Program Verification

What is a “correct program”?



Program Verification

What is a “correct program”?
It has to terminate.



Program Verification

What is a “correct program”?
It has to terminate.
Assuming it terminates, its ending state should match some stated objective.



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the
program



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the
program

final assertion: conjunction of propositions about the final state of the program



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the
program
final assertion: conjunction of propositions about the final state of the program
Note: There are many programs that are “correct” for the same criteria. The ends
justify the means.



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the
program
final assertion: conjunction of propositions about the final state of the program
Note: There are many programs that are “correct” for the same criteria. The ends
justify the means.

What kind of programs will we consider?



Program Verification

What is a “correct program”?
It has to terminate. Provably impossible to detect (for all programs)
Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?
initial assertion: conjunction of propositions about the initial variables used in the
program
final assertion: conjunction of propositions about the final state of the program
Note: There are many programs that are “correct” for the same criteria. The ends
justify the means.

What kind of programs will we consider?
We will look at:

> Assignment statements
> Sequences of statements
> Conditional statements (If B then S1 else S2)

> iteration statements (while loops)



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:
If p is true for initial state of code S, and S terminates,
then g is true about the final state.



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:

If p is true for initial state of code S, and S terminates,
then g is true about the final state.

p is the pre-condition

q is the post-condition.



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:

If p is true for initial state of code S, and S terminates,
then g is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:
p(e){v < e}p(v)



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:

If p is true for initial state of code S, and S terminates,
then g is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

p(e){v « e}p(v)
ODD(y){x < y + 2} ODD(x)



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:

If p is true for initial state of code S, and S terminates,
then g is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

p(e){v = e}p(v)

ODD(y){x < y + 2} ODD(x)
ODD(x){x < x + 1}Even(x)



Hoare Triples, Assignments, and Sequences

Hoare Triple: p{S}q:

If p is true for initial state of code S, and S terminates,
then g is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

p(e){v = e}p(v)

ODD(y){x < y + 2} ODD(x)
ODD(x){x < x + 1}Even(x)

Sequencing of statements:
p{Si1}tq
a{S2}r

p{S1: S2}r



Examples

Consider the following simple program:
y&E3zex+y



Examples

Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)



Examples

Consider the following simple program:

y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)

(x=1Ay=3){z<x+y}Hz=4)



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:
XxXEx+2,y<=y+1



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:
XxXEx+2,y<=y+1

Claim: if we have the pre-condtion x = 2y, we have the post-condition x = 2y.



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:

x<=x+2,y<=y+1

Claim: if we have the pre-condtion x = 2y, we have the post-condition x = 2y.
(x =2y){x =x+2}x =2y +2)



Examples

Consider the following simple program:

y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)

(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:

XxXEx+2,y<=y+1

Claim: if we have the pre-condtion x = 2y, we have the post-condition x = 2y.
(x=2y){x<=x+2}(x=2y+2)

(x=2y+)){y <y +1Hx=2y)



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:
XxXEx+2,y<=y+1

Claim: if we have the pre-condtion x = 2y, we have the post-condition x = 2y.
(x =2y){x =x+2}x =2y +2)
(x=2y+1)){y =y +1}(x=2y)

(x=2y){x<=x+2,y =y +1}(x =2y)



Examples
Consider the following simple program:
y&E3zex+y

Claim: If we have the pre-condition x = 1, we have the post-condition z = 4.
(x=1{y <3} (x=1Ay=3)
(x=1Ay=3){z<x+y}Hz=4)

(x=1{y<3z<=x+yHz=14)

Consider the following simple program:
XxXEx+2,y<=y+1

Claim: if we have the pre-condtion x = 2y, we have the post-condition x = 2y.
(x =2y){x =x+2}x =2y +2)
(x=2y+1)){y =y +1}(x=2y)

(x=2y){x<=x+2,y =y +1}(x =2y)

This is called an invariant condition (or just an invariant)



Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q



Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q

If-then-else:
(pAB){S1}q
(pA—~B){S:}q

p{if B then S; else S>}q




Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q

If-then-else:
(pAB){S1}q
(pA—~B){S:}q

p{if B then S; else S>}q

Example:

Let x = 7, and consider code:
{if y < x then y <= x}

Show y > 7.



Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q

If-then-else:
(pAB){S1}q
(pA—~B){S:}q

p{if B then S; else S>}q

Example:

Let x = 7, and consider code:
{if y < x then y <= x}

Show y > 7.

x=Tny<x){y=x}(y>7)



Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q

If-then-else:
(pAB){S1}q
(pA—~B){S:}q

p{if B then S; else S>}q

Example:

Let x = 7, and consider code:
{if y < x then y <= x}

Show y > 7.

(x=Tny <x){y=x}(y >7)
(x=7TAy>2x)=(y>7)



Branches

If-then:

(pAB){S}q
(pA—=B)—q

p{if B then S}q

If-then-else:
(pAB){S1}q
(pA—~B){S:}q

p{if B then S; else S>}q

Example:

Let x = 7, and consider code:
{if y < x then y <= x}

Show y > 7.

(x=7Tny<x){y<=xHy27)
(x=TAy>2x)=(y27)
(x=7)}{if y < xtheny < x}(y>7)



While loops

While loop:
(pAB)Y{S}p

p{while B do S}(p A —=B)




While loops

While loop:
(pAB)Y{S}p

p{while B do S}(p A —=B)

We call p a loop invariant.



While loops

While loop:
(pAB)Y{S}p

p{while B do S}(p A —=B)

We call p a loop invariant.

Note that the correctness of this inference rule technically requires a mathematical
induction.



Example: n!
(pAB){S}p

p{while B do S}(p A —B)




Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,

f<1,

while i < n do
i<=i+1

f<f-i



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!
i<=1,
f<1,
while i < n do
i<=i+1
f<fFf-i

p=(f=i"Ni<n) (Loop invariant)



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!
i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)

(F=itAi<n) {while(i<n)doS} (F=ilAi<n)A(i>n)



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)

(F=itAi<n) {while(i<n)doS} (F=ilAi<n)A(i>n)



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)

(F=itAi<n) {while(i<n)doS} (F=ilAi<n)A(i>n)
=(f=ilANi=n)=f=nl!



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)

(F=ilAi<nAi<n) {i<i+lfef-i} (F=iAi<n)
(F=itAi<n) {while(i<n)doS} (F=ilAi<n)A(i>n)
=ilANi=n)=f=n!

—



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)
(F=itAi<nAi<n) {i<i+1} (F=(i—1)IAi<n)

(F=ilAi<nAi<n) {i<i+lfef-i} (F=iAi<n)
(F=itAi<n) {while(i<n)doS} (F=ilAi<n)A(i>n)
=ilANi=n)=f=n!

—



Example: n!
(pAB){S}p

p{while B do S}(p A —B)

Find a loop invariant for the following program, and prove the program computes n!

i<=1,
f<1,
while i < n do
i<=i+1
f<f-i
p=(fF=i'Ai<n) (Loop invariant)
B=(i<n) (Branch condition)

(i—1)Ai<n)
AT < n)
AT < n)

PN < n)A(i > n)
=ilANi=n)=f=n!

(F=ilAi<nAi<n) {i<i+1} (
(F=(G—1)IAi<n) {f<f-i} (
) (
) (

(F=iAi<nAi<n) {i<itlif<f-i}
(F=i"Ai<n) {while (i <n)do S}

NI
Il

—
N



