

RSA Encryption

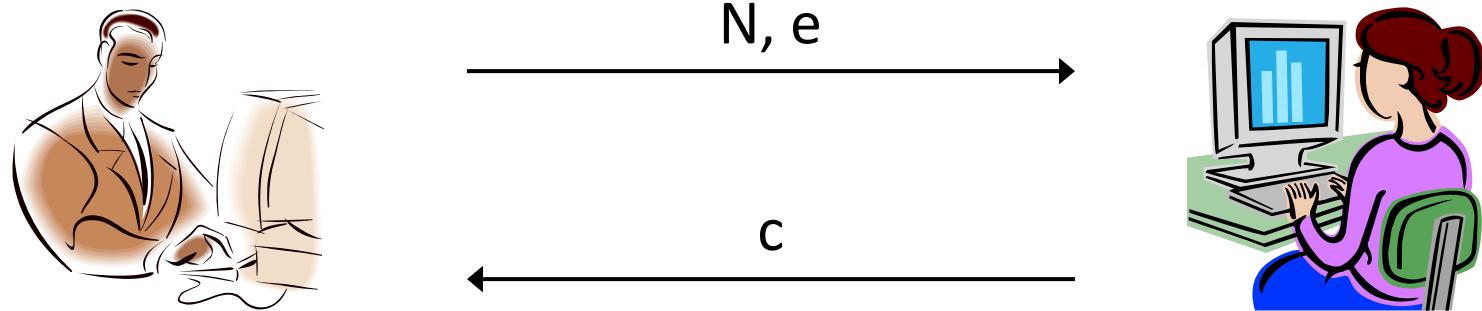
Slides by Prof. Jonathan Katz.
Lightly edited by me.

Recall...

- Let p, q be random, equal-length primes
- Compute modulus $N = pq$
- Choose e, d such that $e \cdot d = 1 \pmod{\phi(N)}$
- The e^{th} root of x modulo N is $[x^d \pmod{N}]$
 - i.e., easy to compute given p, q (or d)
- *RSA assumption:* given N, e only, it is hard to compute the e^{th} root of a uniform $c \in \mathbb{Z}_N^*$

- This suggests a public-key encryption scheme!

“Plain” RSA encryption



$(N, e, d) \leftarrow \text{RSAGen}(1^n)$

$\text{pk} = (N, e)$

$\text{sk} = d$

$c = [m^e \bmod N]$

$m = [c^d \bmod N]$

Is this scheme secure?

- This scheme is *deterministic*
 - Cannot be CPA-secure!
- RSA assumption only refers to hardness of computing the e^{th} root of a *uniform* c
 - c is not uniform unless m is
 - **Plain RSA should never be used!**
 - Easy to compute e^{th} root of $c = [m^e \bmod N]$ when m is small
- RSA assumption only refers to hardness of computing the e^{th} root of c *in its entirety*
 - *Partial* information about the e^{th} root may be leaked
 - (In fact, this is the case)

Chosen-ciphertext attacks

- Of course, plain RSA cannot be CCA-secure since it is not even CPA-secure
 - ... but these ciphertexts are completely malleable.
- Given ciphertext c for unknown message m , can compute $c' = [\alpha^e \cdot c \bmod N]$
 - What does this decrypt to?

How to fix plain RSA?

- One approach: use a *randomized* encoding
- I.e., to encrypt m
 - First compute some reversible, randomized mapping $M = E(m)$
 - Then set $c := [M^e \bmod N]$
- To decrypt c
 - Compute $M := [c^d \bmod N]$
 - Recover m from M

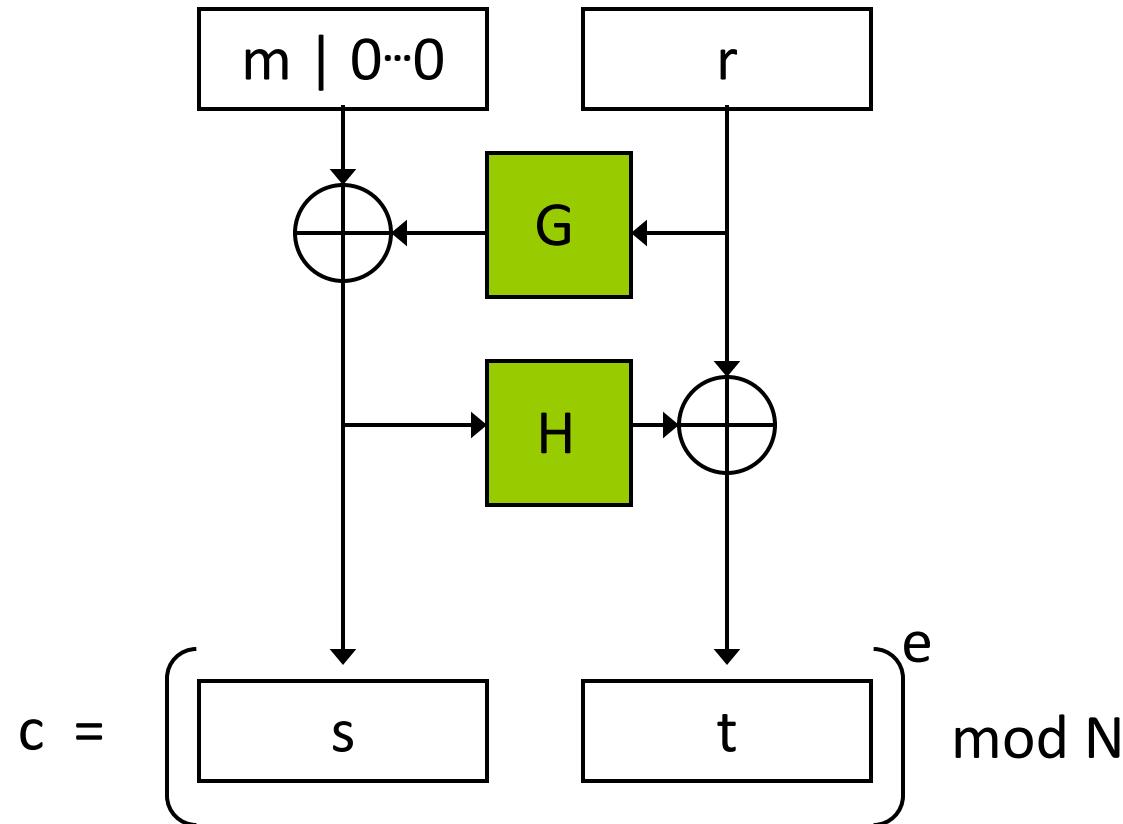
PKCS #1 v1.5

- Standard issued by RSA labs in 1993
- Idea: introduce *random padding*
 - $E(m) = r|m$
- I.e., to encrypt m
 - Choose random r
 - Compute the ciphertext $c := [(r|m)^e \bmod N]$
- Issues:
 - No proof of CPA-security (unless m is very short)
 - Chosen-plaintext attacks are known if r is too short
 - Chosen-ciphertext attacks possible

PKCS #1 v2.0

- *Optimal asymmetric encryption padding* (OAEP) applied to message first
- This padding introduces *redundancy*, so that not every $c \in \mathbb{Z}_N^*$ is a valid ciphertext
 - Need to check for proper format upon decryption
 - Return error if not properly formatted

OAEP



$$H(s) \oplus t = r$$

$$G(r) \oplus s = m | 0\cdots 0$$

Security?

- RSA-OAEP can be proven CCA-secure under the RSA assumption, if G and H are modeled as random oracles
- Widely used in practice...