proof. Because T⊤ Pr[w = ·] = Pr [y = ·] and proper scoring rules S are affine in the
outcome space,
E[S̃(p̂, y)] = ⟨Pr [y = ·], S̃(p̂, ·)⟩ = ⟨T⊤Pr [w = ·],T−1S(p̂, ·)⟩ = E[S , p̂,w)] □
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Surrogate scoring rule and property elicitation

• Backward correction: change the observation y to mimic w .5

• Forward correction: treat the forecast p of w as a property of observation y where
Γ(qy ) = Tqy = p, and pay S(Γ−1(p̂, y)

5[Xia, 2025] also uses the same trick.
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?
3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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What is a prediction market?

• A prediction market is a financial market that is designed for information aggregation
and prediction.
• Agents can “bet on beliefs”, by trading contracts whose payoffs (e.g., binary payoff
ϕw : Ω→ {0, 1}) are associated with an observed outcome in the future, w ∈ Ω.
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How do prediction markets aggregate information?

• Price ≈ Expectation of r.v. given all information

• Equilibrium price ≈ Value of contract ≈ Pr[Event | All information]
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Other forecasting methods vs. prediction market

Opinion Poll
• Sample with equally weighted inputs
• No incentive to be truthful
• Hard to be real-time

Ask Experts
• Need to identify experts
• Hard to combine information

Machine Learning
• Need historical data, assuming past

and future are related
• Hard to incorporate new information

Prediction Market
• Self-selection with bet-weighted inputs
• Monetary incentive
• No need for (assumptions on) data
• Real-time with new information

immediately incorporated
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?

Function of a prediction market
Prediction market designs

3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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Financial market vs. prediction market

Financial market
• Primary: capital allocation and hedge risk
• Secondary: information aggregation

Prediction market
• Primary: information aggregation
• Secondary: hedge risk

The goals are typically mixed together.
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Risk and decision making under uncertainty

• Outcomes are in money ($): the r.v. x represents money (wealth or payoff).
• Utility of money u(x): the utility an agent derives from that amount of money.

• Risk attitudes
• Risk neutral: u(x) ∼ x
• Risk averse (typical w/ diminishing marginal utility): u is concave, e.g., u(x) ∼ log(x)
• Risk seeking: u is convex

• Absolute risk aversion: ru(x) = −u′′(x)/u′(x)
• The larger the number, the more the agent is risk averse.

• Expected utility:
∑

w Pr(w)u(xw )
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Risk attitude, hedging, and risk allocation 6

Example:
• I’m risk averse w/ u(x) = log(x); the insurance company is risk neutral w/ u(x) = x .
• I believe that my car might be destroyed by a hurricane with prob. 0.01.
• Ω = {w1,w2}. w1: car destroyed. w2: car not destroyed.

• Suppose u(w1) = log(10, 000) and u(w2) = log(20, 000).
E[u] = 0.01 · log(10, 000) + 0.99 · log(20, 000)
• I will buy $10,000 insurance for $125
E[ubuy ] = 0.01 · log(19, 875) + 0.99 · log(19, 875) > E[u]

• Suppose that the insurance company also believes Pr(car destroyed) = 0.01
E[uins ] = 0.01 · (−9, 875) + 0.99 · (125) > 0

The transaction allocates risk. Everyone is happy.

6Example adapted from Yiling Chen’s slides.
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Probability and speculating 7

Example (continued):
• Suppose that I’m risk neutral u(x) = x , and believe that Pr(car destroyed) = 0.02.
• I will buy $10,000 insurance for $125

The insurance is a contract: $10,000 if car destroyed, 0 otherwise.
E[Insurance] = 0.02 · (10, 000) + 0.98 · (0) > $125
• I get $75 on expectation.

The transaction speculates the insurance company.

Prediction market generalize to
• arbitrary states;
• more than two parties.

Design market mechanisms to allow speculation and allocate risk among participants.

