
PRGs

Intuition: A Pseudorandom Generator (PRG) takes a small, uniformly random seed,
and stretches it into a longer string that is not uniformly random, but is
indistinguishable from random.

Definition (PRG)

Let ` be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s ∈ {0, 1}n, G(s) is a string of length `(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that `(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivKprg

A,G(n) = 1] ≤ 1
2

+ negl(n)

G is NOT pseudorandom if: ∃ a PPT algorithm A and some polynomial p(·), s.t.
Pr[PrivKprg

A,G(n) = 1] > 1
2

+ 1
p(n)



PRGs

Definition (PRG)

Let ` be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s ∈ {0, 1}n, G(s) is a string of length `(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that `(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivKprg

A,G(n) = 1] ≤ 1
2

+ negl(n)

G is NOT pseudorandom if: ∃ a PPT algorithm A and some polynomial p(·), s.t.
Pr[PrivKprg

A,G(n) = 1] > 1
2

+ 1
p(n)



PRGs

Definition (PRG)

Let ` be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s ∈ {0, 1}n, G(s) is a string of length `(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that `(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivKprg

A,G(n) = 1] ≤ 1
2

+ negl(n)

G is NOT pseudorandom if: ∃ a PPT algorithm A and some polynomial p(·), s.t.
Pr[PrivKprg

A,G(n) = 1] > 1
2

+ 1
p(n)



PRGs

Definition (PRG)

Let ` be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s ∈ {0, 1}n, G(s) is a string of length `(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that `(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivKprg

A,G(n) = 1] ≤ 1
2

+ negl(n)

G is NOT pseudorandom if: ∃ a PPT algorithm A and some polynomial p(·), s.t.
Pr[PrivKprg

A,G(n) = 1] > 1
2

+ 1
p(n)



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2

=
3

4
=

1

2
+

1

4



An Insecure PRG

G(s1 · · · sn) :
Let sn+1 =

⊕
i∈{1,...,n}

si

Output s1 · · · sn+1

A receives y = s1 · · · sn+1 from the challenger, and has to guess whether b = 0
(i.e. y = G(s)) or b = 1 (i.e. y ← {0, 1}n+1).

A:
Compute ŝn+1 =

⊕
i∈{1,...,n}

si .

If ŝn+1 = sn+1, output 0
Else, output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+

1

2
·

1

2
=

3

4
=

1

2
+

1

4



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.

Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

For input of length n:
How many different input seeds are there? 2n

How many different outputs does G have (maximum)? 2n

How many strings of length 2n are there? 22n

If you choose y ← {0, 1}2n (i.e. uniformly at random),

what is the probability that you choose an output of G? 2n

22n = 2n−2n = 2−n



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.

Recall, G is deterministic, so it can only map each input seed to a single output value.

For input of length n:
How many different input seeds are there? 2n

How many different outputs does G have (maximum)? 2n

How many strings of length 2n are there? 22n

If you choose y ← {0, 1}2n (i.e. uniformly at random),

what is the probability that you choose an output of G? 2n

22n = 2n−2n = 2−n



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

For input of length n:
How many different input seeds are there? 2n

How many different outputs does G have (maximum)? 2n

How many strings of length 2n are there? 22n

If you choose y ← {0, 1}2n (i.e. uniformly at random),

what is the probability that you choose an output of G? 2n

22n = 2n−2n = 2−n



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

For input of length n:
How many different input seeds are there?
How many different outputs does G have (maximum)?
How many strings of length 2n are there?

If you choose y ← {0, 1}2n (i.e. uniformly at random),
what is the probability that you choose an output of G?

For input of length n:
How many different input seeds are there? 2n

How many different outputs does G have (maximum)? 2n

How many strings of length 2n are there? 22n

If you choose y ← {0, 1}2n (i.e. uniformly at random),

what is the probability that you choose an output of G? 2n

22n = 2n−2n = 2−n



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

For input of length n:
How many different input seeds are there? 2n

How many different outputs does G have (maximum)? 2n

How many strings of length 2n are there? 22n

If you choose y ← {0, 1}2n (i.e. uniformly at random),

what is the probability that you choose an output of G? 2n

22n = 2n−2n = 2−n



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2
= 1−

1

2
2−n = 1− 2−n−1



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2
= 1−

1

2
2−n = 1− 2−n−1



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2
= 1−

1

2
2−n = 1− 2−n−1



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2
= 1−

1

2
2−n = 1− 2−n−1



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2

= 1−
1

2
2−n = 1− 2−n−1



Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1 · · · sn) = r1, . . . , r2n.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S = ∅
For each s ∈ {0, 1}n

S = S ∪ G(s).
If y ∈ S output 0
else output 1.

Pr[PrivKprg
A,G(n) = 1] = Pr[b′ == b]

= Pr[b′ = 0 ∧ b = 0] + Pr[b′ = 1 ∧ b = 1]

= Pr[b′ = 0 | b = 0] ·
1

2
+ Pr[b′ = 1 | b = 1] ·

1

2

= 1 ·
1

2
+ (1− 2−n) ·

1

2
= 1−

1

2
2−n = 1− 2−n−1


