

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = k + m_i \pmod{26}$

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = k + m_i \pmod{26}$

Dec($k, c_1 c_2 \dots c_\ell$): $m_i = c_i - k \pmod{26}$

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = k + m_i \pmod{26}$

Dec($k, c_1 c_2 \dots c_\ell$): $m_i = c_i - k \pmod{26}$

Example:

$3 \leftarrow \text{Gen}$

Enc(3, "DOG") = "GRJ"

Enc(3, "ZOO") = "CRR"

Caesar Cipher

Keyspace \mathcal{K} : $\{0, 1, \dots, 25\}$

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = k + m_i \pmod{26}$

Dec($k, c_1 c_2 \dots c_\ell$): $m_i = c_i - k \pmod{26}$

Suppose you see a ciphertext:

$c = \text{FCJJMUMPJB}$

Dec(0, c) = "FCJJMUMPJB".

Dec(1, c) = "EBIILTLOIA".

Dec(2, c) = "DAHHKSKNHZ".

⋮

Dec(24, c) = "HELLOWORLD"

Dec(25, c) = "GDKKNVNQKC"

Substitution Cipher

Keyspace \mathcal{K} : { Permutations on $\{0, \dots, 25\}$ }

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Substitution Cipher

Keyspace \mathcal{K} : { Permutations on $\{0, \dots, 25\}$ }

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = \pi(m_i)$

Substitution Cipher

Keyspace \mathcal{K} : { Permutations on $\{0, \dots, 25\}$ }

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = \pi(m_i)$

Dec($k, c_1 c_2 \dots c_\ell$): $m_i = \pi^{-1}(c_i)$

Substitution Cipher

Keyspace \mathcal{K} : { Permutations on $\{0, \dots, 25\}$ }

Message space \mathcal{M} : $\{0, 1, \dots, 25\}^*$

Ciphertext space \mathcal{C} : $\{0, 1, \dots, 25\}^*$

(Note $\{0, \dots, 25\}$ is in 1-1 correspondence with $\{A, \dots, Z\}$)

Gen: Sample $k \leftarrow \mathcal{K}$.

Enc($k, m_1 m_2 \dots m_\ell$): $c_i = \pi(m_i)$

Dec($k, c_1 c_2 \dots c_\ell$): $m_i = \pi^{-1}(c_i)$

Example:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
G	C	E	P	S	I	M	K	Q	V	R	O	D	Z	N	F	B	L	T	W	J	A	Y	X	U	H

 $= k \leftarrow \text{Gen}$

Enc(k , "DOG") = "PNM"

Enc(k , "ZOO") = "HNN"

Enc(k , "BEE") = "CSS"

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

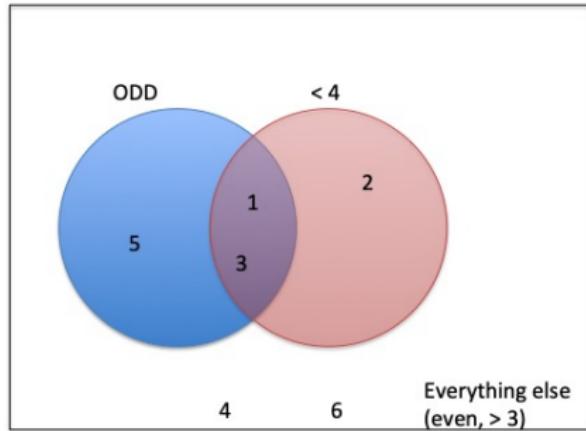
$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Example:



E_1 is the event that the roll of a die comes up odd.

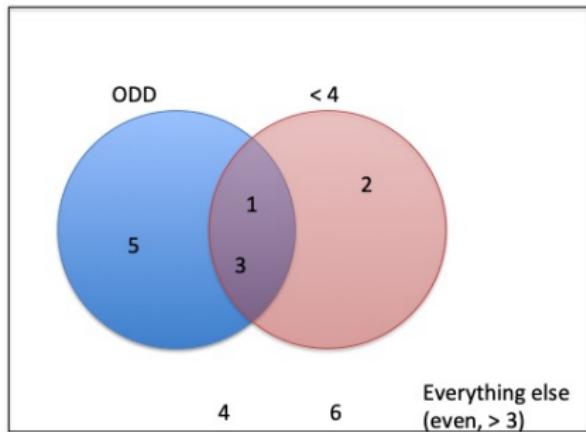
E_2 is the event that the roll of a die comes < 4 .

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Example:



E_1 is the event that the roll of a die comes up odd.

E_2 is the event that the roll of a die comes < 4.

$\Pr[E_1 | E_2]$:

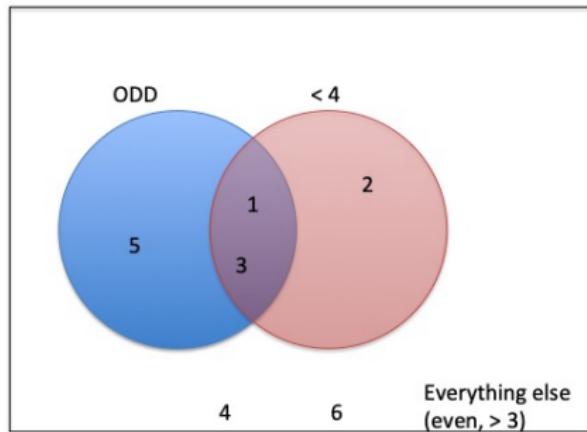
Given that the value is in the pink circle, what is the probability that it is *also* in the blue circle?

