
Inference rules

implication introduction:
[p(x)]
q(x)

p(x)→ q(x)

x is the same variable throughout, and it is some specific variable from some domain.

∀ introduction:
[x ∈ U ]
q(x)

∀y ∈ U : q(y)

Equivalent to saying x ∈ U → p(x)
Could have used x in the formula: it is a new variable either way, and bound only to
the formula.

∀ elimination:
∀x ∈ U : p(x)

p(y) ∨ y /∈ U
y is not a new variable here. It might not be bound yet, but it would be fine if it was.
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Inference rules

∃ introduction:
x ∈ U ∧ p(x)

∃y ∈ U : p(y)

∃ elimination:
∃x ∈ U : p(x)

y ∈ U ∧ p(y)
y is a new variable, and we know nothing about it other than these 2 facts! Cannot
assume anything else about it (without making the assumption explicit).
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Proof strategies

Theorem of the form ∃x ∈ U : p(x): ∃ Introduction.

x ∈ U ∧ p(x)

∃y ∈ U : p(y)

Find a specific example in U that satisfies p.
Common mistake: using this when you need to prove ∀x ∈ U : p(x).
Finding a single example, x , does not prove that all elements satisfy p.

Theorem of the form ∀x ∈ U : p(x): ∀ Introduction.

[x ∈ U ]
q(x)

∀y ∈ U : q(y)

Crucial that when using this proof approach, you do not make any assumptions about
x other than x ∈ U .
For example, if you assume x is an odd integer, and prove that p(x) is true, this
doesn’t prove that ∀x ∈ I : p(x). Perhaps when x is an even integer, p(x) is false!

Theorems of the form: ∀x ∈ N : p(x): Mathematical Induction
This will have its own section.
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Example

Define ODD:
∀x ∈ I : ODD(x)↔ ∃m ∈ I : (x = 2m + 1)

[x ∈ I ∧ y ∈ I] Assumption
[ODD(x) ∧ ODD(y)] Assumption
ODD(x) ∧ elimination
∃m ∈ I : x = 2m + 1 Definition of ODD
x = 2w + 1 ∃ elimination, new w
ODD(y) ∧ elimination
∃m ∈ I : x = 2m + 1 Definition of ODD
x = 2u + 1 ∃ elimination, new u
xy = 4wu + 2w + 2u + 1 Algebra

= 2(2wu + w + u) + 1 = 2z + 1 Algebra
∃w ∈ I : xy = 2w + 1 ∃ introduction
ODD(xy) Definition of ODD

ODD(x) ∧ ODD(y)→ ODD(xy)) → introduction
∀a ∈ I : ∀b ∈ I : ODD(a) ∧ ODD(b)→ ODD(ab) ∀ introduction (twice)
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Relaxing the formalism

Theorem: every perfect square is either a multiple of 3, or one greater than a multiple
of 3.

∀n ∈ N : p(n) ∨ q(n)
∀n ∈ N : ∃q ∈ N : (n = 3q) ∨ (n = 3q + 1) ∨ (n = 3q + 2)
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Mathematical Induction

To prove something of the form ∀x ∈ N : p(x)

Prove p(0) (Base case)
Prove ∀n ∈ N : p(n)→ p(n + 1)
Then we have p(0), p(0)→ p(1), p(1), p(1)→ p(2), p(2) . . .

Informal example:

Prove that ∀n ∈ N :
∑n

i=1 i = n(n+1)
2

Base case:
∑0

i=1 i = 0 = 0·1
2

Assume
∑n

i=1 i = n(n+1)
2

Show
∑n+1

i=1 i = (n+1)(n+2)
2

n+1∑
i=1

i = n + 1 +
n∑

i=1

i

= n + 1 +
n(n + 1)

2

=
2n + 2

2
+

n(n + 1)

2

=
n2 + 3n + 2

2

=
(n + 1)(n + 2)

2
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Mathematical Induction

To prove something of the form ∀x ∈ N : p(x)
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Mathematical Induction

Inference rule:
p(0)
∀n ∈ N : p(n)→ p(n + 1)

∀n ∈ N : p(n)

p(0) base case proved
[n ∈ N ] Assumption

[p(n)] Inductive hypothesis
... usually some algebra
p(n + 1) Inductive conclusion proved

p(n)→ p(n + 1) → introduction
∀n ∈ N : p(n)→ p(n + 1) ∀ introduction
∀n ∈ N : p(n) Mathematical Induction
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Mathematical Induction: Variation

Let I+
k = {i ∈ I | k ≤ i}.

Let I jk = {i ∈ I | k ≤ i ≤ j}.

We don’t have to start at 0
p(k)
∀n ∈ I+

k : p(n)→ p(n + 1)

∀n ∈ I+
k : p(n)
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MI Example

25 = 32 > 25 = 52 Base Case
[n ∈ I+

5 ] Assumption
[2n > n2] Assume p(n): inductive hypothesis
2n+1 = 2 · 2n Algebra

> 2 · n2 Use of hypothesis
= n2 + n2 = n2 + n · n Algebra
> n2 + 4n Algebra
= n2 + 2n + 2n Algebra
> n2 + 2n + 1 Algebra

2n+1 > (n + 1)2 Inductive Conclusion
(2n > n2)→ (2n+1 > (n + 1)2) → introduction

∀n ∈ I+
5 : (2n > n2)→ (2n+1 > (n + 1)2) ∀ introduction

∀n ∈ I+
5 : 2n > n2 Mathematical Induction
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