

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written xy .

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written xy .

Example: *dog* concatenated with *doogle* is *dogdoogle*.

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written xy .

Example: *dog* concatenated with *doogle* is *dogdoogle*.

We use $x^2 = xx$, $x^k = xx^{k-1}$, $x^0 = \Lambda$

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written xy .

Example: *dog* concatenated with *doogle* is *dogdoogle*.

We use $x^2 = xx$, $x^k = xx^{k-1}$, $x^0 = \Lambda$

Length: The length of a string is the number characters in the string.

Example: $|doogle| = 6$.

Strings

Alphabet: An alphabet is a set of symbols. E.g.

$\Sigma_1 = \{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}$, or $\Sigma_2 = \{0, 1\}$.

String: A string is a *finite* sequence of characters.

A string over some alphabet Σ is a finite sequence of characters from that alphabet.

Example: *dog* is a string over Σ_1 . So is *doogle*. 001010 is a string over Σ_2 .

Λ is a special string, called the empty string. It exists, regardless of the alphabet being used.

Concatenation: The primary operator we use on strings is concatenation. This takes two strings as input and outputs a new string. Because we use it so often, we don't bother with a symbol: the concatenation of strings x and y is written xy .

Example: *dog* concatenated with *doogle* is *dogdoogle*.

We use $x^2 = xx$, $x^k = xx^{k-1}$, $x^0 = \Lambda$

Length: The length of a string is the number characters in the string.

Example: $|doogle| = 6$. Example: $|\Lambda| = 0$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$L_1 \cup L_2$

$\{a, aa, \Lambda, ba\}$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \qquad \{aa\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \qquad \{\Lambda, ba\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \qquad \{a\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

$$L_1 L_2 = \{xy \mid x \in L_1 \wedge y \in L_2\} \qquad \{a, aa, aaa, aba, aaaa, aaba\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

$$L_1 L_2 = \{xy \mid x \in L_1 \wedge y \in L_2\} \qquad \{a, aa, aaa, aba, aaaa, aaba\}$$

$$L_2 L_1 \qquad \{a, aa, aaa, aaaa, baa, baaa\}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

$$L_1 L_2 = \{xy \mid x \in L_1 \wedge y \in L_2\} \qquad \{a, aa, aaa, aba, aaaa, aaba\}$$

$$L_2 L_1 \qquad \qquad \{a, aa, aaa, aaaa, baa, baaa\}$$

$$L^0 = \{\Lambda\} \text{ for any } L$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

$$L_1 L_2 = \{xy \mid x \in L_1 \wedge y \in L_2\} \qquad \{a, aa, aaa, aba, aaaa, aaba\}$$

$$L_2 L_1 \qquad \qquad \{a, aa, aaa, aaaa, baa, baaa\}$$

$$L^0 = \{\Lambda\} \text{ for any } L$$

$$L^2 = LL \text{ and } L^k = LL^{k-1}$$

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: $\{ab, bab, bbaab\}$ is a language of size 3.

Example: $L = \{\Lambda, a, b, aa, ab, ba, bb\}$

Example: $\Sigma = \{0, 1, +\}$, $L = \{0 + 0, 0 + 1, 1 + 0, 1 + 1, 0 + 0 + 0, 0 + 0 + 1, \dots\}$

While a language may have infinite size, each string in the language has finite size.

Σ^* is the language containing all possible strings over the alphabet Σ .

Example: $\Sigma = \{a, b\}$, $\Sigma^* = \{\Lambda, a, b, aa, ab, ba, bb, aaa, \dots\}$

We sometimes write this as $\{a, b\}^*$

$\Sigma = \{a, b\}$, $L_1 = \{a, aa\}$, $L_2 = \{\Lambda, aa, ba\}$, $L_3 = \{\Lambda, a, aa, aaa, \dots\}$

