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p(x) = q(x)
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Could have used x in the formula: it is a new variable either way, and bound only to
the formula.
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Vx € U : p(x)

ply)Vy¢u
y is not a new variable here. It might not be bound yet, but it would be fine if it was.
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Inference rules
3 introduction:
x €U N p(x)
dy €U :p(y)

3 elimination:
Ix e U : p(x)

y eUNp(y)
y is a new variable, and we know nothing about it other than these 2 facts! Cannot
assume anything else about it (without making the assumption explicit).
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[x e U]
a(x)

Vy €U :q(y)

Crucial that when using this proof approach, you do not make any assumptions about
x other than x € U.

For example, if you assume x is an odd integer, and prove that p(x) is true, this
doesn't prove that Vx € T : p(x). Perhaps when x is an even integer, p(x) is falsel

Theorems of the form: Vx € N : p(x): Mathematical Induction
This will have its own section.
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