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We will use a security parameter, n, as input to Gen.

We want to build encryption schemes that:

For any adversary with runtime that increases as poly(n) ,
The adversary's distinguishing advantage is negl(n).
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Define N = max(Ny, Na).

Vn > N, negli(n) + negla(n) < ﬁ = 2p%n) = ﬁ.
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Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
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Consider the polynomial %. Since negl(x) is negligible, there exists N € N such that
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Vn > N, negl(n) < o(m)

It follows that Vn > N, p(n) - negl(n) = f(n) < q(n)
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These relaxations are both necessary:
1. Given ciphertext c, try decrypting c using every key k € K.
Denote the resulting set by M(c).

Since |K| < | M|, there must be some m € M such m ¢ M(c).
We have learned something about the encrypted plaintext!

Consider the following known plaintext attack, where the adversary A knows that
{c1 = Enc(k,m1),...,ce = Enc(k, mg)} (without knowing k)

Try all k until you find one that is consistent with those ¢ values. Full key
recovery!

2. A polynomial-time adversary can try a few values of k. If she succeeds, then
great, and if not, then she can guess b’ at random.
Small advantage, but non-zero.
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Intuitively, if we double our key space, we should double our security.
If we add 1 bit to our key length, we double our key space.

Technicality: If we represent our key length (i.e. security parameter) in binary, then
the input length grows logarithmically in the key length.
For example: input 10000000 indicates a 128-bit key.
input 11111111 indicates a 255-bit key.
The adversary has input length 7 in both cases!
It's runtime and its guessing advantage would both be measured by poly(7).

We specify our security parameter in unary.

Gen(1") outputs an n-bit key.

Each increase in n allows the adversary’s runtime to grow. It still doubles the
keyspace, ensuring that its advantage diminishes.



Privacy against eavesdroppers
Indistinguishability in the presence of an eavesdropper:
PrivKRq (n):

1. A'is given 1" and outputs mg and my such that |mg| = |my].

2. k < Gen(1™), b < {0,1}, and ¢ < Enc(k, mp).
Then c is given to A.

3. A outputs a bit b’.
4. The outcome of the experiment is 1 if b = b’ and 0 otherwise.

Definition
A private-key encryption scheme N = (Gen, Enc, Dec) has indistinguishable

encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic
polynomial-time adversaries A, there is a negligible function negl such that, for all n,

Pr[PrivK%n(n) = 1] < 1/2 + negl(n)