Language operators:

$$L_1 \cup L_2 \qquad \{a, aa, \Lambda, ba\}$$

$$L_1 \cap L_2 \qquad \{aa\}$$

$$L_2 \setminus L_1 \qquad \{\Lambda, ba\}$$

$$L_1 \setminus L_2 \qquad \{a\}$$

$$\bar{L} = \Sigma^* \setminus L \qquad \bar{L}_3 = \{b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb \dots\}$$

$$L_1 L_2 = \{xy \mid x \in L_1 \wedge y \in L_2\} \qquad \{a, aa, aaa, aba, aaaa, aaba\}$$

$$L_2 L_1 \qquad \{a, aa, aaa, aaaa, baa, baaa\}$$

$$L^0 = \{\Lambda\} \text{ for any } L$$

$$L^2 = LL \text{ and } L^k = LL^{k-1}$$

$$L^* = \bigcup_{i=0}^{\infty} L^i$$

Languages

Example: $L = \{a, bb\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

extensional form: enumerate the strings.

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

extensional form: enumerate the strings. Only finite sets, or possibly use “...”

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

extensional form: enumerate the strings. Only finite sets, or possibly use “...”

intensional form: specify the *properties* of the strings.

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

extensional form: enumerate the strings. Only finite sets, or possibly use “...”

intensional form: specify the *properties* of the strings.

Informally: $L = \{x \mid x \text{ contains an equal number of } as \text{ and } bs\}$

Languages

Example: $L = \{a, bb\}$

$L^0 = \{\Lambda\}$

$L^1 = \{a, bb\}$

$L^2 = \{aa, abb, bba, bbbb\}$

$L^3 = \{aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbb\}$

$L^* = \{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, \dots\}$

extensional form: enumerate the strings. Only finite sets, or possibly use “...”

intensional form: specify the *properties* of the strings.

Informally: $L = \{x \mid x \text{ contains an equal number of } as \text{ and } bs\}$

Formally: $L = \{x \mid x \in \{a, b\}^* \wedge N_a(x) = N_b(x)\}$, where $N_a(x)$ denotes the number of *as* in string x .

Now What?

Until now we've talked about *how* to prove things.

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?
 - ▶ given some x and some description of a language L , how do we decide whether $x \in L$?

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?
 - ▶ given some x and some description of a language L , how do we decide whether $x \in L$?
 - ▶ An automaton for L is a simple machine that allows us to decide, given some x , whether $x \in L$

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?
 - ▶ given some x and some description of a language L , how do we decide whether $x \in L$?
 - ▶ An automaton for L is a simple machine that allows us to decide, given some x , whether $x \in L$

We will see that there are different *classes* of language: some are easier to generate / recognize than others.

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?
 - ▶ given some x and some description of a language L , how do we decide whether $x \in L$?
 - ▶ An automaton for L is a simple machine that allows us to decide, given some x , whether $x \in L$

We will see that there are different *classes* of language: some are easier to generate / recognize than others.

$$L_1 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains an even number of symbols}\}$$

$$L_2 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains a prime number of symbols}\}$$

Now What?

Until now we've talked about *how* to prove things.

Now we're going to start proving things about the nature of computation.

Central questions:

- ▶ How do we generate the strings of some language L ?
 - ▶ Note that many languages have infinite size, so we need to take a finite representation of that language, and use it to construct all of the strings!
 - ▶ A *grammar* for L gives a description of how to enumerate the strings of L
- ▶ How do we recognize the strings of a language?
 - ▶ given some x and some description of a language L , how do we decide whether $x \in L$?
 - ▶ An automaton for L is a simple machine that allows us to decide, given some x , whether $x \in L$

We will see that there are different *classes* of language: some are easier to generate / recognize than others.

$$L_1 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains an even number of symbols}\}$$

$$L_2 = \{x \mid x \in \{a\}^* \text{ and } x \text{ contains a prime number of symbols}\}$$

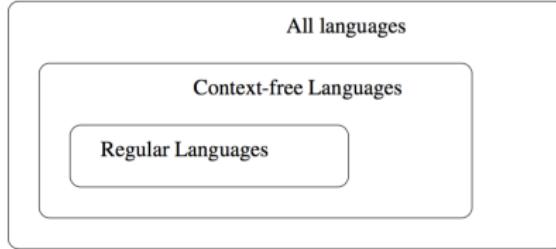


Figure 7.1: Containment of some language classes.