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Example:



E_1 is the event that the roll of a die comes up odd.

E_2 is the event that the roll of a die comes < 4 .

$\Pr[E_1 | E_2]$:

Given that the value is in the pink circle, what is the probability that it is *also* in the blue circle?

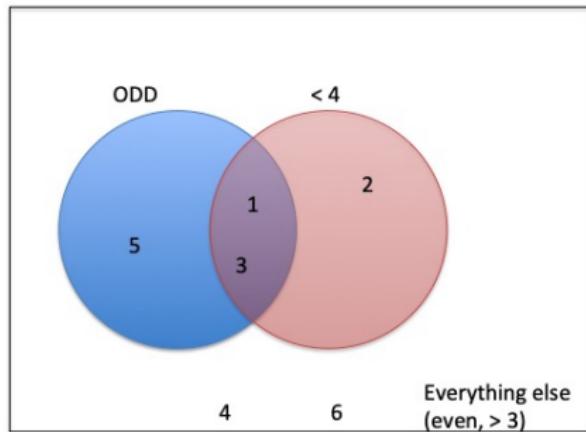
What fraction of the pink circle overlaps with the blue?

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Example:



E_1 is the event that the roll of a die comes up odd.

E_2 is the event that the roll of a die comes < 4 .

$\Pr[E_1 | E_2]$:

Given that the value is in the pink circle, what is the probability that it is *also* in the blue circle?

What fraction of the pink circle overlaps with the blue?

$\frac{2}{6}$ of the outcomes are in the intersection, and $\frac{3}{6}$ of the outcomes are in the pink circle.

Probability Theory (refresher)

Let E_1 and E_2 be events that might be the result of some randomized process.

$$\Pr[E_1 | E_2] = \frac{\Pr[E_1 \wedge E_2]}{\Pr[E_2]}.$$

Bayes's Theorem:

$$\Pr[E_1 | E_2] \Pr[E_2] = \Pr[E_1 \wedge E_2] = \Pr[E_2 | E_1] \Pr[E_1]$$

$$\Rightarrow \Pr[E_1 | E_2] = \frac{\Pr[E_2 | E_1] \Pr[E_1]}{\Pr[E_2]}$$

Probability Theory (refresher)

1	2	3
4	5	6

E_1

F: event of an odd roll

E_2

E_3

Let E_i be independent events that sum to 1.

Probability Theory (refresher)

1	2	3
4	5	6

E_1

F: event of an odd roll

E_2

E_3

Let E_i be independent events that sum to 1.

Formally: $\forall i, j : \Pr[E_i \wedge E_j] = 0$ and $\sum_i \Pr[E_i] = 1$

Probability Theory (refresher)

1	2	3
4	5	6

E_1

F: event of an odd roll

E_2

E_3

Let E_i be independent events that sum to 1.

Formally: $\forall i, j : \Pr[E_i \wedge E_j] = 0$ and $\sum_i \Pr[E_i] = 1$

For any event F ,

$$\Pr[F] = \sum_i \Pr[E_i \wedge F]$$

Probability Theory (refresher)

1	2	3
4	5	6

E_1

F: event of an odd roll

E_2

E_3

Let E_i be independent events that sum to 1.

Formally: $\forall i, j : \Pr[E_i \wedge E_j] = 0$ and $\sum_i \Pr[E_i] = 1$

For any event F ,

$$\begin{aligned}\Pr[F] &= \sum_i \Pr[E_i \wedge F] \\ &= \sum_i \Pr[F \mid E_i] \Pr[E_i]\end{aligned}$$

Probability Theory (refresher)

1	2	3
4	5	6

E_1

F: event of an odd roll

E_2

E_3

Let E_i be independent events that sum to 1.

Formally: $\forall i, j : \Pr[E_i \wedge E_j] = 0$ and $\sum_i \Pr[E_i] = 1$

For any event F ,

$$\begin{aligned}\Pr[F] &= \sum_i \Pr[E_i \wedge F] \\ &= \sum_i \Pr[F \mid E_i] \Pr[E_i] \\ &= \frac{1}{6} + \frac{1}{6} + \frac{1}{6}\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"DOG"}] = ???$$

$$\Pr[m = \text{"DOG"} \mid c = \text{"RFF"}] = ???$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"DOG"}] = \frac{1}{3}$$

$$\Pr[m = \text{"DOG"} \mid c = \text{"RFF"}] = \frac{\Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}]}{\Pr[c = \text{"RFF"}]} = 0$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"DOG"}] = \frac{1}{3}$$

$$\Pr[m = \text{"DOG"} \mid c = \text{"RFF"}] = \frac{\Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}]}{\Pr[c = \text{"RFF"}]} = 0$$

This follows because $\Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] = 0$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"DOG"}] = \frac{1}{3}$$

$$\Pr[m = \text{"DOG"} \mid c = \text{"RFF"}] = \frac{\Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}]}{\Pr[c = \text{"RFF"}]} = 0$$

This follows because $\Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] = 0$

The ciphertext c reveals something about the plaintext!

