

Program Verification

What is a “correct program”?

Program Verification

What is a “correct program”?

It has to terminate.

Program Verification

What is a “correct program”?

It has to terminate.

Assuming it terminates, its ending state should match some stated objective.

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the program

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the program

final assertion: conjunction of propositions about the final state of the program

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the program

final assertion: conjunction of propositions about the final state of the program

Note: There are many programs that are “correct” for the same criteria. The ends justify the means.

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the program

final assertion: conjunction of propositions about the final state of the program

Note: There are many programs that are “correct” for the same criteria. The ends justify the means.

What kind of programs will we consider?

Program Verification

What is a “correct program”?

It has to terminate. **Provably impossible to detect (for all programs)**

Assuming it terminates, its ending state should match some stated objective.

How do we specify what a program is supposed to do?

initial assertion: conjunction of propositions about the initial variables used in the program

final assertion: conjunction of propositions about the final state of the program

Note: There are many programs that are “correct” for the same criteria. The ends justify the means.

What kind of programs will we consider?

We will look at:

- ▶ Assignment statements
- ▶ Sequences of statements
- ▶ Conditional statements (If B then S1 else S2)
- ▶ iteration statements (while loops)

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

p is the pre-condition

q is the post-condition.

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

$p(e)\{v \Leftarrow e\}p(v)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

$p(e)\{v \Leftarrow e\}p(v)$

$ODD(y)\{x \Leftarrow y + 2\}ODD(x)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

$p(e)\{v \Leftarrow e\}p(v)$

$ODD(y)\{x \Leftarrow y + 2\}ODD(x)$

$ODD(x)\{x \Leftarrow x + 1\}Even(x)$

Hoare Triples, Assignments, and Sequences

Hoare Triple: $p\{S\}q$:

If p is true for initial state of code S , and S terminates,
then q is true about the final state.

p is the pre-condition

q is the post-condition.

Assignment operator:

$p(e)\{v \Leftarrow e\}p(v)$

$ODD(y)\{x \Leftarrow y + 2\}ODD(x)$

$ODD(x)\{x \Leftarrow x + 1\}Even(x)$

Sequencing of statements:

$p\{S_1\}q$

$q\{S_2\}r$

$p\{S_1; S_2\}r$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

Examples

Consider the following simple program:

$y \leftarrow 3; z \leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \leftarrow 3\}(x = 1 \wedge y = 3)$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$

Consider the following simple program:

$x \Leftarrow x + 2; y \Leftarrow y + 1$

Examples

Consider the following simple program:

$$y \Leftarrow 3; z \Leftarrow x + y$$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$$

$$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$$

$$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$$

Consider the following simple program:

$$x \Leftarrow x + 2; y \Leftarrow y + 1$$

Claim: if we have the pre-condition $x = 2y$, we have the post-condition $x = 2y$.

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$

Consider the following simple program:

$x \Leftarrow x + 2; y \Leftarrow y + 1$

Claim: if we have the pre-condition $x = 2y$, we have the post-condition $x = 2y$.

$(x = 2y)\{x \Leftarrow x + 2\}(x = 2y + 2)$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$

Consider the following simple program:

$x \Leftarrow x + 2; y \Leftarrow y + 1$

Claim: if we have the pre-condition $x = 2y$, we have the post-condition $x = 2y$.

$(x = 2y)\{x \Leftarrow x + 2\}(x = 2y + 2)$

$(x = 2(y + 1))\{y \Leftarrow y + 1\}(x = 2y)$

Examples

Consider the following simple program:

$$y \Leftarrow 3; z \Leftarrow x + y$$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$$
$$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$$

$$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$$

Consider the following simple program:

$$x \Leftarrow x + 2; y \Leftarrow y + 1$$

Claim: if we have the pre-condition $x = 2y$, we have the post-condition $x = 2y$.

$$(x = 2y)\{x \Leftarrow x + 2\}(x = 2y + 2)$$
$$(x = 2(y + 1))\{y \Leftarrow y + 1\}(x = 2y)$$

$$(x = 2y)\{x \Leftarrow x + 2; y \Leftarrow y + 1\}(x = 2y)$$

Examples

Consider the following simple program:

$y \Leftarrow 3; z \Leftarrow x + y$

Claim: If we have the pre-condition $x = 1$, we have the post-condition $z = 4$.

