
Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Here C is the random variable that results from sampling m← M, k ← Gen, and
outputting Enc(k,m).

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

Perfect Secrecy

Definition

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Consider the Caesar Cipher, with messages that are at most 1 character long.
Consider the following message distribution, M:
Pr [m = “a”] = .7 and Pr [m = “z”] = .3

Pr[m = “a” | C = b] =
Pr[C = b | m = “a”] Pr[m = “a”]

Pr[C = b]

=
Pr[k = 1] Pr[m = “a”]

Pr[C = b]

=
(1

26)(.7)

Pr[C = b]

=
(1

26)(.7)∑
m′∈M Pr[C = b | m = m′] Pr[m = m′]

=
(1

26)(.7)

Pr[C = b | m = “a”](.7) + Pr[C = b | m = “z”](.3)

=
(1

26)(.7)
1

26 (.7) + 1
26 (.3)

=
.7

.7 + .3
= .7

One Time Pad

Message space M: {a, . . . , z}`
Keyspace K: {0, . . . , 25}`
Ciphertext space C: {a, . . . , z}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 26
Dec(k, c) : mi = ci − ki mod 26

Consider the following message distribution, M:
Pr

m←M
[m = “kim”] = .5

Pr
m←M

[m = “ann”] = .2

Pr
m←M

[m = “boo”] = .3

Suppose the adversary sees ciphertext c = “DQQ”.

Prove that:
Pr[m = “kim” | c = “DQQ”] = Pr[m = “kim”]
Pr[m = “ann” | c = “DQQ”] = Pr[m = “ann”]
Pr[m = “boo” | c = “DQQ”] = Pr[m = “boo”]

One Time Pad

Message space M: {a, . . . , z}`
Keyspace K: {0, . . . , 25}`
Ciphertext space C: {a, . . . , z}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 26
Dec(k, c) : mi = ci − ki mod 26

Consider the following message distribution, M:
Pr

m←M
[m = “kim”] = .5

Pr
m←M

[m = “ann”] = .2

Pr
m←M

[m = “boo”] = .3

Suppose the adversary sees ciphertext c = “DQQ”.

Prove that:
Pr[m = “kim” | c = “DQQ”] = Pr[m = “kim”]
Pr[m = “ann” | c = “DQQ”] = Pr[m = “ann”]
Pr[m = “boo” | c = “DQQ”] = Pr[m = “boo”]

One Time Pad

Message space M: {a, . . . , z}`
Keyspace K: {0, . . . , 25}`
Ciphertext space C: {a, . . . , z}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 26
Dec(k, c) : mi = ci − ki mod 26

Consider the following message distribution, M:
Pr

m←M
[m = “kim”] = .5

Pr
m←M

[m = “ann”] = .2

Pr
m←M

[m = “boo”] = .3

Suppose the adversary sees ciphertext c = “DQQ”.

Prove that:
Pr[m = “kim” | c = “DQQ”] = Pr[m = “kim”]
Pr[m = “ann” | c = “DQQ”] = Pr[m = “ann”]
Pr[m = “boo” | c = “DQQ”] = Pr[m = “boo”]

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

= 1/8

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

Pr[c = 010] = Pr[c = 010 | m = 000] Pr[m = 000]

+ Pr[c = 010 | m = 001] Pr[m = 001]

+ Pr[c = 010 | m = 010] Pr[m = 010]

+ Pr[c = 010 | m = 011] Pr[m = 011]

+ Pr[c = 010 | m = 100] Pr[m = 100]

+ Pr[c = 010 | m = 101] Pr[m = 101]

+ Pr[c = 010 | m = 110] Pr[m = 110]

+ Pr[c = 010 | m = 111] Pr[m = 111]

= 1/8

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

Pr[c = 010] = Pr[c = 010 | m = 000] Pr[m = 000] = (1/8) Pr[m = 000]

+ Pr[c = 010 | m = 001] Pr[m = 001] = (1/8) Pr[m = 001]

+ Pr[c = 010 | m = 010] Pr[m = 010] = (1/8) Pr[m = 010]

+ Pr[c = 010 | m = 011] Pr[m = 011] = (1/8) Pr[m = 011]

+ Pr[c = 010 | m = 100] Pr[m = 100] = (1/8) Pr[m = 100]

