

Constructing Digital Signatures

Slides by Prof. Jonathan Katz.
Lightly edited by me.

Hash-and-sign paradigm

- Given
 - A signature scheme $\Pi = (\text{Gen}, \text{Sign}, \text{Vrfy})$ for “short” messages of length n
 - Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^n$
- Construct a signature scheme $\Pi' = (\text{Gen}, \text{Sign}', \text{Vrfy}')$ for arbitrary-length messages:
 - $\text{Sign}'_{\text{sk}}(m) = \text{Sign}_{\text{sk}}(H(m))$
 - $\text{Vrfy}'_{\text{pk}}(m, \sigma) = \text{Vrfy}_{\text{pk}}(H(m), \sigma)$

Hash-and-sign paradigm

- Theorem: If Π is secure and H is collision-resistant, then Π' is secure
- Proof: Say the sender signs m_1, m_2, \dots
 - Let $h_i = H(m_i)$
- Attacker outputs forgery (m, σ) , $m \neq m_i$ for all i
- Two cases:
 - $H(m) = h_i$ for some i
 - Collision in H !
 - $H(m) \neq h_i$ for all i
 - Forgery in the underlying signature scheme

Hash-and-sign paradigm

- Same idea as in the hash-and-MAC paradigm
- Can be viewed as analogous to hybrid encryption
 - The *functionality* of digital signatures at the asymptotic cost of a *symmetric-key* operation

Signature schemes

- We will discuss how to construct signature schemes for “short” messages
 - Using hash-and-sign, this implies signatures for arbitrary length messages

Signature schemes in practice

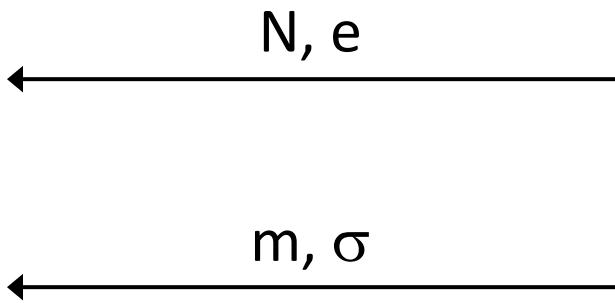
- RSA-based signatures
 - Can be proven secure (based on RSA assumption, in random-oracle model)
- Dlog-based signatures
 - Shorter signatures, faster signing than RSA-based signatures
 - (EC)DSA
 - Widely used, no proof of security
 - Schnorr
 - Can be prove secure (based on dlog assumption, in random-oracle model)

RSA-based signatures

Recall...

- Choose random, equal-length primes p, q
- Compute modulus $N = pq$
- Choose e, d such that $e \cdot d = 1 \pmod{\phi(N)}$
- The e^{th} root of m modulo N is $[m^d \pmod{N}]$
$$(m^d)^e = m^{de} = m^{[ed \pmod{\phi(N)}]} = m \pmod{N}$$
- *RSA assumption:* given N, e only, hard to compute the e^{th} root of a uniform $m \in \mathbb{Z}_N^*$

“Plain” RSA signatures



$$m \stackrel{?}{=} [\sigma^e \bmod N]$$

$$\begin{aligned} (N, e, d) &\leftarrow \text{RSAGen}(1^n) \\ \text{pk} &= (N, e) \\ \text{sk} &= d \end{aligned}$$

$$\sigma = [m^d \bmod N]$$

Security?

- Intuition
 - Signature of m is the e^{th} root of m – supposedly hard to compute!

Attack 1

- Can sign *specific* messages
 - E.g., easy to compute the e^{th} root of $m = 1$, or the cube root of $m = 8$

Attack 2

- Can generate signatures on “random” messages
 - Choose arbitrary σ ; set $m = [\sigma^e \bmod N]$

Attack 3

- Can combine two signatures to obtain a third
 - Say σ_1, σ_2 are valid signatures on m_1, m_2 with respect to public key N, e
 - Then $\sigma' = [\sigma_1 \cdot \sigma_2 \bmod N]$ is a valid signature on the message $m' = [m_1 \cdot m_2 \bmod N]$
 - $(\sigma_1 \cdot \sigma_2)^e = \sigma_1^e \cdot \sigma_2^e = m_1 \cdot m_2 \bmod N$

RSA-FDH

- Main idea: apply a “cryptographic transformation” to messages before signing
- Public key: (N, e) private key: d
- $\text{Sign}_{\text{sk}}(m) = H(m)^d \bmod N$
 - H must map onto all of \mathbb{Z}_N^*
- $\text{Vrfy}_{\text{pk}}(m, \sigma)$: output 1 iff
$$\sigma^e = H(m) \bmod N$$
- (This also handles long messages without additional hashing)

Intuition for security?

- Look at the three previous attacks...
 - Not easy to compute the e^{th} root of $H(1)$, ...
 - Choose σ ..., but how do you find an m such that $H(m) = \sigma^e \bmod N$?
 - Computing inverses of H should be hard
 - $H(m_1) \cdot H(m_2) = \sigma_1^e \cdot \sigma_2^e = (\sigma_1 \cdot \sigma_2)^e \neq H(m_1 \cdot m_2)$

Security of RSA-FDH

- If the RSA assumption holds, and H is modeled as a random oracle (mapping onto \mathbb{Z}_N^*), then RSA-FDH is secure
- In practice, H is instantiated with a (modified) cryptographic hash function
 - Must ensure that the range of H is large enough!

RSA-FDH in practice

- The RSA PKCS #1 v2.1 standard includes a signature scheme inspired by RSA-FDH
 - Essentially a randomized variant of RSA-FDH

dlog-based signatures

Digital signature standard (DSS)

- US government standard for digital signatures
 - DSA, based on discrete-logarithm problem in subgroup of \mathbb{Z}_p^*
 - ECDSA, based on elliptic-curve groups
 - See book for details
- Compared to RSA-based signatures
 - Shorter signatures and public keys (for ECDSA)
 - Can have faster signing
 - Slower verification