7Example adapted from Yiling Chen’s slides.
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Risk-neutral probability

• Subjective probability is an agent’s personal judgment
Can be mixed with the agent’s utility (risk attitude)

• Risk-neutral probability: the probability that a risk-neutral agent has to have the
same expected utility ∑

w

Pr rn(w)xw =
∑
w

Pr(w)u(xw )

• Risk neutral probability is the normalized product of subjective probability and
marginal utility ∑

w

Pr rn(w) ∼ Pr(w)u′(xw )
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Market design: contracts

1. Random variable: turn an uncertain event of interest into a random variable
• Binary, discrete: {win, lose}, {sunny, rainy, cloudy}
• Continuous: temperature, price, time, vote share...

2. Payoff functions
• Arrow-Debreu: $1 if the event happens, and $0 otherwise
• Index / continuous: the payoff scales with the result
• Other forms: dividends, pari-mutuel, options

3. Payoff output
• Real money: USD, cryptocurrency
• Play money: virtual points for fun, reputation, etc.
• Other forms: prize, lottery, etc.
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Market design: mechanisms

• Call market
• Mechanism: Orders are collected into a “batch” over a period of time and then

executed at once at a single clearing price that maximizes the volume of trade;
There are different price determination rules.

• Applications: Opening price, CoW Swap, illiquid asset markets.
• Characteristics: Rely on counterparties, not real-time, alleviate thin market problem.

• Continuous double auction (CDA)
• Mechanism: Buy and sell orders continuously come in and are aggregated in a central

limit order book (CLOB) (i.e., call market w/ period→ 0);
As bid ≥ ask, a transaction occurs at the incumbent order price.

• Applications: Most financial markets.
• Characteristics: Rely on counterparties, real time, may suffer thin market problem.

• Automated market maker (AMM)
• Always willing to quote prices and offer to trade any quantity.
• No need for counterparties, real time, improve liquidity (thus information aggregation).
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Automated market maker (AMM)

• Always offer to buy or sell at some price;
How to decide the prices?
• If shares are bought, increase the price

(i.e., reflect the market belief);
How to update the prices?
• May subsidize the market for information.

Can we leverage proper scoring rules?
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Current prediction market landscape

Decentralized (blockchain-based)
Characteristics: Global access, non-custodial, crypto settlement (USDC, SOL, etc.).

• Polymarket (Polygon)
• Status: Global volume leader.
• Mech: Hybrid CLOB (off-chain matching, on-chain settlement).

• Drift Protocol (Solana)
• Status: Leading Solana Market.
• Mech: Hybrid CLOB with cross-collateral.

• Limitless (Base)
• Status: Leader on Coinbase’s L2.
• Mech: On-chain CLOB (short-term focus).

• Azuro (Gnosis/Polygon)
• Mech: Liquidity pool / AMM (peer-to-pool).
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Current prediction market landscape

Centralized & Regulated (US focused)
Characteristics: KYC required, bank transfers (USD), legal compliance.
• Kalshi (CFTC Regulated)

• Status: US market leader.
• Mech: Centralized exchange.

• Fanatics Markets (acquired Paragon Global Markets, LLC)
• Status: New entrant (2025).
• Mech: Consumer app backed by Crypto.com exchange.

• PredictIt
• Status: Legacy / academic, not for profit.
• Mech: Low limits, No-Action letter (2014-2022).

Alternative Model
• Manifold

• Mech: Play money (Mana) & redeemable cash (Sweepcash).
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?
3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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Incentives for trading: Leveraging scoring rules

1 person n > 1 people
Elicit belief (verification) scoring rule prediction market

Elicit signal (no verification) x peer prediction

Recap:

Definition (Strictly proper scoring rule)
A scoring rule S is strictly proper if for all p̂ ̸= p ∈ ∆Ω,

S(p,p) > S(p̂,p)

where S(p̂,p) := Ew∼p[S(p̂,w)].
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Incentives for trading: Leveraging scoring rules

Myopic incentives: optimal to trade until instantaneous price π = p (agent belief)

Connect to sequential proper scoring rule
• Consider outcome space w ∈ Ω = {yes, no}
• Initialize the market report: p̂(0) is uniform;
• Receive sequence of reports from agent 1 to n: p̂(1), p̂(2), ..., p̂(n);
• Upon realization of wk , the i-th agent pays

S(p̂(i−1),wk)− S(p̂(i),wk);

• Take S to be any strictly proper scoring rule, it is rational to report truthfully in
position i , p̂(i) = p(i), i.e., minimizing payment.
• The cost to market designer (w/ uniform prior)

S(p̂(n),wk)− S(p̂(0),wk) ≤ b ln(1)− b ln(1/n) = b ln(n).
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Market scoring rules [Hanson, 2003, Hanson, 2007]

• Use a proper scoring rule;
• A trader can change the current probability estimate to a new one;
• The trader pays (receives) the scoring rule payment according to the old probability

estimate and the outcome.
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Incentives for trading: Leveraging scoring rules

Wagering mechanisms
• Each agent reports a forecast p̂i and a wager δi ;
• The mechanism redistributes wagers upon realization of w ∈ Ω.

