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Definition
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Hard-Core Predicates

A function hc: {0,1}* — {0,1} is a hard-core predicate of a function f if hc can be
computed in polynomial time, and for every probabilistic polynomial-time adversary A
there is a negligible function negl such that

x+{0, 1}*[-/4(1" f(x)) = he(x)] < % + negl(n)

he(x) = EB X; is not a hard-core predicate for every one-way function.

Let g(x) be a owf, and define f(x) = (g(x), ®x;). It is easy to show that f is a owf.
(Try it!) Clearly hc is not a hard-core function for f described above.
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Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
(Prove to yourself that if f is a owf, then g is a owf!)
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Proof: On input (17, y), A, sends n different challenges to A: {(17, (v, e"))}7;,

where e’ is the vector of length n, containing a 1 in location i, and 0 everywhere else.
Since A always succeeds, note that it will output Xx; in response to the ith challenge:

n .
jE:B1(Xj A €)= x.



Goldreich-Levin

Theorem

Assume that one-way functions exist. Then there exists a one-way function g, and a
hard-core predicate gl of g.

Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
(Prove to yourself that if f is a owf, then g is a owf!)

Define gl(x, r) = ETB (xi A ri).
i=1

Claim: 3p.p.t. A s.t. PrlA(1", (f(x),r)) = gl(x,r)] > % + L

poly(n)
= Jp.p.t. Ar s.t. PrA.(17, f(x)) € F~1(f(x))] = m.



Goldreich-Levin

Theorem

Assume that one-way functions exist. Then there exists a one-way function g, and a
hard-core predicate gl of g.

Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
(Prove to yourself that if f is a owf, then g is a owf!)

Define gl(x, r) = ETB (xi A ri).
i=1

Claim: 3p.p.t. A s.t. PrlA(1", (f(x),r)) = gl(x,r)] > % + L

poly(n)
= Jp.p.t. Ar s.t. PrA.(17, f(x)) € F~1(f(x))] = m.

Proof idea: On input (17,y), A, sends many challenges to .A:
{@" (v, re )}y, and {(17, (v, )},



Goldreich-Levin

Theorem

Assume that one-way functions exist. Then there exists a one-way function g, and a
hard-core predicate gl of g.

Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
(Prove to yourself that if f is a owf, then g is a owf!)

Define gl(x, r) = 6[179 (xi A ri).
i=1

Claim: 3p.p.t. A s.t. PrlA(1", (f(x),r)) = gl(x,r)] > % + 2

poly(n)
= Jp.p.t. Ar s.t. PrA.(17, f(x)) € F~1(f(x))] = m.

Proof idea: On input (17,y), A, sends many challenges to .A:

{@" (y,r@e))}y. and {(17, (v, 1))},

Intuitively, each of these look random. (Though, they are correlated!)
So A should succeed on most.



Goldreich-Levin

Theorem

Assume that one-way functions exist. Then there exists a one-way function g, and a
hard-core predicate gl of g.

Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
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Proof idea: On input (17, y), A, sends many challenges to A:
{7 (v, r @€' ))}y, and {(17 (v, 1))}y
Intuitively, each of these look random. (Though, they are correlated!)
So A should succeed on most.
Note that gl(x, r) ® gl(x, r ® e') = x;.
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Let f be a owf. Define owf g(x, r) = (f(x), r), for |x| = |r|.
(Prove to yourself that if f is a owf, then g is a owf!)

Define gl(x, r) = ETB (xi A ri).
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poly(n)
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Proof: see book.
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Let f be a one-way permutation with hard-core predicate hc. Then G(s) = f(s)||hc(s)
is a PRG with expansion factor £(n) = n+ 1.

Proof sketch:

A, receives challenge f(x) and must output he(x).
Choose r < {0,1}, and send f(x)]||r to A.
If A outputs 0, A, outputs r. Otherwise, T.

Key observation in the analysis: note that f(x) is uniformly distributed, since x is
uniform, and f is a permutation.
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Increasing the Expansion in a PRG

Theorem

If there exists a PRG with expansion factor n + 1, then, for any poly(n), there exists a
PRG with expansion factor poly(n).

Construction (informally):
Evaluate the PRG, save the last output bit, and feed the first n bits back in.

Save the last output bit again, and feed the first n bits back in....
Output it all.
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PRF from PRG

Theorem

Let G be a PRG with expansion factor ¢(n) = 2n. Then there exists a fixed-length
PRF F : {0,1}" x {0,1}" — {0, 1}".

Construction:
Define Gp and G; such that G(s) = Go(s)||Gi(s).
For key k, and input x = x1,...,Xn

Fi(x) = Gy Gy (- (Goy (G (K))) )

f .
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Strong PRP from PRF

Theorem

If Fis a PRF, then for kg, ko, k3 < {0,1}", the 3-round Feistel network using
Fi1 s Fiy» Fiy as round functions is a strong pseudorandom permutation.
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Corollary
If one way functions exist, then so do PRGs, PRFs, and strong PRPs.

Corollary

If one way functions exist, then so does CCA-secure private-key encryption, and secure

message authentication codes.
v

Theorem

If non-trivial private-key encryption exists, then one way functions exist.

Theorem

If MACs exist (supporting an unbounded, polynomial number of queries), then one
way functions exist.




