Constructing Digital
Signatures

Slides by Prof. Jonathan Katz.
Lightly edited by me.



Hash-and-sign paradigm

e GGiven

— A signature scheme I1 = (Gen, Sign, Vrfy) for
“short” messages of length n

— Hash function H: {0,1}" — {0,1}"
e Construct a signature scheme II'=(Gen, Sign’,
Vrfy’) for arbitrary-length messages:
— Sign’y(m) = Signg (H(m))
— Vrty’ (m, 6) = Vrfy, (H(m), o)



Hash-and-sign paradigm

Theorem: If I'1is secure and H is collision-
resistant, then I'l’ is secure

Proof: Say the sender signs m;, m,, ...
— Let hi - H(m,)

Attacker outputs forgery (m, ), m = m, for all i

Two cases:
— H(m) = h, for some i
e Collisionin H!
— H(m) # h, for all i
* Forgery in the underlying signature scheme



Hash-and-sign paradigm

 Same idea as in the hash-and-MAC paradigm

* Can be viewed as analogous to hybrid
encryption

— The functionality of digital signatures at the
asymptotic cost of a symmetric-key operation



Signature schemes

 We will discuss how to construct signature
schemes for “short” messages

— Using hash-and-sign, this implies signatures for
arbitrary length messages



Signature schemes in practice

* RSA-based signatures

— Can be proven secure (based on RSA assumption, in
random-oracle model)

* Dlog-based signatures

— Shorter signatures, faster signing than RSA-based
signatures
— (EC)DSA
* Widely used, no proof of security
— Schnorr

e Can be prove secure (based on dlog assumption, in random-
oracle model)



RSA-based signatures



Recall...

Choose random, equal-length primes p, g
Compute modulus N=pqg
Choose e, d such that e - d =1 mod ¢(N)

The eth root of m modulo N is [m® mod N]
(md)e = mde = mled mod ¢(N)] = m mod N

RSA assumption: given N, e only, hard to
compute the et root of a uniformm € Z



“Plain” RSA signatures

S N, e
1
™~

L

— =L <

5 (N, e, d) « RSAGen(1")
m = [c® mod N] pk = (N, e)

sk =d

6 = [m9 mod N]



Security?

* |ntuition

— Signature of m is the eth root of m — supposedly
hard to compute!



Attack 1

e Can sign specific messages

— E.g., easy to compute the eth root of m = 1, or the
cube root of m =8



Attack 2

* Can generate signhatures on “random”
messages

— Choose arbitrary o; set m = [6® mod N]



Attack 3

Can combine two signatures to obtain a third

— Say ,, G, are valid signatures on m;, m, with
respect to public key N, e

— Then ¢’ =[G, - 6, mod N] is a valid signature on
the message m’ = [m; - m, mod N]

* (0,-0,),=6,,-6,°=m;-m,mod N



RSA-FDH

Main idea: apply a “cryptographic
transformation” to messages before signing

Public key: (N, e) private key: d
Sign, (m) = H(m)? mod N
— H must map onto all of Z°
Vrty, (m, c): output 1 iff
o®=H(m) mod N

(This also handles long messages without
additional hashing)



Intuition for security?

* Look at the three previous attacks...
— Not easy to compute the et" root of H(1), ...

— Choose o..., but how do you find an m such that
H(m) = 6 mod N?
* Computing inverses of H should be hard

— H(m,) - H(m,) = 6,°- 6,° = (01" 6,)¢# H(m; - m,)



Security of RSA-FDH

* |f the RSA assumption holds, and H is modeled
as a random oracle (mapping onto Z",,), then
RSA-FDH is secure

* |n practice, H is instantiated with a (modified)
cryptographic hash function
— Must ensure that the range of H is large enough!



RSA-FDH in practice

 The RSA PKCS #1 v2.1 standard includes a
signature scheme inspired by RSA-FDH

— Essentially a randomized variant of RSA-FDH



dlog-based sighatures



Digital signature standard (DSS)

* US government standard for digital signatures

— DSA, based on discrete-logarithm problem in
subgroup of Z,"

— ECDSA, based on elliptic-curve groups
— See book for details

* Compared to RSA-based signatures
— Shorter signatures and public keys (for EDCSA)
— Can have faster signing
— Slower verification