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] = \text{???}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] = \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]}\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]}\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}}{\Pr[c = \text{"RFF"}]}\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}}{\Pr[c = \text{"RFF"}]}\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"RFF"}] &= \Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"BEE"}] \Pr[m = \text{"BEE"}]\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}}{\Pr[c = \text{"RFF"}]}\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"RFF"}] &= \Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"BEE"}] \Pr[m = \text{"BEE"}] \\ &= (0 \cdot \frac{1}{3}) + (\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}) + (\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3})\end{aligned}$$

Insecurity of Substitution Cipher

Consider the following random experiment:

Choose $k \leftarrow \text{Gen}$

Choose $m \leftarrow \{\text{"DOG"}, \text{"ZOO"}, \text{"BEE"}\}$, uniformly at random

$c = \text{Enc}(k, m)$

$$\Pr[m = \text{"ZOO"}] = \frac{1}{3}$$

$$\begin{aligned}\Pr[m = \text{"ZOO"} \mid c = \text{"RFF"}] &= \frac{\Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\Pr[k \text{ maps "Z" to "R" and "O" to "F"}] \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \Pr[m = \text{"ZOO"}]}{\Pr[c = \text{"RFF"}]} \\ &= \frac{\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}}{\Pr[c = \text{"RFF"}]} = \frac{1}{2}\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"RFF"}] &= \Pr[c = \text{"RFF"} \mid m = \text{"DOG"}] \Pr[m = \text{"DOG"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"ZOO"}] \Pr[m = \text{"ZOO"}] \\ &\quad + \Pr[c = \text{"RFF"} \mid m = \text{"BEE"}] \Pr[m = \text{"BEE"}] \\ &= (0 \cdot \frac{1}{3}) + (\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3}) + (\frac{1}{26} \cdot \frac{1}{25} \cdot \frac{1}{3})\end{aligned}$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}} [m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}} [m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}} [m = \text{"boo"}] = .3$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

$$\Pr[m = \text{"ann"} \mid c = \text{"DQQ"}] = \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}] \frac{\Pr[m = \text{"ann"}]}{\Pr[c = \text{"DQQ"}]}$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

$$\begin{aligned}\Pr[m = \text{"ann"} \mid c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}] \frac{\Pr[m = \text{"ann"}]}{\Pr[c = \text{"DQQ"}]} \\ &= \Pr_{k \leftarrow \mathcal{K}}[k = 3] \left(\frac{.2}{\Pr[c = \text{"DQQ"}]} \right)\end{aligned}$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

$$\begin{aligned}\Pr[m = \text{"ann"} \mid c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}] \frac{\Pr[m = \text{"ann"}]}{\Pr[c = \text{"DQQ"}]} \\ &= \Pr_{k \leftarrow \mathcal{K}}[k = 3] \left(\frac{.2}{\Pr[c = \text{"DQQ"}]} \right)\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"kim"}].5 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}].2 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"boo"}].3\end{aligned}$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

$$\begin{aligned}\Pr[m = \text{"ann"} \mid c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}] \frac{\Pr[m = \text{"ann"}]}{\Pr[c = \text{"DQQ"}]} \\ &= \Pr_{k \leftarrow \mathcal{K}}[k = 3] \left(\frac{.2}{\Pr[c = \text{"DQQ"}]} \right)\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"kim"}].5 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}].2 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"boo"}].3 \\ &= 0 + \frac{1}{26}.2 + \frac{1}{26}.3 = \frac{1}{26}.5\end{aligned}$$

Insecurity of Caesar cipher

Consider the following message distribution, \mathcal{M} :

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"kim"}] = .5$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"ann"}] = .2$$

$$\Pr_{m \leftarrow \mathcal{M}}[m = \text{"boo"}] = .3$$

Suppose the adversary sees ciphertext $c = \text{"DQQ"}$.

$$\begin{aligned}\Pr[m = \text{"ann"} \mid c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}] \frac{\Pr[m = \text{"ann"}]}{\Pr[c = \text{"DQQ"}]} \\ &= \Pr_{k \leftarrow \mathcal{K}}[k = 3] \left(\frac{.2}{\Pr[c = \text{"DQQ"}]} \right) \\ &= \frac{1}{26} \left(\frac{.2}{\frac{1}{26} \cdot .5} \right) = .4 > .2\end{aligned}$$

$$\begin{aligned}\Pr[c = \text{"DQQ"}] &= \Pr[c = \text{"DQQ"} \mid m = \text{"kim"}].5 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"ann"}].2 \\ &\quad + \Pr[c = \text{"DQQ"} \mid m = \text{"boo"}].3 \\ &= 0 + \frac{1}{26} \cdot .2 + \frac{1}{26} \cdot .3 = \frac{1}{26} \cdot .5\end{aligned}$$