

Key Exchange and the Public Key Revolution

Slides by Prof. Jonathan Katz.
Lightly edited by me.

Private-key cryptography

- Private-key cryptography allows two users who *share a secret key* to establish a “secure channel”
- The need to share a secret key has several drawbacks...

The key-distribution problem

- *How do users share a key in the first place?*
 - Need to share the key using a secure channel...
- This problem can be solved in some settings
 - E.g., physical proximity, trusted courier, ...
 - Note: this does not make private-key cryptography useless!
- Can be difficult, expensive, or impossible to solve in other settings

The key-management problem

- Imagine an organization with N employees, where each pair of employees might need to communicate securely
- Solution using private-key cryptography:
 - Each user shares a key with all other users
⇒ Each user must store/manage $N-1$ secret keys!
⇒ $O(N^2)$ keys overall!

Key Distribution Centers

Drawbacks:

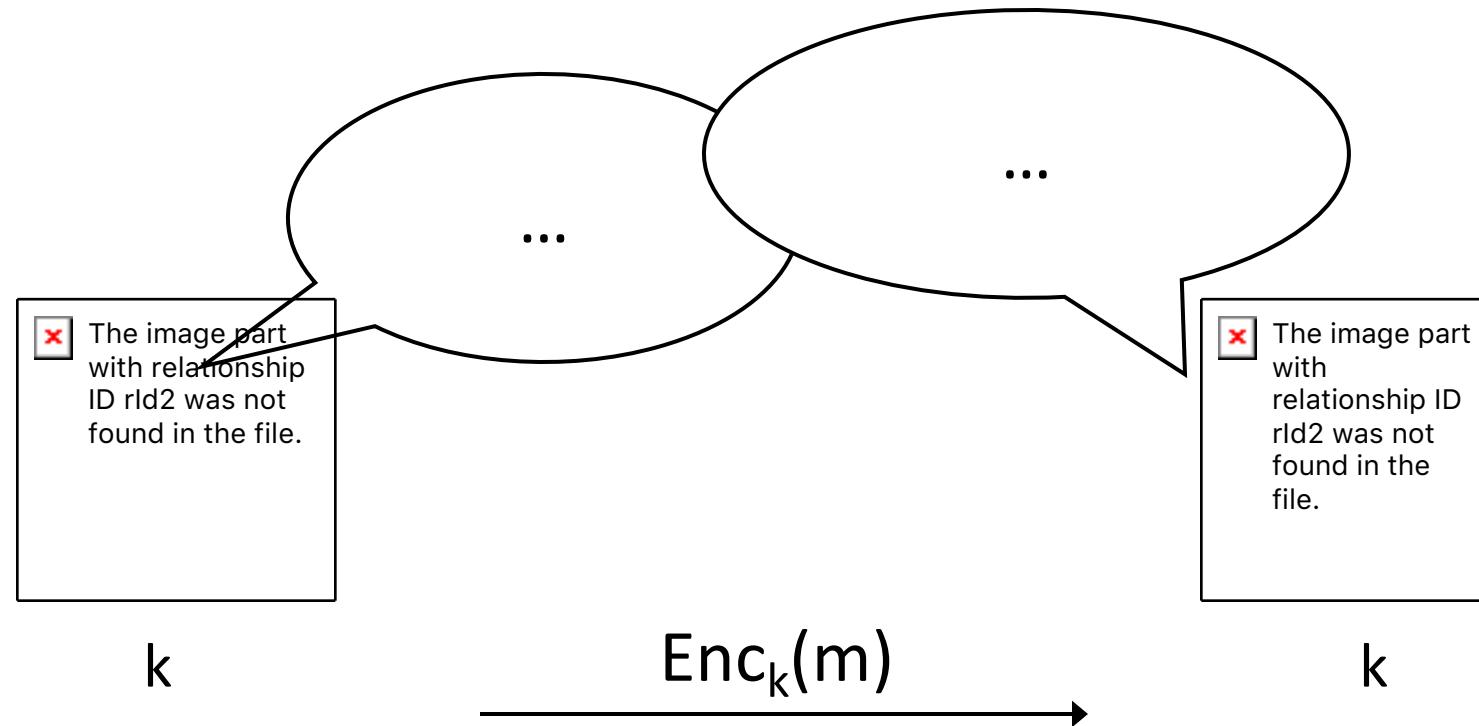
- Single point of failure.
 - For liveness. Could duplicate, but...
 - For security! Internal and external.
- Cannot support “open systems”.
 - What if Alice and Bob do not work for the same entity, or trust the same person?
 - E.g. sending credit card information to a merchant.

“Classical” cryptography
offers no solution
to these problems!

New directions...