$(x = 1)\{y \Leftarrow 3\}(x = 1 \wedge y = 3)$

$(x = 1 \wedge y = 3)\{z \Leftarrow x + y\}(z = 4)$

$(x = 1)\{y \Leftarrow 3; z \Leftarrow x + y\}(z = 4)$

Consider the following simple program:

$x \Leftarrow x + 2; y \Leftarrow y + 1$

Claim: if we have the pre-condition $x = 2y$, we have the post-condition $x = 2y$.

$(x = 2y)\{x \Leftarrow x + 2\}(x = 2y + 2)$

$(x = 2(y + 1))\{y \Leftarrow y + 1\}(x = 2y)$

$(x = 2y)\{x \Leftarrow x + 2; y \Leftarrow y + 1\}(x = 2y)$

This is called an *invariant condition* (or just an invariant)

Branches

If-then:

$$(p \wedge B)\{S\}q$$

$$(p \wedge \neg B) \rightarrow q$$

$$p\{\text{if B then S}\}q$$

Branches

If-then:

$$\begin{array}{l} (p \wedge B)\{S\}q \\ (p \wedge \neg B) \rightarrow q \end{array}$$

$$p\{\text{if B then S}\}q$$

If-then-else:

$$\begin{array}{l} (p \wedge B)\{S_1\}q \\ (p \wedge \neg B)\{S_2\}q \end{array}$$

$$p\{\text{if B then } S_1 \text{ else } S_2\}q$$

Branches

If-then:

$$\begin{aligned}(p \wedge B)\{S\}q \\ (p \wedge \neg B) \rightarrow q\end{aligned}$$

$$p\{\text{if } B \text{ then } S\}q$$

If-then-else:

$$\begin{aligned}(p \wedge B)\{S_1\}q \\ (p \wedge \neg B)\{S_2\}q\end{aligned}$$

$$p\{\text{if } B \text{ then } S_1 \text{ else } S_2\}q$$

Example:

Let $x = 7$, and consider code:

{if $y < x$ then $y \leftarrow x$ }

Show $y \geq 7$.

Branches

If-then:

$$\begin{array}{l} (p \wedge B)\{S\}q \\ (p \wedge \neg B) \rightarrow q \end{array}$$

$$p\{\text{if } B \text{ then } S\}q$$

If-then-else:

$$\begin{array}{l} (p \wedge B)\{S_1\}q \\ (p \wedge \neg B)\{S_2\}q \end{array}$$

$$p\{\text{if } B \text{ then } S_1 \text{ else } S_2\}q$$

Example:

Let $x = 7$, and consider code:

$\{\text{if } y < x \text{ then } y \Leftarrow x\}$

Show $y \geq 7$.

$$(x = 7 \wedge y < x)\{y \Leftarrow x\}(y \geq 7)$$

Branches

If-then:

$$\begin{array}{l} (p \wedge B)\{S\}q \\ (p \wedge \neg B) \rightarrow q \end{array}$$

$$p\{\text{if } B \text{ then } S\}q$$

If-then-else:

$$\begin{array}{l} (p \wedge B)\{S_1\}q \\ (p \wedge \neg B)\{S_2\}q \end{array}$$

$$p\{\text{if } B \text{ then } S_1 \text{ else } S_2\}q$$

Example:

Let $x = 7$, and consider code:

{if $y < x$ then $y \leftarrow x$ }

Show $y \geq 7$.

$$(x = 7 \wedge y < x)\{y \leftarrow x\}(y \geq 7)$$

$$(x = 7 \wedge y \geq x) \rightarrow (y \geq 7)$$

Branches

If-then:

$$\begin{array}{l} (p \wedge B)\{S\}q \\ (p \wedge \neg B) \rightarrow q \end{array}$$

$$p\{\text{if } B \text{ then } S\}q$$

If-then-else:

$$\begin{array}{l} (p \wedge B)\{S_1\}q \\ (p \wedge \neg B)\{S_2\}q \end{array}$$

$$p\{\text{if } B \text{ then } S_1 \text{ else } S_2\}q$$

Example:

Let $x = 7$, and consider code:

{if $y < x$ then $y \Leftarrow x$ }

Show $y \geq 7$.

$$(x = 7 \wedge y < x)\{y \Leftarrow x\}(y \geq 7)$$

$$(x = 7 \wedge y \geq x) \rightarrow (y \geq 7)$$

$$(x = 7)\{\text{if } y < x \text{ then } y \Leftarrow x\}(y \geq 7)$$

While loops

While loop:

$$(p \wedge B) \{S\} p$$

$$\frac{}{p \{\text{while } B \text{ do } S\} (p \wedge \neg B)}$$

While loops

While loop:

$$(p \wedge B) \{S\} p$$

$$p \{\text{while } B \text{ do } S\} (p \wedge \neg B)$$

We call p a loop invariant.

