Random Oracles

> PRFs look random if you don’t know the key.

Random Oracles

> PRFs look random if you don’t know the key.
> Even if you do know the input.

Random Oracles

> PRFs look random if you don’t know the key.
> Even if you do know the input.
> PRGs look random if you don't know the input.

Random Oracles

> PRFs look random if you don’t know the key.
> Even if you do know the input.
> PRGs look random if you don't know the input.
> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)

Random Oracles

> PRFs look random if you don’t know the key.
> Even if you do know the input.
> PRGs look random if you don't know the input.
> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)

» With hash functions, both the key and the input are known.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
»> Nothing! We don’t claim the output looks random.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
»> Nothing! We don’t claim the output looks random.
» We claim collisions are hard to find.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.
Assume the adversary has access to the same random function.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access

to a random function.
Assume the adversary has access to the same random function.
When you prove security, assume there is an “oracle” that responds to all queries.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Assume the adversary has access to the same random function.

When you prove security, assume there is an “oracle” that responds to all queries.

In the real world, just replace all queries with the output of a hash function.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Assume the adversary has access to the same random function.

When you prove security, assume there is an “oracle” that responds to all queries.

In the real world, just replace all queries with the output of a hash function.

Hope for the best!

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Assume the adversary has access to the same random function.

When you prove security, assume there is an “oracle” that responds to all queries.

In the real world, just replace all queries with the output of a hash function.

Hope for the best!

1. Example: password hashing. h = H(pwd) reveals nothing, unless the adversary
specifically evaluates H on input pwd.

Random Oracles

> PRFs look random if you don’t know the key.

> Even if you do know the input.
> PRGs look random if you don't know the input.

> Even though there is no key. (So anyone, even the adversary, can always evaluate it.)
» With hash functions, both the key and the input are known.

> What could it mean to say that this looks random?
> Nothing! We don’t claim the output looks random.
> We claim collisions are hard to find.

Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Assume the adversary has access to the same random function.

When you prove security, assume there is an “oracle” that responds to all queries.

In the real world, just replace all queries with the output of a hash function.

Hope for the best!

1. Example: password hashing. h = H(pwd) reveals nothing, unless the adversary
specifically evaluates H on input pwd.

2. Example: key derivation. We need a uniform, random key. Sometimes we have
non-uniform input, such as biometric data. h = H(iris) reveals nothing, unless the
adversary specifically evaluates H on input iris.

Min Entropy

<O <Fr o«

it
v

Q>

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxy Pr[x < D]

Think of this as the guessing probability. To guess which item will be sampled, guess
the item with the maximum probability under D.

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxy Pr[x < D]

Think of this as the guessing probability. To guess which item will be sampled, guess
the item with the maximum probability under D.
For example, if the most likely outcome has probability 27", Then

Hoo(D) = —log2™" = n.

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxy Pr[x < D]

Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxx Pr[x < D]

Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxx Pr[x < D]

Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

Guess pwd = 123456. ldeally, Pr[pwd = 123456 | h] = .89%.
This would mean that the hash provided no additional information.

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxx Pr[x < D]

Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

Guess pwd = 123456. ldeally, Pr[pwd = 123456 | h] = .89%.
This would mean that the hash provided no additional information.

Check if h = H(123456). If not, then, ideally:
_ __ Pr[pwd=12345Apwd#123456] __ Pr[pwd=12345] __
Pr[pwd = 12345 | pwd # 123456] = P [pwd Z123456] = BrlpwdZ53456] — 27%.

Min Entropy

Definition
Let D be a distribution. The min-entropy of D, measured in bits, is

Hoo (D) = — log maxx Pr[x < D]

Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Password Count Percentage
123456 290731 0.8918%
12345 79078 0.2426%
123456789 76790 0.2356%
password 59463 0.1824%
iloveyou 49952 0.1532%

Guess pwd = 123456. ldeally, Pr[pwd = 123456 | h] = .89%.
This would mean that the hash provided no additional information.

Check if h = H(123456). If not, then, ideally:
_ __ Pr[pwd=12345Apwd#123456] __ Pr[pwd=12345] __
Pr[pwd = 12345 | pwd # 123456] = P [pwd Z123456] = BrlpwdZ53456] — 27%.

This would mean that nothing was learned, except that pwd # 123456.

PWDs using CRHF

Adversary sees h = H(pwd)
Consider the following collision resistant hash function, h° : {0,1}?" — {0,1}":

b (bl|x]ly):
If b=0Ay =0", output 0||x.
Else, output 1||AS(b||x||y), where A% : {0,1}2" — {0,1}"~ ! is a fixed-length CRHF,

PWDs using CRHF

Adversary sees h = H(pwd)

Consider the following collision resistant hash function, h° : {0,1}?" — {0,1}":

b (bl|x]ly):

If b=0Ay =0", output 0||x.

Else, output 1||h*(b||x||y), where h* : {0,1}2" — {0,1} "1 is a fixed-length CRHF.
What is h(pwd), if pwd requires padding of 0"?

PWDs using CRHF
Adversary sees h = H(pwd)
Consider the following collision resistant hash function, h° : {0,1}?" — {0,1}":

b (bl|x]ly):
If b=0Ay =0", output 0||x.
Else, output 1||h*(b||x||y), where h* : {0,1}2" — {0,1} "1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?

Consider the following collision resistant hash function, h* : {0,1}?" — {0,1}":

he(bl|x]ly):
Output b||h*(b||x|ly), where A : {0,1}2" — {0,1}"~1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?

PWDs using CRHF
Adversary sees h = H(pwd)
Consider the following collision resistant hash function, h° : {0,1}?" — {0,1}":

b (bl|x]ly):
If b=0Ay =0", output 0||x.
Else, output 1||h*(b||x||y), where h* : {0,1}2" — {0,1} "1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?

Consider the following collision resistant hash function, h* : {0,1}?" — {0,1}":
he(bl|x]ly):
Output b||h*(b||x|ly), where A : {0,1}2" — {0,1}"~1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?
Seeing h(x) roughly doubles your probability of guessing pwd.

Random Oracle
Adversary sees h = H(pwd)

Let’'s model H as a random oracle:

Random Oracle
Adversary sees h = H(pwd)

Let’'s model H as a random oracle:
Each time A wants to evaluate H, it queries an “oracle” that holds a random function.

Random Oracle
Adversary sees h = H(pwd)

Let’'s model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:
Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

» We have seen a MAC scheme that was secure in the RO, but insecure if the hash
function instantiating the RO followed the Merkle-Damgard transform.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

» We have seen a MAC scheme that was secure in the RO, but insecure if the hash
function instantiating the RO followed the Merkle-Damgard transform.

On the other hand...

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

» We have seen a MAC scheme that was secure in the RO, but insecure if the hash
function instantiating the RO followed the Merkle-Damgard transform.

On the other hand...
> A proof in the RO model helps us identify a single, potential weak point.

Random Oracle
Adversary sees h = H(pwd)

Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

» We have seen a MAC scheme that was secure in the RO, but insecure if the hash
function instantiating the RO followed the Merkle-Damgard transform.

On the other hand...
> A proof in the RO model helps us identify a single, potential weak point.

> It can be viewed as a proof that the “only” thing that can go wrong is the choice
of hash function.