+ Pr[c = 010 | m = 101] Pr[m = 101] = (1/8) Pr[m = 101]

+ Pr[c = 010 | m = 110] Pr[m = 110] = (1/8) Pr[m = 110]

+ Pr[c = 010 | m = 111] Pr[m = 111] = (1/8) Pr[m = 111]

= 1/8

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

Pr[c = 010] = Pr[c = 010 | m = 000] Pr[m = 000] = (1/8) Pr[m = 000]

+ Pr[c = 010 | m = 001] Pr[m = 001] = (1/8) Pr[m = 001]

+ Pr[c = 010 | m = 010] Pr[m = 010] = (1/8) Pr[m = 010]

+ Pr[c = 010 | m = 011] Pr[m = 011] = (1/8) Pr[m = 011]

+ Pr[c = 010 | m = 100] Pr[m = 100] = (1/8) Pr[m = 100]

+ Pr[c = 010 | m = 101] Pr[m = 101] = (1/8) Pr[m = 101]

+ Pr[c = 010 | m = 110] Pr[m = 110] = (1/8) Pr[m = 110]

+ Pr[c = 010 | m = 111] Pr[m = 111] = (1/8) Pr[m = 111]

= 1/8

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

Pr[c = 010] =
1

8
= Pr[c = 010 | M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]

=
1
8

Pr[M = m]
1
8

= Pr[M = m]

One Time Pad

Usually we use Binary strings instead of the alphabet {a, . . . , z}.
Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Example, for ` = 3:
k = 101
Enc(k, 111) = 010

Pr[c = 010] =
1

8
= Pr[c = 010 | M = m]

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]

=
1
8

Pr[M = m]
1
8

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.

Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1],

so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 2.
Pr[Enck (m1) = c] = Pr[C = c | M = m1], so, our assumption says that:
∀m1,m2 ∈M,Pr[C = c | M = m1] = Pr[C = c | M = m2] = δ

Pr[M = m | C = c] = Pr[C = c | M = m] Pr[M = m]/Pr[C = c]

=
Pr[C = c | M = m] Pr[M = m]∑

m′∈M
Pr[C = c | M = m′] Pr[M = m′]

=
δ Pr[M = m]

δ
∑

m′∈M
Pr[M = m′]

= Pr[M = m]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.

∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.
∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.
∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.
∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.
∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Perfect Secrecy, another way

Definition 1

An encryption scheme (Gen,Enc,Dec) with message space M is perfectly secret if for
every probability distribution M over M, every message m ∈M, and every ciphertext
c ∈ C for which Pr[C = c] > 0: Pr[M = m | C = c] = Pr[M = m].

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Suppose (Gen,Enc,Dec) satisfy Definition 1.
∀m ∈M, ∀c ∈ C,∀M overM,
Pr[M = m | C = c] = Pr[M = m].

Pr[M = m | C = c] =
Pr[C = c | M = m] Pr[M = m]

Pr[C = c]
= Pr[M = m]

⇒
Pr[C = c | M = m]

Pr[C = c]
= 1

⇒ Pr[C = c | M = m] = Pr[C = c]

⇒ ∀m1,m2 ∈M, ∀c ∈ C,Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

One Time Pad: Second Proof

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Claim: ∀m1,m2 ∈M,∀c ∈ C ,
Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Proof: ∀m ∈M,Pr[Enc(k,m) = c] = Pr[k ⊕m = c] = Pr[k = m ⊕ c] = 2−`

One Time Pad: Second Proof

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Claim: ∀m1,m2 ∈M,∀c ∈ C ,
Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Proof: ∀m ∈M,Pr[Enc(k,m) = c] = Pr[k ⊕m = c] = Pr[k = m ⊕ c] = 2−`

One Time Pad: Second Proof

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

Message space M: {0, 1}`
Keyspace K: {0, 1}`
Ciphertext space C: {0, 1}`

Gen : k = k1 . . . k` ← K
Enc(k,m) : ci = mi + ki mod 2
Dec(k, c) : mi = ci + ki mod 2

Claim: ∀m1,m2 ∈M,∀c ∈ C ,
Pr[Enc(k,m1) = c] = Pr[Enc(k,m2) = c]

Proof: ∀m ∈M,Pr[Enc(k,m) = c] = Pr[k ⊕m = c] = Pr[k = m ⊕ c] = 2−`

A simple security game

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

A nice property of this definition is that we don’t have to worry about the message
distribution.