According to scoring rules!
• Example: Will S&P price increase tomorrow?

• Weighted-score wagering mechanism [Lambert et al., 2015]

πi (p, δ,w) = δi

(
1 + S(pi ,w)−

∑
j ̸=i δjS(pj ,w)∑

j ̸=i δj

)
, ri (p, δ,w) = πi (p, δ,w)− δi
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1 + S(pi ,w)−

∑
j ̸=i δjS(pj ,w)∑

j ̸=i δj

)
, ri (p, δ,w) = πi (p, δ,w)− δi
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Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs
• Maintain the market state, q = (q1, ..., qn), i.e.,

shares sold for each security (outcome i);

• Use a convex, differentiable cost function
C : R|Ω| → R;
• Quote instantaneous price as

pi (q) = ∂C (q)/∂qi ;

• Charge a trader who buys a bundle δ ∈ R|Ω| of
contracts by C (q + δ)− C (q);
• Update market state after each trade:

q ← q + δ.

Yes No

Initialization 0 0

Buy 2 for Yes 2 0

Buy 5 for Yes 7 0

Buy 2 for No 7 2

Sell 1 for Yes 6 2
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Some desirable properties for AMMs

• No “round-trip” arbitrage
• Prices nonnegative, sum to one (i.e., probability)
• Responsiveness
• Liquidity (i.e., relatively small price change after a small trade)
• Bounded budget or loss to AMM
• Individual rationality
• Expressiveness (i.e., allow traders to bet on any possible outcome)
• Computational complexity
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Logarithmic market scoring rule (LMSR)

Logarithmic market scoring rule (LMSR) AMMs
• Use cost functions:

C (q) = b log(
∑
i

eqi/b),

where b is called the liquidity parameter;
• Quote instantaneous prices:

pi (q) =
eqi/b∑
j e

qj/b
;

• Charge a trader who buys a bundle δ ∈ R|Ω| of contracts by C (q + δ)− C (q);
• Update market state after each trade: q ← q + δ.
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Example: LMSR AMM

A prediction market: Will a hurricane make landfall in Florida in 2026?

Assume an LMSR AMM with b = 1, so C (q) = ln(eq0 + eq1) and S(p,wi ) = ln(pi )

Yes No Payment π(Yes) π(No) Payment | Yes Payment | No

Initialization 0 0 – 0.5 0.5 – –

Buy 1 for Yes 1 0
0.62
ln(e1 + e0)
− ln(e0 + e0)

0.73
e1/(e1 + e0)

0.27
-0.38
ln(0.5)−
ln(0.73)

0.62
ln(0.5)−
ln(0.27)

Buy 2 for Yes 3 0
1.73
ln(e3 + e0)
− ln(e1 + e0)

0.95
e3/(e3 + e0)

0.05
-0.26
ln(0.73)−
ln(0.95)

1.73
ln(0.27)−
ln(0.05)

Buy 1 for No 3 1
0.08
ln(e3 + e1)
− ln(e3 + e0)

0.88
e3/(e3 + e1)

0.12
0.08
ln(0.95)−
ln(0.88)

-0.92
ln(0.05)−
ln(0.12)
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Other market scoring rule AMMs

Quadratic market scoring rule (QMSR) AMMs (derived from the Brier scoring rule)
• Use cost functions:

C (q) =
∑n

i=1 qi
n

+

∑n
i=1 q

2
i

4b
−

(
∑n

i=1 qi )
2

4bn
− b

n
,

where b > 0 is the liquidity parameter.
• Quote instantaneous prices:

pi (q) =
1
n
+

qi
2b
−

∑n
j=1 qj

2nb

80 / 117



Other market scoring rule AMMs: Decentralized exchange

Constant function market maker (CFMM) for n assets maintains
• A reserve of available assets q ∈ Rn;
• A trading function ϕ : Rn → R that is concave and increasing;
• A trade or swap δ ∈ Rn following ϕ(q + δ) = ϕ(q).

