Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

We could quantify this concretely:
An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

Relaxing Security

We will relax security in 2 ways:

1. We will only claim security against polynomial time adversaries.
2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.
We could quantify this concretely:

An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2740)-secure, an adversary that can

perform 290 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

We could quantify this concretely:
An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2740)-secure, an adversary that can
perform 290 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

The drawback to concrete security is that a “timestep” or “cycle” is platform
dependent. We will instead use asymptotic notation for quantifying the adversary’s
advantage.

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

We could quantify this concretely:
An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2740)-secure, an adversary that can
perform 290 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

The drawback to concrete security is that a “timestep” or “cycle” is platform
dependent. We will instead use asymptotic notation for quantifying the adversary’s
advantage.

Recall: A polynomial time algorithm (in our case, adversary) has a runtime that grows
polynomially in its input size. What is our input here?

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

We could quantify this concretely:
An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2740)-secure, an adversary that can
perform 290 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

The drawback to concrete security is that a “timestep” or “cycle” is platform
dependent. We will instead use asymptotic notation for quantifying the adversary’s
advantage.

Recall: A polynomial time algorithm (in our case, adversary) has a runtime that grows
polynomially in its input size. What is our input here? Key length!

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

We could quantify this concretely:
An encryption scheme is (t, €)-secure if, after running for t computational steps (or
cycles), the best adversary has an e advantage in distinguishing two encryptions.

For example, if our encryption scheme is (2120, 2740)-secure, an adversary that can
perform 290 operations per second from the time of the big bang, would gain less than
a one-in-a-trillion advantage.

The drawback to concrete security is that a “timestep” or “cycle” is platform
dependent. We will instead use asymptotic notation for quantifying the adversary’s
advantage.

Recall: A polynomial time algorithm (in our case, adversary) has a runtime that grows
polynomially in its input size. What is our input here? Key length!

We will use a security parameter, n, as input to Gen.

We want to build encryption schemes that:

For any adversary with runtime that increases as poly(n) ,
The adversary's distinguishing advantage is negl(n).

Negligible Functions

A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Negligible Functions

A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Examples:
2—n, 2—3’ 27\/5v n— log n

Negligible Functions
A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Examples:
2—n, 2—5’ 27\/5v nflogn

Where do these become smaller than %?

1

27" < — forn>23
5

_n 1

272 < — for n > 59
PSS

1
27V < = for n > 3454
n

1
n~'°¢" < — for n>33
n5

Negligible Functions

A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Examples:
2—n, 2—5’ 27\/5v nflogn

Where do these become smaller than %? For n = 28 = 256, %5 =240

.1

27"< — forn>23 n =40
n5
_n 1

272 < — for n > 59 n =80
n5
1

27V < = for n > 3454 n =1600

n
1

n~'%8" <« = for n >33 n ~80

nb

Negligible Functions

A negligible function approaches 0 faster than any inverse polynomial.

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Examples:
2—n, 2—5’ 27\/5v nflogn

Where do these become smaller than %? For n = 28 = 256, %5 =240

.1

2 <—5forn223 n =40
n
_n 1

22<—5forn259 n =80
n
1

27V < = for n > 3454 n =1600

n
1

n_IOg"<—5forn233 n ~80
n

Note: 2—V7 < p=logn for every n > 65,536.

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have 2 negligible functions: negl(x) and negla(x).

Claim: The function f(x) = negli(x) + neglz(x) is negligible.

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have 2 negligible functions: negl(x) and negla(x).

Claim: The function f(x) = negli(x) + neglz(x) is negligible.

We have to show that:
1

for any polynomial p(x), 3N € N such that Vn > N, f(n) < Ok

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have 2 negligible functions: negl(x) and negla(x).

Claim: The function f(x) = negli(x) + neglz(x) is negligible.

We have to show that:

for any polynomial p(x), 3N € N such that Vn > N, f(n) < ﬁ.
Let g(x) = 2p(x). Because negli(x) is a negligible function, there exists some N such
that Vn > Ny, negli(n) < ﬁ.

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have 2 negligible functions: negl(x) and negla(x).

Claim: The function f(x) = negli(x) + neglz(x) is negligible.
We have to show that:
for any polynomial p(x), 3N € N such that Vn > N, f(n) < ﬁ.

Let g(x) = 2p(x). Because negli(x) is a negligible function, there exists some N such
that Vn > Ny, negli(n) < L

a(n)
Let g(x) = 2p(x). Because negla(x) is a negligible function, there exists some Ny such
that Vn > Nb, negla(n) < Ok

Adding Negligible Functions

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have 2 negligible functions: negl(x) and negla(x).

Claim: The function f(x) = negli(x) + neglz(x) is negligible.
We have to show that:
for any polynomial p(x), 3N € N such that Vn > N, f(n) < ﬁ.
Let g(x) = 2p(x). Because negli(x) is a negligible function, there exists some N such
that Vn > Ny, negli(n) < L
a(n)
Let g(x) = 2p(x). Because negla(x) is a negligible function, there exists some Ny such
that Vn > Nb, negla(n) < Ok

Define N = max(Ny, Na).

Vn > N, negli(n) + negla(n) < ﬁ = 2p%n) = ﬁ.

Multiplying a Negligible Function by a Polynomial

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have negligible function: negl(x) and a polynomial, p(x).

Claim: The function f(x) = negl(x) - p(x) is negligible.

