PRGs

Intuition: A Pseudorandom Generator (PRG) takes a small, uniformly random seed,
and stretches it into a longer string that is not uniformly random, but is
indistinguishable from random.



PRGs

Definition (PRG)
Let £ be a polynomial, and let G be a deterministic polynomial-time algorithm such
that for any n and any input s € {0,1}", G(s) is a string of length ¢(n). We say that
G is a pseudorandom generator if the following conditions hold:

1. Expansion: for every n it holds that £(n) > n.

2. Pseudorandomness: for any PPT algorithm A, there is a negligible function

negl(n) such that Pr[PrivkPE (n) = 1] < 1 + negl(n)
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G is NOT pseudorandom if: 3 a PPT algorithm A and some polynomial p(+), s.t.
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Pr[PrviffG(n) = 1] > 2 —+ W
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For input of length n:

How many different input seeds are there?
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How many strings of length 2n are there?

If you choose y < {0,1}?" (i.e. uniformly at random),
what is the probability that you choose an output of G?
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For input of length n:

How many different input seeds are there? 2"
How many different outputs does G have (maximum)? 2n
How many strings of length 2n are there? 22n

If you choose y < {0,1}?" (i.e. uniformly at random),
what is the probability that you choose an output of G? 22Tnn =221 ="
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