Example: Constant product market maker (CPMM) employed by Uniswap, Balancer, etc.

𝑥 ⋅ 𝑦 = 𝑘
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CFMMs ⇔ prediction markets

CFMMs
• Trades: assets ↔ assets
• AMM: providing liquidity &

facilitating swaps

Prediction markets
• Trades: securities ↔ cash
• AMM: information elicitation &

aggregation

Theorem [Frongillo et al., 2024]
CFMMs and Cost-function market makers are equivalent (i.e. have same available
trades for a given history), via following maps:

ψ1 : ϕ 7→ C , where C (q) := inf{c ∈ R | ϕ(c · 1− q) ≥ ϕ(q0)}
ψ2 : C 7→ ϕ,where ϕ(q) := −C (−q) .

Intuition: A prediction market of n securities is a market of n+ 1 assets (securities & cash).
A cashless prediction market replaces any $1 cash payment with one of each security /
asset, which is a CFMM.

82 / 117



CFMMs ⇔ prediction markets

CFMMs
• Trades: assets ↔ assets
• AMM: providing liquidity &

facilitating swaps

Prediction markets
• Trades: securities ↔ cash
• AMM: information elicitation &

aggregation

Theorem [Frongillo et al., 2024]
CFMMs and Cost-function market makers are equivalent (i.e. have same available
trades for a given history), via following maps:

ψ1 : ϕ 7→ C , where C (q) := inf{c ∈ R | ϕ(c · 1− q) ≥ ϕ(q0)}
ψ2 : C 7→ ϕ,where ϕ(q) := −C (−q) .

Intuition: A prediction market of n securities is a market of n+ 1 assets (securities & cash).
A cashless prediction market replaces any $1 cash payment with one of each security /
asset, which is a CFMM.

82 / 117



CFMMs ⇔ prediction markets

CFMMs
• Trades: assets ↔ assets
• AMM: providing liquidity &

facilitating swaps

Prediction markets
• Trades: securities ↔ cash
• AMM: information elicitation &

aggregation

Theorem [Frongillo et al., 2024]
CFMMs and Cost-function market makers are equivalent (i.e. have same available
trades for a given history), via following maps:

ψ1 : ϕ 7→ C , where C (q) := inf{c ∈ R | ϕ(c · 1− q) ≥ ϕ(q0)}
ψ2 : C 7→ ϕ,where ϕ(q) := −C (−q) .

Intuition: A prediction market of n securities is a market of n+ 1 assets (securities & cash).
A cashless prediction market replaces any $1 cash payment with one of each security /
asset, which is a CFMM.

82 / 117



Example: CPMMs ⇔ cost-function AMM

• The cost function equivalent of CPMM (i.e., ϕ(q) = √q1 · q2 = k) is

Ck(q) = −k +
1
2

(
q1 + q2 +

√
4k2 + (q1 − q2)2

)
;

• The cost function is also the implicit function of a constant-log-utility market
maker [Chen and Pennock, 2012] with utility function, u(x) = log(k + x) with k > 0;
• The corresponding proper scoring rule is

Sk(p,wi ) = −k

√
1− pi
pi

Boosting loss scoring rule [Buja et al., 2005].
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Design AMMs as online algorithms

• Given a set of outcomes Ω, a cost function C , and
initial market state q(0), in each round t:

1. Price(i): return price of outcome i , i.e., pi (q(t));

2. Cost(i , s) for s ∈ R: return the cost of buying s
shares of outcome i , i.e.,
C (q(t) + s · 1i )− C (q(t));

3. Buy(i , s): charge Cost(i , s) and update
q(t+1) ← q(t) + s · 1i

Goal: Design an algorithm or data structure to support above market operation efficiently.
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?
3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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Prediction market: from binary to large outcome space

Ω ={Trump wins, Harris wins}; |Ω| = 2.

Ω ={Each state’s winner}; |Ω| = 250.

Will Bitcoin hit $150k in 2025?

Ω ={Yes, No}; |Ω| = 2.

