

Encrypting Variable Length Messages

Suppose we have a fixed-length PRF:

$$F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$$

Encrypting Variable Length Messages

Suppose we have a fixed-length PRF:

$$F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$$

We construct an encryption scheme for arbitrary-length messages as follows.

Gen(1^n) : $k \leftarrow \{0, 1\}^n$

Enc(k, m) :

- ▶ Let $\ell = |m|/n$. (*)
- ▶ Break m into ℓ blocks, each of length n : $m = m_1 || \dots || m_\ell$
- ▶ Sample $r_1, \dots, r_\ell \leftarrow \{0, 1\}^n$.
- ▶ Output $((r_1, F_k(r_1) \oplus m_1), \dots, (r_\ell, F_k(r_\ell) \oplus m_\ell))$.

(*) For the moment, assume $|m|$ is a multiple of n . If not, we can use an appropriate padding scheme to pad the last block.

Encrypting Variable Length Messages

Suppose we have a fixed-length PRF:

$$F : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}^n$$

We construct an encryption scheme for arbitrary-length messages as follows.

Gen(1^n) : $k \leftarrow \{0, 1\}^n$

Enc(k, m) :

- ▶ Let $\ell = |m|/n$. (*)
- ▶ Break m into ℓ blocks, each of length n : $m = m_1 || \dots || m_\ell$
- ▶ Sample $r_1, \dots, r_\ell \leftarrow \{0, 1\}^n$.
- ▶ Output $((r_1, F_k(r_1) \oplus m_1), \dots, (r_\ell, F_k(r_\ell) \oplus m_\ell))$.

Dec($k, ((r_1, c_1), \dots, (r_\ell, c_\ell))$) :

- ▶ Compute $m_i = F_k(r_i) \oplus c_i$.
- ▶ Output $m = m_1 || \dots || m_\ell$.

(*) For the moment, assume $|m|$ is a multiple of n . If not, we can use an appropriate padding scheme to pad the last block.