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» With hash functions, both the key and the input are known.
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> Nothing! We don’t claim the output looks random.
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Random Oracle Model Design an algorithm or a protocol as though you have access
to a random function.

Assume the adversary has access to the same random function.

When you prove security, assume there is an “oracle” that responds to all queries.

In the real world, just replace all queries with the output of a hash function.

Hope for the best!

1. Example: password hashing. h = H(pwd) reveals nothing, unless the adversary
specifically evaluates H on input pwd.

2. Example: key derivation. We need a uniform, random key. Sometimes we have
non-uniform input, such as biometric data. h = H(iris) reveals nothing, unless the
adversary specifically evaluates H on input iris.
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Password hashing:
Adversary sees h = H(pwd).
In 2009, the RockYou! pwd database, containing 32 million pwds, was breached.

Password Count Percentage
123456 290731 0.8918%
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Guess pwd = 123456. ldeally, Pr[pwd = 123456 | h] = .89%.
This would mean that the hash provided no additional information.

Check if h = H(123456). If not, then, ideally:
_ __ Pr[pwd=12345Apwd#123456] __ Pr[pwd=12345] __
Pr[pwd = 12345 | pwd # 123456] = P [pwd Z123456] = BrlpwdZ53456] — 27%.

This would mean that nothing was learned, except that pwd # 123456.
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Adversary sees h = H(pwd)
Consider the following collision resistant hash function, h° : {0,1}?" — {0,1}":

b (bl|x]ly):
If b=0Ay =0", output 0||x.
Else, output 1||h*(b||x||y), where h* : {0,1}2" — {0,1} "1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?

Consider the following collision resistant hash function, h* : {0,1}?" — {0,1}":
he(bl|x]ly):
Output b||h*(b||x|ly), where A : {0,1}2" — {0,1}"~1 is a fixed-length CRHF.

What is h(pwd), if pwd requires padding of 0"?
Seeing h(x) roughly doubles your probability of guessing pwd.
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Let's model H as a random oracle:

Each time A wants to evaluate H, it queries an “oracle” that holds a random function.
Because it is a random function, a wrong query reveals nothing about pwd.

Since there are no random oracles in the sky, we then instantiate with some hash
function.

Is this a reasonable assumption?

» We know that there exist constructions of various cryptographic primitives
(e.g. encryption schemes) that are secure in the RO model, but are provably
insecure, regardless of what hash function is used in the instantiation.

» However, these constructions are contrived.

» We have seen a MAC scheme that was secure in the RO, but insecure if the hash
function instantiating the RO followed the Merkle-Damgard transform.

On the other hand...
> A proof in the RO model helps us identify a single, potential weak point.

> It can be viewed as a proof that the “only” thing that can go wrong is the choice
of hash function.