A simple security game

Definition 2

For every m1,m2 ∈M, and every c ∈ C, Pr[Enc(k,m1) = c] = Pr[Enck (m2) = c].

A nice property of this definition is that we don’t have to worry about the message
distribution.

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.

Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Key Length

If the one time pad is perfectly secret, why use any other encryption scheme?

I The key length is as long as the message!

I Imagine encrypting a 4GB hard drive. You would need a 2nd 4GB hard drive!

I You have to know an upper bound on the number of messages you intend to send
to the recipient. If you run out of key material, you would have to exchange
another key.

Unfortunately, this problem is inherent for perfect secrecy:

Claim: If (Gen,Enc,Dec) is a perfectly secret encryption scheme with message space
M and key space K, then |K| ≥ |M|.

Proof: Define M(c) = {m | m = Dec(k, c) for some k ∈ K}
(Intuitively, M(c) is the set of messages that you could decrypt c to.)

|M(c)| ≤ |K|, since each key in K yields a single plaintext when decrypting c.
Suppose |K| < |M|. Then |M(c)| < |K| < |M|, so there exists some m∗ ∈M such
that m∗ /∈ M(c).

Let M be the uniform distribution over M.
Pr[M = m∗] = 1

|M| .

Pr[M = m∗ | C = c] = 0

Reuse One Time Pad

What happens if we reuse the key in the OTP?
c1 = Enc(k,m1) = k ⊕m1

c2 = Enc(k,m2) = k ⊕m2

c1 ⊕ c2 = m1 ⊕m2.

This reveals a lot about the messages!
It tells us exactly where they match and where they don’t.

Even worse, suppose we know that c1 encrypts m1.
We can completely recover the key k: k = c1 ⊕m1.
Then we can decrypt c2 precisely.
This is called a Known Plaintext Attack. We’d like to protect against this.

Reuse One Time Pad

What happens if we reuse the key in the OTP?
c1 = Enc(k,m1) = k ⊕m1

c2 = Enc(k,m2) = k ⊕m2

c1 ⊕ c2 = m1 ⊕m2.

This reveals a lot about the messages!
It tells us exactly where they match and where they don’t.

Even worse, suppose we know that c1 encrypts m1.
We can completely recover the key k: k = c1 ⊕m1.
Then we can decrypt c2 precisely.
This is called a Known Plaintext Attack. We’d like to protect against this.

Reuse One Time Pad

What happens if we reuse the key in the OTP?
c1 = Enc(k,m1) = k ⊕m1

c2 = Enc(k,m2) = k ⊕m2

c1 ⊕ c2 = m1 ⊕m2.

This reveals a lot about the messages!
It tells us exactly where they match and where they don’t.

Even worse, suppose we know that c1 encrypts m1.
We can completely recover the key k: k = c1 ⊕m1.
Then we can decrypt c2 precisely.
This is called a Known Plaintext Attack. We’d like to protect against this.

Reuse One Time Pad

What happens if we reuse the key in the OTP?
c1 = Enc(k,m1) = k ⊕m1

c2 = Enc(k,m2) = k ⊕m2

c1 ⊕ c2 = m1 ⊕m2.

This reveals a lot about the messages!
It tells us exactly where they match and where they don’t.

Even worse, suppose we know that c1 encrypts m1.
We can completely recover the key k: k = c1 ⊕m1.
Then we can decrypt c2 precisely.

This is called a Known Plaintext Attack. We’d like to protect against this.

Reuse One Time Pad

What happens if we reuse the key in the OTP?
c1 = Enc(k,m1) = k ⊕m1

c2 = Enc(k,m2) = k ⊕m2

c1 ⊕ c2 = m1 ⊕m2.

This reveals a lot about the messages!
It tells us exactly where they match and where they don’t.

Even worse, suppose we know that c1 encrypts m1.
We can completely recover the key k: k = c1 ⊕m1.
Then we can decrypt c2 precisely.
This is called a Known Plaintext Attack. We’d like to protect against this.