Ω = R; |Ω| =∞.
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Traditional market implementation

• Predetermined discretizations,
independent markets

May suffer
• Thin market problem
• Logic inconsistency
• Arbitrage opportunities

• How about some combinatorial
prediction market for large Ω?

May need to balance
• Expressivenss
• Computational complexity
• Worst-case loss / liquidity
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Combinatorial prediction market

• Ω: A large outcome space with n = |Ω| possible outcomes;

Example:
1. w0 = FL: Democrats & PA: Democrats
2. w1 = FL: Democrats & PA: Republicans
3. w2 = FL: Republicans & PA: Democrats
4. w3 = FL: Republicans & PA: Republicans

• F ⊆ 2Ω: A set system that is a collection of subsets of Ω.

• A prediction market (Ω,F) offers combinatorial security that
• Specifies an event E ∈ F ;

Example: “Republicans win Pennsylvania” (i.e., E = {w1,w3}), “The state outcomes
differ” (i.e., E = {w2,w3}).

• Pays $1 if the event E happens.

• Examples of popular set systems.
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Example: Interval Security

• F : A collection of all intervals
[Dudík et al., 2021]
• A prediction market (Ω,F) offers

combinatorial security that specifies
• An interval
• Pays $1 if the outcome falls in the

interval
• Expressiveness: precision level

• d-dimensional orthogonal security
Example: “NVDA ∈ [180, 190) & GOOGL
∈ [320, 330)”

When will the FDA approve a 
COVID-19 vaccine? 

Q1, 2021 (or before)

Q3, 2021

Q4, 2021 (or later)

1¢

27¢

55¢

17¢

Q2, 2021
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Example: Hyperplane Security

• Ω ⊂ Rd

• F : A collection of half-space associated
with hyperplanes [Wang et al., 2021]

Eβ,β0 = {w ∈ Ω : βTw + β0 ≥ 0}

• A prediction market (Ω,F) offers
combinatorial security that specifies
• A half-space
• Pays $1 if the outcome falls in the

half-space APPL+MSFT ≥ 600
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Example: Top L Candidates

• F : A subset of L candidates among K
candidates
• A prediction market (Ω,F) offers

combinatorial security that specifies
• A set of L candidates
• Pays $1 if the top L candidates are from

the set
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Example: Permutations

• F : A collection of pair comparisons
among K candidates [Chen et al., 2007]
• A prediction market (Ω,F) offers

combinatorial security that specifies
• A pair (a, b) where candidate a ranks

higher than candidate b
• Pays $1 if the pair comparison turns out

to be true

92 / 117



Example: Boolean Betting

• F : Any conjunction of event outcomes
[Chen et al., 2008]
• A prediction market (Ω,F) offers

combinatorial security that specifies
• A Boolean formula
• Pays $1 if the Boolean formula is

satisfied by the final outcome
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CPMM: Swap trade for baskets of assets

• Given q ∈ Rn, some sets E ,E ′ ⊆ [n], and a CPMM ϕ : Rn → R, we want to support

A swap trade for baskets δ = 1E − s · 1E ′ ∈ Rn.

• A valid s satisfies ∏
j∈E ′

(qj − s) =

∏
i∈E qi

∏
j∈E ′ qj∏

i∈E (qi + 1)
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Designing combinatorial prediction market

• Ω: A large outcome space with n = |Ω| possible outcomes
• F ⊆ 2|Ω|: A set system that is a collection of subsets of Ω

• An AMM on (Ω,F) that can support
• Price(E ): return instantaneous price of any specifies security E ∈ F ;
• Cost(E , s): return the cost of buying s shares of security on E ;
• Buy(E , s): update the market state after buying s shares of security on E , and return

Cost(E , s).

• Can we design efficient algorithms for a prediction market that offers combinatorial
security on (Ω,F) and uses a cost function C?
• AMM for combinatorial markets = Range query range update problem

[Hossain et al., 2025]
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Range query range update (RQRU)

Given (Ω,F) and initial weights Q(0) : Ω→ R+, RQRU performs a sequence of operations
for any E ∈ F and S ∈ R+:

• query(E ): return the total weight of a range E ,
∑

w∈E Q(w);

• update(E , S): update Q(w)←

{
S · Q(w) if w ∈ E

Q(w) otherwise
• We refer to this as (+, ·)-RQRU

query
update
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LMSR AMM ⇔ (+, ·)-RQRU

Given combinatorial securities in F , a security specifies an event E ∈ F and pays $1 if it
happens.