Multiplying a Negligible Function by a Polynomial

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have negligible function: negl(x) and a polynomial, p(x).
Claim: The function f(x) = negl(x) - p(x) is negligible.
We have to show that:

1

for any polynomial g(x), 3N € N such that Vn > N, f(n) < FOE

Multiplying a Negligible Function by a Polynomial

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have negligible function: negl(x) and a polynomial, p(x).
Claim: The function f(x) = negl(x) - p(x) is negligible.

We have to show that:
for any polynomial g(x), 3N € N such that Vn > N, f(n) < ﬁ.

Consider the polynomial) - Gince negl(x) is negligible, there exists N € N such that

p(x)
a(n)
Vn > N, negl(n) < o)

Multiplying a Negligible Function by a Polynomial

Negligible Functions

A function f from the natural numbers to the non-negtive real numbers is negligible if
for every positive polynomial p, there exists a natural number N, such that for all
integers n > N, f(n) < 1/p(n).

Suppose we have negligible function: negl(x) and a polynomial, p(x).
Claim: The function f(x) = negl(x) - p(x) is negligible.

We have to show that:

for any polynomial g(x), 3N € N such that Vn > N, f(n) < =

q(n)
Consider the polynomial %. Since negl(x) is negligible, there exists N € N such that
a(n)
Vn > N, negl(n) < o(m)

It follows that Vn > N, p(n) - negl(n) = f(n) < q(n)

Relaxing Security

We will relax security in 2 ways:

1. We will only claim security against polynomial time adversaries.
2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

A\
C J\Crﬂ(/\@(' 7 &\w/\”‘"ﬂ'\fﬂ/
J 4
\"‘
5
mM_ V)
(7 -
' N
K< Reyaea
2
b 0,19

EaclX, mk\} =C -

C N
<=
AN WS W5
L=k
L =-9O
T o\ | ek (~‘
‘\) O <

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.
2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.
These relaxations are both necessary:
1. Given ciphertext c, try decrypting c using every key k € K.

Denote the resulting set by M(c).
Since |K| < | M|, there must be some m € M such m ¢ M(c).

We have learned something about the encrypted plaintext!

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

These relaxations are both necessary:
1. Given ciphertext c, try decrypting c using every key k € K.
Denote the resulting set by M(c).

Since |K| < | M|, there must be some m € M such m ¢ M(c).
We have learned something about the encrypted plaintext!

Consider the following known plaintext attack, where the adversary A knows that
{c1 = Enc(k,m1),...,ce = Enc(k, mg)} (without knowing k)

Try all k until you find one that is consistent with those ¢ values. Full key
recovery!

Relaxing Security

We will relax security in 2 ways:
1. We will only claim security against polynomial time adversaries.

2. Even an efficient adversary might have some very (very very) small advantage in
distinguishing an encryption of mg from an encryption of mj.

These relaxations are both necessary:
1. Given ciphertext c, try decrypting c using every key k € K.
Denote the resulting set by M(c).

Since |K| < | M|, there must be some m € M such m ¢ M(c).
We have learned something about the encrypted plaintext!

Consider the following known plaintext attack, where the adversary A knows that
{c1 = Enc(k,m1),...,ce = Enc(k, mg)} (without knowing k)

Try all k until you find one that is consistent with those ¢ values. Full key
recovery!

2. A polynomial-time adversary can try a few values of k. If she succeeds, then
great, and if not, then she can guess b’ at random.
Small advantage, but non-zero.

Unary security parameters

Intuitively, if we double our key space, we should double our security.

Unary security parameters

Intuitively, if we double our key space, we should double our security.

If we add 1 bit to our key length, we double our key space.

Unary security parameters

Intuitively, if we double our key space, we should double our security.
If we add 1 bit to our key length, we double our key space.

Technicality: If we represent our key length (i.e. security parameter) in binary, then
the input length grows logarithmically in the key length.
For example: input 10000000 indicates a 128-bit key.
input 11111111 indicates a 255-bit key.
The adversary has input length 7 in both cases!
It's runtime and its guessing advantage would both be measured by poly(7).

Unary security parameters

Intuitively, if we double our key space, we should double our security.
If we add 1 bit to our key length, we double our key space.

Technicality: If we represent our key length (i.e. security parameter) in binary, then
the input length grows logarithmically in the key length.
For example: input 10000000 indicates a 128-bit key.
input 11111111 indicates a 255-bit key.
The adversary has input length 7 in both cases!
It's runtime and its guessing advantage would both be measured by poly(7).

We specify our security parameter in unary.

Gen(1") outputs an n-bit key.

Each increase in n allows the adversary’s runtime to grow. It still doubles the
keyspace, ensuring that its advantage diminishes.

Privacy against eavesdroppers
Indistinguishability in the presence of an eavesdropper:
PrivKRq (n):

1. A'is given 1" and outputs mg and my such that |mg| = |my].

2. k < Gen(1™), b < {0,1}, and ¢ < Enc(k, mp).
Then c is given to A.

3. A outputs a bit b’.
4. The outcome of the experiment is 1 if b = b’ and 0 otherwise.

Definition
A private-key encryption scheme N = (Gen, Enc, Dec) has indistinguishable

encryptions in the presence of an eavesdropper, or is EAV-secure, if for all probabilistic
polynomial-time adversaries A, there is a negligible function negl such that, for all n,

Pr[PrivK%n(n) = 1] < 1/2 + negl(n)

