
Random Functions

We like to consider functions with nice, closed forms. E.g. f (x) = x2.

If we have a finite domain, we can
represent functions as a table

x f (x)
0 0
1 1
2 4
3 9
...

...
2n 22n

We can sample a random function by
choosing the values in the right column
uniformly and independently:

x f (x)
000 101
001 111
010 100
011 101
100 110
101 010
110 000
111 011
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Counting functions

Question

How many functions are there mapping {0, 1}n → {0, 1}n?

If we change a single output value, we have a new function:

x f (x)
000 101
001 111
010 100
011 101
100 110
101 010
110 000
111 011

x f (x)
000 101
001 111
010 100
011 001
100 110
101 010
110 000
111 011
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Counting functions

How many bits does it take to represent one of these functions?

x f (x)
000 101
001 111
010 100
011 001
100 110
101 010
110 000
111 011

101 111 100 011 110 010 000 011

n2n

Each string of length n2n represents a different function from {0, 1}n → {0, 1}n

How many strings of length x are there? 2x .
How many strings of length n2n are there? 2n2n > 22n (That’s a lot of functions.)
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Pseudo-random Functions (PRFs)

We’d like to use randomly chosen functions, but this requires exponential space!

Instead, we will use pseudo-random functions: keyed functions that are
indistinguishable from random:
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
Technically, `key(n), `in(n) and `out(n).
Often, we will assume that F is length preserving:
`key(n) = `in(n) = `out(n) = n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write Fk : {0, 1}∗ → {0, 1}∗.
If it is length preserving, and the key is of length n, then Fk : {0, 1}n → {0, 1}n

.
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Security of PRFs

Definition

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed function.
F is a pseudorandom function if ∀ p.p.t. adversaries A, there is a negligible function

negl(n) such that Pr[PrivKprf
A,F(n) = 1] ≤ 1

2
+ negl(n).


