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Pumping Lemma

If L is a regular language, then there exists an integer p > 1 such that for any w € L
with |w| > p, w can be divided into 3 strings, w = zyz such that:

1. Vi>0,zy'z € L

2. |yl >0

3. Jzy| <p

Since L is regular, 3 DFA M that recognizes L.

Let p to be the number of states in M. For w = w1, ..., wn, let qo,...,qn be the
sequence of states that lead from start to accept on string w.

Because n > p, some state must repeat in this sequence. Let ¢* be the first to repeat.
Let s be the index of first appearance of ¢*, t be the index of the first repetition of g*.
Letx = w1 - - ws, Yy = Wsy1 - W, and 2 = w1 -+ Wn.

To see that property 3 is satisfied: recall, ¢ is the first repetition. If ¢ > p, we must
have more than p states.
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