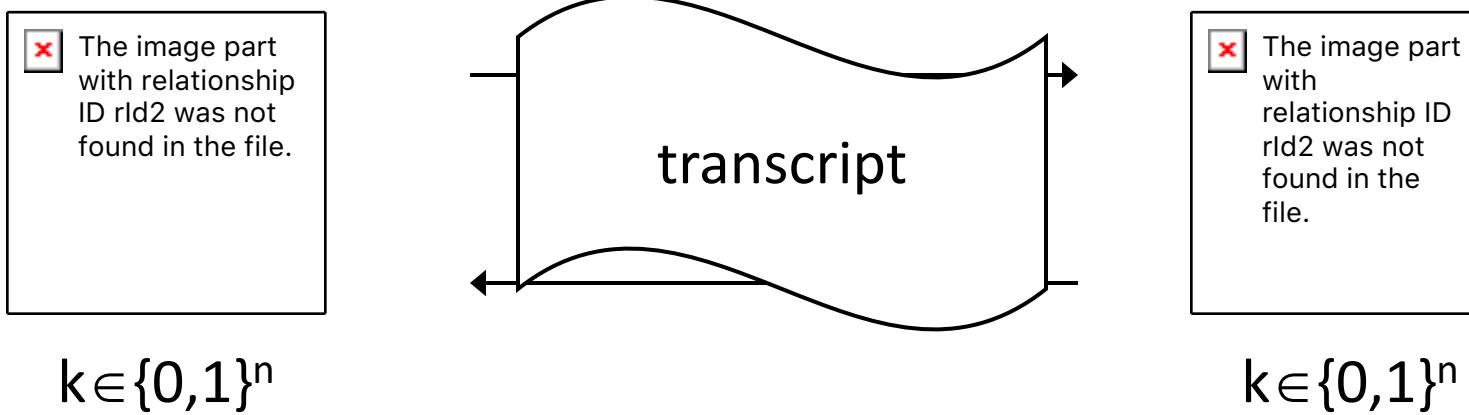
- Main ideas:
 - Some problems exhibit *asymmetry* – easy to compute, but hard to invert (factoring, RSA, group exponentiation, ...)
 - Use this asymmetry to enable two parties to agree on a shared secret key via public discussion(!)
 - *Key exchange*

Key exchange



Secure against an eavesdropper who sees everything!

More formally...

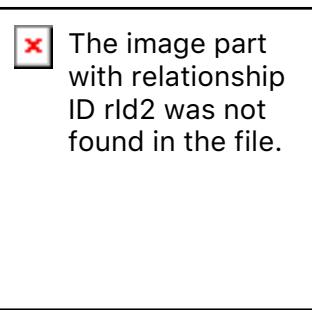
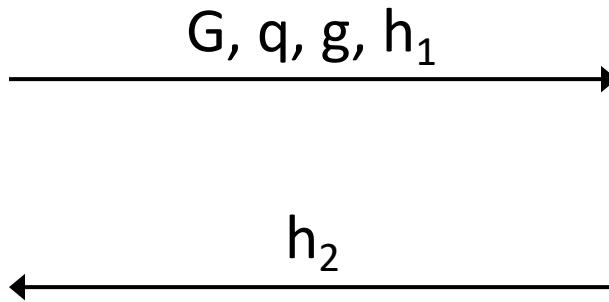
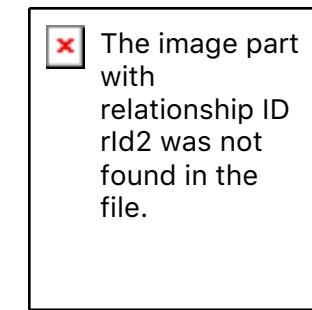


Security goal: even after observing the transcript, the shared key k should be indistinguishable from a uniform key

Notes

- Being unable to compute the key given the transcript is not a strong enough guarantee
- Indistinguishability of the shared key from uniform is a much stronger guarantee...
 - ...and is necessary if the shared key will subsequently be used for private-key crypto!

Diffie-Hellman key exchange



$$k_1 = (h_2)^x$$

$$k_2 = (h_1)^y$$

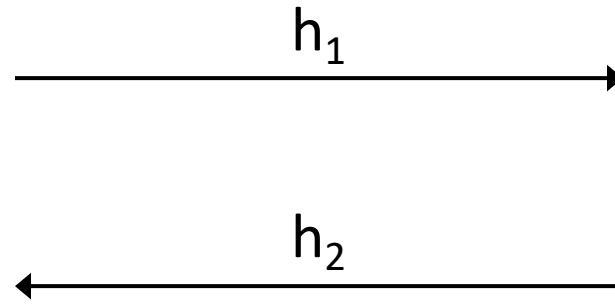
$$\begin{aligned} (G, q, g) &\leftarrow \mathcal{G}(1^n) \\ x &\leftarrow \mathbb{Z}_q \\ h_1 &= g^x \end{aligned}$$

$$\begin{aligned} y &\leftarrow \mathbb{Z}_q \\ h_2 &= g^y \end{aligned}$$

In practice...

G, q, g

 The image part with relationship ID rld2 was not found in the file.



 The image part with relationship ID rld2 was not found in the file.

$$k_1 = (h_2)^x$$

$$k_2 = (h_1)^y$$

$$h_1 = g^x$$

$$h_2 = g^y$$

Recall...

- *Decisional Diffie-Hellman (DDH) assumption:*
 - Given g^x, g^y , cannot distinguish g^{xy} from a uniform group element

Security?

- Eavesdropper sees G, q, g, g^x, g^y
- Shared key k is g^{xy}
- Computing k from the transcript is exactly the *computational* Diffie-Hellman problem
- Distinguishing k from a uniform group element is exactly the *decisional* Diffie-Hellman problem
 - ⇒ If the DDH problem is hard relative to \mathcal{G} , this is a secure key-exchange protocol!

A subtlety

- We want our key-exchange protocol to give us a uniform(-looking) key $k \in \{0,1\}^n$
- Instead we have a uniform(-looking) group element $k \in G$
 - Not clear how to use this as, e.g., an AES key
- Solution: *key derivation*
 - Set $k' = H(k)$ for suitable hash function H
 - Secure if H is modeled as a random oracle

Modern key-exchange protocols

- Security against passive eavesdroppers is insufficient
- Generally want *authenticated* key exchange
 - This requires some form of setup in advance
- Modern key-exchange protocols provide this
 - We will return to this later