

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat. Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.

Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Let $x = w_1 \dots w_s$, $y = w_{s+1} \dots w_t$, and $z = w_{t+1} \dots w_n$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.

Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Let $x = w_1 \cdots w_s$, $y = w_{s+1} \cdots w_t$, and $z = w_{t+1} \cdots w_n$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

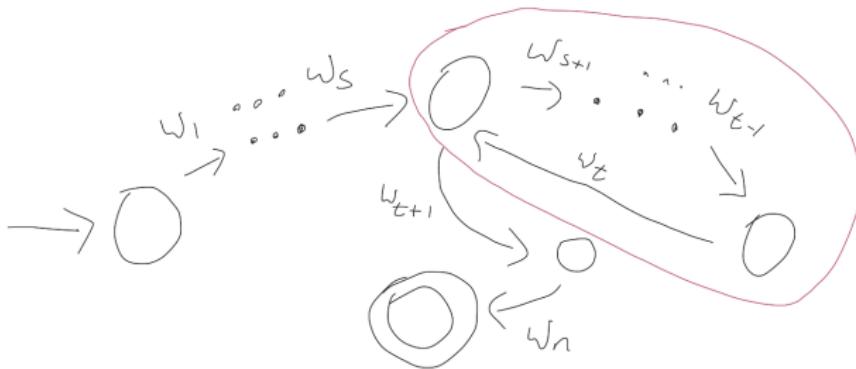
Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.

Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Let $x = w_1 \dots w_s$, $y = w_{s+1} \dots w_t$, and $z = w_{t+1} \dots w_n$.



Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Since L is regular, \exists DFA M that recognizes L .

Let p to be the number of states in M . For $w = w_1, \dots, w_n$, let q_0, \dots, q_n be the sequence of states that lead from start to accept on string w .

Because $n > p$, some state must repeat in this sequence. Let q^* be the first to repeat.

Let s be the index of first appearance of q^* , t be the index of the first repetition of q^* .

Let $x = w_1 \dots w_s$, $y = w_{s+1} \dots w_t$, and $z = w_{t+1} \dots w_n$.

To see that property 3 is satisfied: recall, t is the first repetition. If $t > p$, we must have more than p states.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

If property 3 is violated, we're done.

Suppose property 3 is not violated.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

If property 3 is violated, we're done.

Suppose property 3 is not violated.

If property 2 is violated, we're done.

Suppose property 2 is not violated.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language $L = \{a^n b^n \mid n \geq 0\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = a^p b^p$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

If property 3 is violated, we're done.

Suppose property 3 is not violated.

If property 2 is violated, we're done.

Suppose property 2 is not violated.

Then $y \in \{aa^j\}_{j=0}^{p-1}$. $\forall i \geq 0 : xy^i z \notin L$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{(')', ')\}'\}$ is not regular.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{‘(‘, ‘)’\}$ is not regular.

Examples of strings in the language: $((())())()$ and $()((())())$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{(')', ')\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of “balanced parenthesis” over $\Sigma = \{(')', ')\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = \underbrace{((\cdots ((\cdots))) \cdots))}_{p \text{ times}} \underbrace{((\cdots ((\cdots))) \cdots))}_{p \text{ times}}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = \underbrace{((\cdots((\cdots))\cdots))}_{p \text{ times}} \underbrace{((\cdots((\cdots))\cdots))}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = \underbrace{((\cdots((\cdots)))\cdots))}_{p \text{ times}} \underbrace{((\cdots((\cdots)))\cdots))}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}'\}$ is not regular.

Our lemma says:

$\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied}$

We want to show:

$\neg(\exists p : \forall w \in L : |w| \geq p : \exists x, y, z \text{ s.t. all 3 properties are satisfied})$

$\equiv \forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Let $w = \underbrace{((\cdots((\cdots))\cdots))}_{p \text{ times}} \underbrace{((\cdots((\cdots))\cdots))}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

Then $y \in \{((^j)\}_{j=0}^{p-1}$. $\forall i \geq 0 : xy^i z \notin L$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

If $y = ()$, $xy^i z \in L$.

Limitations on regular languages

Pumping Lemma

If L is a regular language, then there exists an integer $p \geq 1$ such that for any $w \in L$ with $|w| \geq p$, w can be divided into 3 strings, $w = xyz$ such that:

1. $\forall i \geq 0, xy^i z \in L$
2. $|y| > 0$
3. $|xy| \leq p$

Theorem

The language L of "balanced parenthesis" over $\Sigma = \{(')', ')\}$ is not regular.

We want to show:

$\forall p : \exists w \in L : |w| \geq p : \forall x, y, z \text{ s.t. NOT all 3 properties are satisfied}$

Assume $p \geq 1$ (towards \forall introduction)

Wrong answer:

Let $w = \underbrace{()()() \cdots ()()()}_{p \text{ times}}$

Claim: $\forall x, y, z, w$ violates (at least) one of the 3 properties.

Assume properties 2 and 3 are satisfied.

If $y = ()$, $xy^i z \in L$.

$\neg \forall x, y, z : \forall i \geq 0 : xy^i z \notin L$.