While loops

While loop:

$$(p \wedge B) \{S\} p$$

$$p \{\text{while } B \text{ do } S\} (p \wedge \neg B)$$

We call p a loop invariant.

Note that the correctness of this inference rule technically requires a mathematical induction.

Example: $n!$

$(p \wedge B)\{S\}p$

$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$

Example: $n!$

$(p \wedge B)\{S\}p$

$p\{\text{while } B \text{ do } S\}(p \wedge \neg B)$

Find a loop invariant for the following program, and prove the program computes $n!$

$i \Leftarrow 1;$

$f \Leftarrow 1;$

while $i < n$ do

$i \Leftarrow i + 1$

$f \Leftarrow f \cdot i$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

$$B = (i < n)$$

(Branch condition)

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

$$B = (i < n)$$

(Branch condition)

$$(f = i! \wedge i \leq n) \quad \{\text{while } (i < n) \text{ do } S\} \quad (f = i! \wedge i \leq n) \wedge (i \geq n)$$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

$$B = (i < n)$$

(Branch condition)

$$(f = i! \wedge i \leq n) \quad \{\text{while } (i < n) \text{ do } S\} \quad (f = i! \wedge i \leq n) \wedge (i \geq n) \\ \equiv (f = i! \wedge i = n)$$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

$$B = (i < n)$$

(Branch condition)

$$(f = i! \wedge i \leq n) \quad \{\text{while } (i < n) \text{ do } S\} \quad (f = i! \wedge i \leq n) \wedge (i \geq n) \\ \equiv (f = i! \wedge i = n) \equiv f = n!$$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n)$$

(Loop invariant)

$$B = (i < n)$$

(Branch condition)

$$(f = i! \wedge i \leq n \wedge i < n)$$

$$\{i \Leftarrow i + 1; f \Leftarrow f \cdot i\}$$

$$(f = i! \wedge i \leq n)$$

$$(f = i! \wedge i \leq n)$$

{while $(i < n)$ do S }

$$(f = i! \wedge i \leq n) \wedge (i \geq n)$$

$$\equiv (f = i! \wedge i = n) \equiv f = n!$$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n) \quad \text{(Loop invariant)}$$

$$B = (i < n) \quad \text{(Branch condition)}$$

$$(f = i! \wedge i \leq n \wedge i < n) \quad \{i \Leftarrow i + 1\} \quad (f = (i - 1)! \wedge i \leq n)$$

$$\begin{array}{lll} (f = i! \wedge i \leq n \wedge i < n) & \{i \Leftarrow i + 1; f \Leftarrow f \cdot i\} & (f = i! \wedge i \leq n) \\ (f = i! \wedge i \leq n) & \{\text{while } (i < n) \text{ do } S\} & (f = i! \wedge i \leq n) \wedge (i \geq n) \\ & & \equiv (f = i! \wedge i = n) \equiv f = n! \end{array}$$

Example: $n!$

$$(p \wedge B)\{S\}p$$

$$\overline{p\{\text{while } B \text{ do } S\}(p \wedge \neg B)}$$

Find a loop invariant for the following program, and prove the program computes $n!$

$$i \Leftarrow 1;$$

$$f \Leftarrow 1;$$

while $i < n$ do

$$i \Leftarrow i + 1$$

$$f \Leftarrow f \cdot i$$

$$p = (f = i! \wedge i \leq n) \quad \text{(Loop invariant)}$$

$$B = (i < n) \quad \text{(Branch condition)}$$

$$(f = i! \wedge i \leq n \wedge i < n) \quad \{i \Leftarrow i + 1\} \quad (f = (i - 1)! \wedge i \leq n)$$

$$(f = (i - 1)! \wedge i \leq n) \quad \{f \Leftarrow f \cdot i\} \quad (f = i! \wedge i \leq n)$$

$$(f = i! \wedge i \leq n \wedge i < n) \quad \{i \Leftarrow i + 1; f \Leftarrow f \cdot i\} \quad (f = i! \wedge i \leq n)$$

$$(f = i! \wedge i \leq n) \quad \{\text{while } (i < n) \text{ do } S\} \quad (f = i! \wedge i \leq n) \wedge (i \geq n)$$

$$\equiv (f = i! \wedge i = n) \equiv f = n!$$