LMSR AMM with C (q) = log(
∑

w∈Ω eqw ) and initial market states q(0) supports 8

• Price(E ): return the price of event E , i.e.,∑
w∈E eqw∑
w∈Ω eqw

;

• Buy(E , s): update market state q ← q + s · 1E , and calculate the cost of buying

C (q + s · 1E )− C (q).

8We assume b = 1 for simplicity.
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LMSR AMM ⇔ (+, ·)-RQRU: Price = Query

Given combinatorial securities in F , a security specifies an event E ∈ F and pays $1 if it
happens.

LMSR AMM with C (q) = log(
∑

w∈Ω eqw ) and initial market states q(0) supports
• Price(E ): return the price of event E , i.e.,∑

w∈E eqw∑
w∈Ω eqw

;

Share
𝑞!

Outcome space Ω

Price(E):=Query(E)/N

Price
Q 𝑤 /𝑁

Outcome space Ω

𝑄(") 𝑤 	≔ 𝑒$"
($)

𝑁(") ≔∑𝑄 " 𝑤 = ∑ 𝑒$"
($)

%∈'
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LMSR AMM ⇔ (+, ·)-RQRU: Buy = Update

LMSR AMM with C (q) = log(
∑

w∈Ω eqw ) and initial market states q(0) supports
• Buy(E , s): update market state q ← q + s · 1E , and calculate the cost of buying

C (q + s · 1E )− C (q).

Outcome space Ω

Price(E):
Query(E)/N

Price
Q 𝑤 /𝑁

Outcome space Ω

Buy s shares of E
1. 𝑃! ≔Query(E)
2. Update(E, 𝑒")
3. 𝑃!# ≔Query(E)
4. 𝑁 ← 𝑁 − 𝑃! + 𝑃!#

Share
𝑞!
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Algorithm and computational complexity: LMSR AMM ⇔ (+, ·)-RQRU

Leveraging the connection, we can now use tools from computational geometry to
• Design efficient partition-tree based LMSR on some F (e.g., interval, d-orthogonal,

hyperplane, top L candidates);
• Provide hardness results for some other F (e.g., pairing, Boolean betting).
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Example: A partition tree for interval securities

A partition tree with lazy weight propagation (updating node weights along search path).
Example: Buy 1 share of [5, 13].

𝑝𝑣!,! = 𝑒#

𝑝𝑣$,$ 𝑝𝑣$,%

Visiting # = 𝑂(log 𝑛)

101 / 117



Summary: LMSR AMM ⇔ (+, ·)-RQRU

If the VC-dimension of (Ω,F) is infinite, there is no sublinear time algorithm for RQRU
using linear space [Chazelle and Welzl, 1989].

Set systems VC-dim Run time Algorithm
Interval 2 θ(log n) Interval tree
d-orthogonal set 2d O(n1−1/d) k-d tree
Hyperplane d+1 O(n1−1/d) Partition

tree [Chan, 2010]
Permutations Infinite

(increasing in K)
no o(n), n = K !

Boolean Infinite
(increasing in K)

no o(n), n = 2K
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AMM ⇔ RQRU: Beyond LMSR

Scoring rule Equivalence Data structure

Log market scoring rule (+, ·)-RQRU Partition tree

Quadratic market scoring rule (+,+)-RQRU Partition (segment) tree

γ-power market scoring rule (+,⊗)-RQRU Partition tree
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CFMM ⇔ RU: Combinatorial swap in DeFi

CFMM Equivalence Data structure

Logarithmic (+, ·)-RU Partition tree

Constant sum (+,+)-RU Partition tree

Geometric mean (·, +)-RU ?

• Logarithmic trading function: ϕ(q) = −
∑

w e−qw/b

• Constant sum function: ϕ(q) =
∑

w cwqw
• Geometric mean function: ϕ(q) =

∏
w qγww

Intuition: Decomposable ϕ, i.e., compute ϕ(q) from qw and ϕ(q−w , q
′
w ) in constant time.

