PRGs

Intuition: A Pseudorandom Generator (PRG) takes a small, uniformly random seed,
and stretches it into a longer string that is not uniformly random, but is
indistinguishable from random.

PRGs

Definition (PRG)
Let £ be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s € {0,1}", G(s) is a string of length ¢(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that £(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function

negl(n) such that Pr[PrivkPE (n) = 1] < 1 + negl(n)
”

PRGs

Definition (PRG)
Let £ be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s € {0,1}", G(s) is a string of length ¢(n). We say that
G is a pseudorandom generator if the following conditions hold:
1. Expansion: for every n it holds that £(n) > n.
2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivkPE.(n) = 1] < % + negl(n)

\

| \
| o 7

In | o oA
a7y \Cwo\“m

()

<

,
h<se)

PRGs

Definition (PRG)
Let £ be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s € {0,1}", G(s) is a string of length ¢(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that £(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function
negl(n) such that Pr[PrivkPE (n) = 1] < 1 + negl(n)

G is NOT pseudorandom if: 3 a PPT algorithm A and some polynomial p(+), s.t.

: r _ 1 1
Pr[PrviffG(n) = 1] > 2 —+ W

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

A:

Compute §p51= €@ s;.
ie{1,...,n}

If $p41 = sp+1, output 0

Else, output 1.

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

A:

Compute §p51= €@ s;.
ie{1,...,n}

If $p41 = sp+1, output 0

Else, output 1.

Pr[PrivKi{gG(n) =1] = Pr[b/ == b]
—Prb) =0Ab=0]+Pr[t) =1Ab=1]

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

A:

Compute §p51= €@ s;.
ie{1,...,n}

If $p41 = sp+1, output 0

Else, output 1.

Pr[PrivKi{gG(n) =1] = Pr[b/ == b]
—Prb) =0Ab=0]+Pr[t) =1Ab=1]

1 1
=Pt/ =0|b=0]- o +Prlt' =1 b=1]- 7

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

A:

Compute §p51= €@ s;.
ie{1,...,n}

If $p41 = sp+1, output 0

Else, output 1.

Pr[PrivKi{gG(n) =1] = Pr[b/ == b]
—Prb) =0Ab=0]+Pr[t) =1Ab=1]
:Pr[b’:O|b:O]-%JrPr[b’:l\b:l]-%

=1--+

N~
N~
N =

An Insecure PRG

G(s1---sn):

Let sp41 = D s
ie{l,...,n}

Output s1 - - - Spt1

A receives y = sy - - - spy1 from the challenger, and has to guess whether b =0
(i.e. y = G(s)) or b=1 (i.e. y + {0,1}"*1).

A:

Compute §p51= €@ s;.
ie{1,...,n}

If $p41 = sp+1, output 0

Else, output 1.

Pr[PrivKi{gG(n) =1] = Pr[b/ == b]
—Prb) =0Ab=0]+Pr[t) =1Ab=1]

1 1
:Pr[b’:O|b:O]-§+Pr[b’:1\b:1]-§
3 1+1 1_3_1+1
T T2 2 2 4 2 4

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

OJ’% vt

Seeds
- f h

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

OJ’% VeSS

Seeds
/}T LN
[- \T:L?' 'ﬂ \)

|

—— /

\/ \/

For input of length n:

How many different input seeds are there?

How many different outputs does G have (maximum)?
How many strings of length 2n are there?

If you choose y < {0,1}?" (i.e. uniformly at random),
what is the probability that you choose an output of G?

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

seals osfevts
/AN
'ﬁ\~ [

[- F» .,)

— — /

\J _/

For input of length n:

How many different input seeds are there? 2"
How many different outputs does G have (maximum)? 2n
How many strings of length 2n are there? 22n

If you choose y < {0,1}?" (i.e. uniformly at random),
what is the probability that you choose an output of G? 22Tnn =221 ="

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S=0
For each s € {0,1}"

S=5UG(s).
If y € S output 0
else output 1.

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S=0
For each s € {0,1}"

S=5UG(s).
If y € S output 0
else output 1.

Pr[PrivKi%G(n) =1] = Pr[b' == b]
=Pr[b' =0Ab=0]+Pr[p =1Ab=1]

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S=0
For each s € {0,1}"

S=5UG(s).
If y € S output 0
else output 1.

Pr[PrivKi%G(n) =1] = Pr[b' == b]
Pr[t’ =0Ab=0]+Pr[b’' =1Ab=1]

1 1
:Pr[b':O\b:O]‘E-kPr[b/:l|b:1]»§

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S=0
For each s € {0,1}"

S=5UG(s).
If y € S output 0
else output 1.

Pr[PrivKi%G(n) =1] = Pr[b' == b]
=Pr[b' =0Ab=0]+Pr[p =1Ab=1]

1 1
:Pr[b':O\b:O]‘E-kPr[b/:l|b:1]»§

N =

1
=1.= 1—-2"".
5+)

Pseudorandom vs. Random

Even when G is pseudorandom, it is very far from random.
Consider G that doubles its input length: G(s1---sp) = r1,..., Pn.
Recall, G is deterministic, so it can only map each input seed to a single output value.

If we allow an exponential time adversary, every PRG is insecure!

A:
Let S=0
For each s € {0,1}"

S=5UG(s).
If y € S output 0
else output 1.

Pr[PrivKi%G(n) =1] = Pr[b' == b]
=Pr[b' =0Ab=0]+Pr[p =1Ab=1]

1 1
:Pr[b':O\b:O]‘E-kPr[b/:l|b:1]»§

1
=1-22""=1-2"""1
2

N =

1
=1.= 1—-2"".
5+)

