
Constructing Digital
Signatures

Slides by Prof. Jonathan Katz.
Lightly edited by me.

Hash-and-sign paradigm

• Given
– A signature scheme P = (Gen, Sign, Vrfy) for

“short” messages of length n
– Hash function H: {0,1}* ® {0,1}n

• Construct a signature scheme P’=(Gen, Sign’,
Vrfy’) for arbitrary-length messages:
– Sign’sk(m) = Signsk(H(m))
– Vrfy’pk(m, s) = Vrfypk(H(m), s)

Hash-and-sign paradigm

• Theorem: If P is secure and H is collision-
resistant, then P’ is secure

• Proof: Say the sender signs m1, m2, …
– Let hi = H(mi)

• Attacker outputs forgery (m, s), m ¹ mi for all i
• Two cases:
– H(m) = hi for some i

• Collision in H!
– H(m) ¹ hi for all i

• Forgery in the underlying signature scheme

Hash-and-sign paradigm

• Same idea as in the hash-and-MAC paradigm

• Can be viewed as analogous to hybrid
encryption
– The functionality of digital signatures at the

asymptotic cost of a symmetric-key operation

Signature schemes

• We will discuss how to construct signature
schemes for “short” messages
– Using hash-and-sign, this implies signatures for

arbitrary length messages

Signature schemes in practice

• RSA-based signatures
– Can be proven secure (based on RSA assumption, in

random-oracle model)
• Dlog-based signatures
– Shorter signatures, faster signing than RSA-based

signatures
– (EC)DSA

• Widely used, no proof of security
– Schnorr

• Can be prove secure (based on dlog assumption, in random-
oracle model)

RSA-based signatures

Recall…

• Choose random, equal-length primes p, q
• Compute modulus N=pq
• Choose e, d such that e · d = 1 mod f(N)

• The eth root of m modulo N is [md mod N]
(md)e = mde = m[ed mod f(N)] = m mod N

• RSA assumption: given N, e only, hard to
compute the eth root of a uniform m Î ℤ*N

8

“Plain” RSA signatures

s = [md mod N]

(N, e, d) ¬ RSAGen(1n)
pk = (N, e)

sk = d

N, e

m, s

m = [se mod N]?

Security?

• Intuition
– Signature of m is the eth root of m – supposedly

hard to compute!

Attack 1

• Can sign specific messages
– E.g., easy to compute the eth root of m = 1, or the

cube root of m = 8

Attack 2

• Can generate signatures on “random”
messages
– Choose arbitrary s; set m = [se mod N]

Attack 3

• Can combine two signatures to obtain a third
– Say s1, s2 are valid signatures on m1, m2 with

respect to public key N, e
– Then s’ = [s1 · s2 mod N] is a valid signature on

the message m’ = [m1 · m2 mod N]
• (s1 · s2)e = s1

e · s2
e = m1 · m2 mod N

RSA-FDH

• Main idea: apply a “cryptographic
transformation” to messages before signing

• Public key: (N, e) private key: d
• Signsk(m) = H(m)d mod N
– H must map onto all of ℤ*N

• Vrfypk(m, s): output 1 iff
se = H(m) mod N

• (This also handles long messages without
additional hashing)

Intuition for security?

• Look at the three previous attacks…
– Not easy to compute the eth root of H(1), …
– Choose s…, but how do you find an m such that

H(m) = se mod N?
• Computing inverses of H should be hard

– H(m1) · H(m2) = s1
e · s2

e = (s1 · s2)e ≠ H(m1 · m2)

Security of RSA-FDH

• If the RSA assumption holds, and H is modeled
as a random oracle (mapping onto ℤ*N), then
RSA-FDH is secure

• In practice, H is instantiated with a (modified)
cryptographic hash function
– Must ensure that the range of H is large enough!

RSA-FDH in practice

• The RSA PKCS #1 v2.1 standard includes a
signature scheme inspired by RSA-FDH
– Essentially a randomized variant of RSA-FDH

dlog-based signatures

Digital signature standard (DSS)

• US government standard for digital signatures
– DSA, based on discrete-logarithm problem in

subgroup of ℤp
*

– ECDSA, based on elliptic-curve groups
– See book for details

• Compared to RSA-based signatures
– Shorter signatures and public keys (for EDCSA)
– Can have faster signing
– Slower verification

