

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. [See here](#).

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. See [here](#).

$$\Pr[\text{NoColl}_q] \leq \prod_{i=1}^{q-1} e^{-i/N}$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. [See here.](#)

$$\Pr[\text{NoColl}_q] \leq \prod_{i=1}^{q-1} e^{-i/N} = e^{-\sum(i/N)}$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. [See here.](#)

$$\Pr[\text{NoColl}_q] \leq \prod_{i=1}^{q-1} e^{-i/N} = e^{-\sum(i/N)} = e^{-q(q-1)/2N}$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. [See here.](#)

$$\Pr[\text{NoColl}_q] \leq \prod_{i=1}^{q-1} e^{-i/N} = e^{-\sum(i/N)} = e^{-q(q-1)/2N}$$

$$\Pr[\text{Coll}] = 1 - \Pr[\text{NoColl}_q] \geq 1 - e^{-q(q-1)/2N}$$

Birthday Paradox

Lemma (Lower bound from Katz and Lindell)

For any positive integer N , and $q \leq \sqrt{2N}$, let y_1, \dots, y_q be elements chosen uniformly and independently at random from a set of size N . The probability that there exists distinct i and j such that $y_i = y_j$ is at least $\frac{q(q-1)}{4N}$

Let NoColl_i be the event that there are no collisions among y_1, \dots, y_i .
 NoColl_q is the event that there are no collisions at all.

If NoColl_q occurs, then NoColl_i occurs for every $i < q$.

$$\Pr[\text{NoColl}_q] = \Pr[\text{NoColl}_1] \cdot \Pr[\text{NoColl}_2 \mid \text{NoColl}_1] \cdots \Pr[\text{NoColl}_q \mid \text{NoColl}_{q-1}]$$

$$\Pr[\text{NoColl}_i \mid \text{NoColl}_{i-1}] = 1 - \frac{i}{N}$$

$$\Pr[\text{NoColl}_q] = \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)$$

For all x , $1 - x \leq e^{-x}$. [See here.](#)

$$\Pr[\text{NoColl}_q] \leq \prod_{i=1}^{q-1} e^{-i/N} = e^{-\sum(i/N)} = e^{-q(q-1)/2N}$$

$$\Pr[\text{Coll}] = 1 - \Pr[\text{NoColl}_q] \geq 1 - e^{-q(q-1)/2N} \geq 1 - \left(1 - \frac{q(q-1)}{4N}\right) = \frac{q(q-1)}{4N}$$
$$e^{-x} \leq 1 - \frac{x}{2}$$