We determine the swap scale through a binary search by querying the trading function ϕ.
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Traditional market implementation

• Predetermined discretizations,
independent markets

May suffer
• Thin market problem
• Logic inconsistency
• Arbitrage opportunities

• How about some combinatorial
prediction market for large Ω?

May need to trade off
• Expressivenss
• Computational complexity
• Worst-case loss / liquidity

Challenge: The worst-case loss (e.g., b log(n)) grows with the number of outcomes.
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?
3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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Multi-resolution linearly constrained AMM (LCMM): Interval securities

The tradeoff: the liquidity parameter controls
• How fast the price moves, i.e., es/b;
• The worst-case loss for AMM, e.g., b log(n).

The intuition
[Dudík et al., 2021, Hossain et al., 2025]
• Use multiple LMSR AMMs with different

liquidity parameters to mediate markets offering
interval securities at different resolutions (e.g.,
quarter, week, day, hour markets).
• Achieve constant loss bound by choosing

proper liquidity values, e.g., bk = O(k−2.01):∑K
k=1 bk log(nk) =

∑K
k=1 bk log(2

k)

M1 

10 .5.25

b1 

M2 

M3 

M4 

b2 

b3 

b4 

…

MK bK

.75

… …
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Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different
markets.

Buy(E , s)
• Example: Buy([0, 0.125), 1) in M3.
• Prices become incoherent between M3 and

other markets.

M1 
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Buy(E , s)
• Example: Buy([0, 0.125), 1) in M3.
• Prices become incoherent between M3 and

other markets.

• Goal: Remove price incoherence (arbitrage)
efficiently across markets.
• Intuition:

• Split the 1 share among M3, ...,Mk according
to liquidity ratio to maintain price coherence.
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Buy s ′ share [0, 0.5) in M1 and split
sell s ′ share among M2, ...,Mk .
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Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different
markets.

Multi-resolution LMSR AMM can remove price
incoherence (arbitrage) efficiently across markets.

Use a single partition tree and keep track of
• Trader purchases;
• Automatic purchases made by the AMM for

price coherence.

M1 

10 .5.25

b1 

M2 

M3 

M4 

b2 

b3 

b4 

…

MK bK

.75
… …

Buy s ′ share [0, 0.5) in M1 and split
sell s ′ share among M2, ...,Mk .
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Empirical evaluation: Log-time LMSR vs. Multi-resolution LCMM

• Simulate trading in prediction markets where the MM has a fixed budget;
• Evaluate how fast prices converge to reach “consensus”.
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Empirical evaluation: Log-time LMSR vs. Multi-resolution LCMM

• Compare to LCMM that equally splits the budget to two resolutions;
• LCMM achieves the best of both worlds: Elicit forecasts at the finer level & obtain a

fast convergence at the coarser level.
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Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

3. Prediction Markets
3.1 What is a prediction market?
3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
3.3 Computational aspects of AMM designs
3.4 Economic aspects of AMM designs
3.5 Regulatory landscape and discussions
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Regulatory landscape

• Federal Regulation: Commodity Futures Trading Commission (CFTC)
• Example: Kalshi, the only fully compliant US exchange.
• Status: Designated contract market
• Trades are treated as derivatives/futures (binary options).

• Sweepstakes model
• Example: Manifold (Sweep)
• Status: Users buy virtual currency but receive “Sweepcash” as a free bonus.

Legally distinct from gambling.
• DeFi

• Example: Polymarket
• Status: Blocked in US; 2022 settlement: Polymarket agreed to block US IP

addresses.
• Current Legal Conflict

• Kalshi v. CFTC (2024): Current legal battle (Kalshi v. CFTC) regarding whether
betting on elections constitutes gaming (illegal) or hedging (legal).
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Open problems and discussions

• Computational complexity of combinatorial markets
How can we design market mechanisms that allow for expressive betting but remain
computationally tractable?

• Conditional triviality
Can we incentivize or elicit accurate forecasting on conditional branches that might
never happen (counterfactuals)?
• Manipulation resistance

Can we design AMMs to differentiate profit-maximizing and outcome-maximizing?
• Privacy-preserving market

Can we build a market using ZKPs where the AMM can verify the validity/solvency of
the trade without knowing who the user is or which outcome they are betting on?
• Capital efficiency & leverage
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