
Relaxing Security

We will relax security in 2 ways:

1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of m0 from an encryption of m1.

We could quantify this concretely:
An encryption scheme is (t, ε)-secure if, after running for t computational steps (or
cycles), the best adversary has an ε advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2−40)-secure, an adversary that can
perform 260 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

The drawback to concrete security is that a “timestep” or “cycle” is platform
dependent. We will instead use asymptotic notation for quantifying the adversary’s
advantage.

Recall: A polynomial time algorithm (in our case, adversary) has a runtime that grows
polynomially in its input size. What is our input here? Key length!

We will use a security parameter, n, as input to Gen.
We want to build encryption schemes that:
For any adversary with runtime that increases as poly(n) ,
The adversary’s distinguishing advantage is negl(n).
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A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f (n) < 1/p(n).

Examples:

2−n, 2−
n
2 , 2−

√
n, n− log n

Where do these become smaller than 1
n5 ?

2−n <
1

n5
for n ≥ 23

2−
n
2 <

1

n5
for n ≥ 59

2−
√

n <
1

n5
for n ≥ 3454

n− log n <
1

n5
for n ≥ 33

For n = 28 = 256, 1
n5 = 2−40.

n =40

n =80

n =1600

n ≈80

Note: 2−
√

n < n− log n for every n > 65, 536.
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Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f (n) < 1/p(n).

Suppose we have 2 negligible functions: negl1(x) and negl2(x).

Claim: The function f (x) = negl1(x) + negl2(x) is negligible.

We have to show that:
for any polynomial p(x), ∃N ∈ N such that ∀n > N, f (n) < 1

p(n)
.

Let q(x) = 2p(x). Because negl1(x) is a negligible function, there exists some N1 such
that ∀n > N1, negl1(n) < 1

q(n)
.

Let q(x) = 2p(x). Because negl2(x) is a negligible function, there exists some N2 such
that ∀n > N2, negl2(n) < 1

q(n)
.

Define N = max(N1,N2).
∀n > N, negl1(n) + negl2(n) < 2

q(n)
= 2

2p(n)
= 1

p(n)
.
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Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f (n) < 1/p(n).

Suppose we have negligible function: negl(x) and a polynomial, p(x).

Claim: The function f (x) = negl(x) · p(x) is negligible.

We have to show that:
for any polynomial q(x), ∃N ∈ N such that ∀n > N, f (n) < 1

q(n)
.

Consider the polynomial q(x)
p(x)

. Since negl(x) is negligible, there exists N ∈ N such that

∀n > N, negl(n) < q(n)
p(n)

It follows that ∀n > N, p(n) · negl(n) = f(n) < q(n)
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Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.
2. Even an efficient adversary might have some very (very very) small advantage in

distinguishing an encryption of m0 from an encryption of m1.

These relaxations are both necessary:
1. Given ciphertext c, try decrypting c using every key k ∈ K.

Denote the resulting set by M(c).
Since |K| < |M|, there must be some m ∈M such m /∈ M(c).
We have learned something about the encrypted plaintext!

Consider the following known plaintext attack, where the adversary A knows that
{c1 = Enc(k,m1), . . . , c` = Enc(k,m`)} (without knowing k)
Try all k until you find one that is consistent with those ` values. Full key
recovery!

2. A polynomial-time adversary can try a few values of k. If she succeeds, then
great, and if not, then she can guess b′ at random.
Small advantage, but non-zero.
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recovery!

2. A polynomial-time adversary can try a few values of k. If she succeeds, then
great, and if not, then she can guess b′ at random.
Small advantage, but non-zero.



Relaxing Security

We will relax security in 2 ways:

1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of m0 from an encryption of m1.
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Unary security parameters

Intuitively, if we double our key space, we should double our security.

If we add 1 bit to our key length, we double our key space.

Technicality: If we represent our key length (i.e. security parameter) in binary, then
the input length grows logarithmically in the key length.
For example: input 10000000 indicates a 128-bit key.

input 11111111 indicates a 255-bit key.
The adversary has input length 7 in both cases!
It’s runtime and its guessing advantage would both be measured by poly(7).

We specify our security parameter in unary.
Gen(1n) outputs an n-bit key.
Each increase in n allows the adversary’s runtime to grow. It still doubles the
keyspace, ensuring that its advantage diminishes.
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Privacy against eavesdroppers

Indistinguishability in the presence of an eavesdropper:

PrivKeav
A,Π(n):

1. A is given 1n and outputs m0 and m1 such that |m0| = |m1|.
2. k ← Gen(1n), b ← {0, 1}, and c ← Enc(k,mb).

Then c is given to A.

3. A outputs a bit b′.

4. The outcome of the experiment is 1 if b = b′ and 0 otherwise.

Definition

A private-key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic
polynomial-time adversaries A, there is a negligible function negl such that, for all n,

Pr[PrivKeav
A,Π(n) = 1] ≤ 1/2 + negl(n)


