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Inference Rules

Modus ponens:

A introduction:

V introduction:

— = introduction:

+ introduction:

Contradiction:

a—f3

=™ e

aAp

a for f]

aVv i

FALSE

CHAPTER 3. PROOFS BY DEDUCTION

Modus tollens:

A elimination:

V elimination:
(Case analysis)

— - elimination:

<+ elimination:

Tautology:
(when a = TRUE)

Figure 3.1: Rules of Inference

a—f

- p

ae

(a=B)A(B—a)
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The last assertion in the list is the theorem being proven.
Each assertion follows from the previous assertions by some inference rule.

A sequent: ot [ is a statement:

“There exists a proof that starts with assertion « and ends with 3.

(The sequent is valid if such a proof actually exists.)

Note that « here is taken as a starting point: it is assumed true without proof.

Example: ptp A (qV p)
p

qVvp (V introduction from line 1)
pA(qVp) (A introduction from lines 1 and 2)

Example: pAgEpA(qVr)

PAq

p (A elimination from line 1)
q (A elimination from line 1)
qVr (V introduction from line 3)

pA(gVr) (A introduction from lines 2 and 4)
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We limit our set for the sake of the exercise.
If | were to add one more, it would be this one:
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We will NOT add this inference rule. Instead, we will frequently use the following
sub-proof.
1. —p given
2 [p] assumption
3 [~q]  assumption
4, False  contradiction, lines 1 and 2.
5. q reduction to absurdity, lines 3 and 4.
6. p—gq implication introduction, lines 2 and 5.

Note: —p means that p — anything!

1. -p given

2. [p] assumption

3. [q] assumption

4, False  contradiction, lines 1 and 2.

5. q reduction to absurdity, lines 3 and 4.
6. p— —q implication introduction, lines 2 and 5.
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