Random Functions

We like to consider functions with nice, closed forms. E.g. f(x) = x2.

Random Functions

We like to consider functions with nice, closed forms. E.g. f(x) = x2.

If we have a finite domain, we can
represent functions as a table

)
—~

x
~—

w| | ~|of x
[EN)

Random Functions

We like to consider functions with nice, closed forms. E.g. f(x) = x2.
If we have a finite domain, we can We can sample a random function by
represent functions as a table choosing the values in the right column
uniformly and independently:
x | f(x) X f(x)
0 0 000 | 101
1 1 001 111
2 4 010 | 100
3 9 011 101
100 | 110
: - 101 | 010
2 | 2 110 | 000
111 | 011

Counting functions

«O>r «Fr <

it
-

DA

Counting functions

Question

How many functions are there mapping {0,1}" — {0,1}"?

If we change a single output value, we have a new function:

X f(x) X f(x)
000 | 101 000 | 101
001 | 111 001 | 111
010 | 100 010 | 100
011 101 011 001
100 | 110 100 | 110
101 | 010 101 | 010
110 | 000 110 | 000
111 | 011 111 | 011

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011

n2"

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011
n2"

Each string of length n2" represents a different function from {0,1}" — {0,1}"

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011
n2"
Each string of length n2" represents a different function from {0,1}" — {0,1}"

How many strings of length x are there? 2*.

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011
n2"
Each string of length n2" represents a different function from {0,1}" — {0,1}"

How many strings of length x are there? 2*.
How many strings of length n2" are there? 27" > 22

Counting functions

How many bits does it take to represent one of these functions?

X f(x)
000 | 101
001 | 111
010 | 100
011 | 001
100 | 110
101 | 010
110 | 000
111 011

101 111 100 011 110 010 000 011
n2"
Each string of length n2" represents a different function from {0,1}" — {0,1}"

How many strings of length x are there? 2*.
How many strings of length n2" are there? 27" > 22" (That's a lot of functions.)

Pseudo-random Functions (PRFs)

We'd like to use randomly chosen functions, but this requires exponential space!

Pseudo-random Functions (PRFs)

We'd like to use randomly chosen functions, but this requires exponential space!

Instead, we will use pseudo-random functions: keyed functions that are
indistinguishable from random:

F:{0,1}* x {0,1}* — {0,1}*
This is a 2-input function, where 1st input is the key.

Pseudo-random Functions (PRFs)
We'd like to use randomly chosen functions, but this requires exponential space!

Instead, we will use pseudo-random functions: keyed functions that are
indistinguishable from random:

F:{0,1}* x {0,1}* — {0,1}*

This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
Technically, liey(n), &in(n) and Lout(n).

Pseudo-random Functions (PRFs)
We'd like to use randomly chosen functions, but this requires exponential space!

Instead, we will use pseudo-random functions: keyed functions that are
indistinguishable from random:

F:{0,1}* x {0,1}* — {0,1}*

This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
Technically, liey(n), &in(n) and Lout(n).

Often, we will assume that F is length preserving:

ekey(n) = Zin(”) = eout(n) =n

Pseudo-random Functions (PRFs)
We'd like to use randomly chosen functions, but this requires exponential space!

Instead, we will use pseudo-random functions: keyed functions that are
indistinguishable from random:

F:{0,1}* x {0,1}* — {0,1}*

This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
Technically, liey(n), &in(n) and Lout(n).

Often, we will assume that F is length preserving:

ekey(n) = Zin(”) = eout(n) =n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write F, : {0,1}* — {0,1}*.
If it is length preserving, and the key is of length n, then Fj : {0,1}" — {0,1}".

Security of PRFs

Definition

Let F: {0,1}* x {0,1}* — {0,1}* be an efficient, length-preserving, keyed function.
F is a pseudorandom function if V p.p.t. adversaries A, there is a negligible function
negl(n) such that Pr[PrivKi{fF(n) =1] < % + negl(n).

