
Random Permutations

We can sample a random permutation by choosing the values in the right column
uniformly and independently, without replacement:

x f (x)
000 101
001 111
010 100
011 001
100 110
101 010
110 000
111 011



Counting Permutations

Question

How many permutations are there mapping {0, 1}n → {0, 1}n?

(2n)!



Counting Permutations

Question

How many permutations are there mapping {0, 1}n → {0, 1}n?

(2n)!



Pseudo-random Permutations (PRPs)

We’d like to use randomly chosen permutations, but this requires exponential space!

Instead, we will use pseudo-random permutations: keyed permutations that are
indistinguishable from random:
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
However, the output length and the input length are now the same.
Technically, `key(n), `in(n) and `out(n).
F is called a keyed permutation if it is one-to-one

F is called efficient if there are polynomial time algorithms for evaluating

I F , given key k and input x ,

I F−1 given key k and output y .

We call `in(n) the block-length of the PRP.

Often, we will assume that F is length preserving:
`key(n) = `in(n) = n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write Fk : {0, 1}∗ → {0, 1}∗.
If it is length preserving, and the key is of length n, then Fk : {0, 1}n → {0, 1}n.



Pseudo-random Permutations (PRPs)

We’d like to use randomly chosen permutations, but this requires exponential space!

Instead, we will use pseudo-random permutations: keyed permutations that are
indistinguishable from random:
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
However, the output length and the input length are now the same.
Technically, `key(n), `in(n) and `out(n).
F is called a keyed permutation if it is one-to-one
F is called efficient if there are polynomial time algorithms for evaluating

I F , given key k and input x ,

I F−1 given key k and output y .

We call `in(n) the block-length of the PRP.

Often, we will assume that F is length preserving:
`key(n) = `in(n) = n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write Fk : {0, 1}∗ → {0, 1}∗.
If it is length preserving, and the key is of length n, then Fk : {0, 1}n → {0, 1}n.



Pseudo-random Permutations (PRPs)

We’d like to use randomly chosen permutations, but this requires exponential space!

Instead, we will use pseudo-random permutations: keyed permutations that are
indistinguishable from random:
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
However, the output length and the input length are now the same.
Technically, `key(n), `in(n) and `out(n).
F is called a keyed permutation if it is one-to-one
F is called efficient if there are polynomial time algorithms for evaluating

I F , given key k and input x ,

I F−1 given key k and output y .

We call `in(n) the block-length of the PRP.

Often, we will assume that F is length preserving:
`key(n) = `in(n) = n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write Fk : {0, 1}∗ → {0, 1}∗.
If it is length preserving, and the key is of length n, then Fk : {0, 1}n → {0, 1}n.



Pseudo-random Permutations (PRPs)

We’d like to use randomly chosen permutations, but this requires exponential space!

Instead, we will use pseudo-random permutations: keyed permutations that are
indistinguishable from random:
F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
This is a 2-input function, where 1st input is the key.

The sec. param. determines the key length, the input length, and the output length.
However, the output length and the input length are now the same.
Technically, `key(n), `in(n) and `out(n).
F is called a keyed permutation if it is one-to-one
F is called efficient if there are polynomial time algorithms for evaluating

I F , given key k and input x ,

I F−1 given key k and output y .

We call `in(n) the block-length of the PRP.

Often, we will assume that F is length preserving:
`key(n) = `in(n) = n

Often, we will want to fix a single key k and then evaluate F on many different inputs,
using the same k. In that case, we might write Fk : {0, 1}∗ → {0, 1}∗.
If it is length preserving, and the key is of length n, then Fk : {0, 1}n → {0, 1}n.



Security of PRPs

Definition

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed
permutation. F is a pseudorandom permutation if ∀ p.p.t. adversaries A, there is a
negligible function negl(n) such that Pr[PrivKprp

A,F(n) = 1] ≤ 1
2

+ negl(n).

Definition

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed
permutation. F is a strong pseudorandom permutation if ∀ p.p.t. adversaries A, there
is a negligible function negl(n) such that Pr[PrivKsprp

A,F(n) = 1] ≤ 1
2

+ negl(n).



Security of PRPs

Definition

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed
permutation. F is a pseudorandom permutation if ∀ p.p.t. adversaries A, there is a
negligible function negl(n) such that Pr[PrivKprp

A,F(n) = 1] ≤ 1
2

+ negl(n).

Definition

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed
permutation. F is a strong pseudorandom permutation if ∀ p.p.t. adversaries A, there
is a negligible function negl(n) such that Pr[PrivKsprp

A,F(n) = 1] ≤ 1
2

+ negl(n).


