Perfect Secrecy

Definition

An encryption scheme (Gen, Enc, Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m € M, and every ciphertext
¢ € C for which Pr[C =¢] > 0: PrfM = m | C = c] = Pr[M = m].

Here C is the random variable that results from sampling m < M, k < Gen, and
outputting Enc(k, m).
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Consider the following message distribution, M:
Pr [m= “kim”]=.5

m«—M

Pr [m= “ann”] = .2
m«—M

Pr [m= “boo”] =.3
m«—M

Suppose the adversary sees ciphertext ¢ = “DQQ".

Prove that:
Prim= “kim” | c = “DQQ’] = Prim = “kim”]
Pr[m= “ann” | c = “DQQ"] = Pr[m = “ann”

Pr[m = “boo” | c = “DQQ”] =Pr[m = “boo”]
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[M(c)| < |K], since each key in K yields a single plaintext when decrypting c.
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Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

> The key length is as long as the message!
> Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

> You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen, Enc, Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |[K| > |[M].

Proof: Define M(c) = {m | m = Dec(k, c) for some k € K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

[M(c)| < |K], since each key in K yields a single plaintext when decrypting c.
Suppose K| < |[M]. Then [M(c)| < |K| < |M], so there exists some m* € M such
that m* ¢ M(c).

Let M be the uniform distribution over M.
— *1 — 1

PrM=m ]——‘M‘.

PrfiIM=m* | C=c]=0
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Reuse One Time Pad

What happens if we reuse the key in the OTP?
¢ = Enc(k,m) =k®& m
Cp = Enc(k, m2) =k®m

cadc=modm.

This reveals a lot about the messages!
It tells us exactly where they match and where they don't.

Even worse, suppose we know that ¢; encrypts m;j.

We can completely recover the key k: k = c1 & my.

Then we can decrypt ¢, precisely.

This is called a Known Plaintext Attack. We'd like to protect against this.