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- ▶ $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- ▶ If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- ▶ $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- ▶ If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- ▶ There are no other regular languages over Σ .

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- ▶ $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- ▶ If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- ▶ There are no other regular languages over Σ .

Example: $\Sigma = \{a, b, c\}$.

$L_1 = \{a\}$, $L_2 = \{b\}$, $L_3 = \{c\}$ are all regular

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- ▶ $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- ▶ If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- ▶ There are no other regular languages over Σ .

Example: $\Sigma = \{a, b, c\}$.

$L_1 = \{a\}$, $L_2 = \{b\}$, $L_3 = \{c\}$ are all regular

$L = L_1 \cup L_2 L_3^*$:

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple operators: \cup , concatenation, and $*$

Regular Languages

Let \mathcal{R} be the set of all regular languages over symbol set Σ .

- ▶ $\emptyset \in \mathcal{R}$, $\{\Lambda\} \in \mathcal{R}$, $\forall \sigma \in \Sigma : \{\sigma\} \in \mathcal{R}$
- ▶ If $L \in \mathcal{R}$, then $L^* \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 L_2 \in \mathcal{R}$
 - If $L_1, L_2 \in \mathcal{R}$, then $L_1 \cup L_2 \in \mathcal{R}$
- ▶ There are no other regular languages over Σ .

Example: $\Sigma = \{a, b, c\}$.

$L_1 = \{a\}$, $L_2 = \{b\}$, $L_3 = \{c\}$ are all regular

$L = L_1 \cup L_2 L_3^* : L = \{a, b, bc, bcc, bccc, \dots\}$

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	
$a(b + c)$	
$(a + b)(a + c)(\Lambda + a)$	
$a^*(b + cc)$	
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	
$a(b + c)$	
$(a + b)(a + c)(\Lambda + a)$	
$a^*(b + cc)$	
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	
$(a + b)(a + c)(\Lambda + a)$	
$a^*(b + cc)$	
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	
$a^*(b + cc)$	
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Some notational conveniences (that do not change the class of languages.):

Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Some notational conveniences (that do not change the class of languages.):

Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$

$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Some notational conveniences (that do not change the class of languages.):

Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$

$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k

$(a + b + \Lambda)^k$: all strings of length at most k .

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Some notational conveniences (that do not change the class of languages.):

Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$

$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k

$(a + b + \Lambda)^k$: all strings of length at most k .

Positive closure: $r^+ = rr^*$

Regular Expressions

We write \cup with $+$, and we remove set notation.

Example: $(\{a\}\{b\}^* \cup \{c\}^*\{d\})^* \{e\}$ becomes $(ab^* + c^*d)^*e$.

Given some regular expression, r , we use $\mathcal{L}(r)$ to represent the language it denotes.

RE (r)	Corresponding Language ($\mathcal{L}(r)$)
$a + bc$	$\{a, bc\}$
$a(b + c)$	$\{ab, ac\}$
$(a + b)(a + c)(\Lambda + a)$	$\{aa, ac, ba, bc, aaa, aca, baa, bca\}$
$a^*(b + cc)$	$\{b, cc, ab, acc, aab, aacc, aaab, aaacc, \dots\}$
$a + bb^*$	$\{a, b, bb, bbb, bbbb, \dots\}$
$(a + bb)^*$	$\{\Lambda, a, bb, aa, abb, bba, bbbb, aaa, \dots\}$
a^*b^*	$\{\Lambda, a, b, ab, aa, bb, aaa, aab, abb, bbb, \dots\}$
$((a + b)(a + b))^*$	$\{x \mid x \in \{a, b\} \wedge x \text{ is even}\}$

Some notational conveniences (that do not change the class of languages.):

Let r be a RE. $r^0 = \Lambda$, and $\forall k \geq 0, r^{k+1} = rr^k$

$(a + b)^k$: all strings over $\{a, b\}$ of length exactly k

$(a + b + \Lambda)^k$: all strings of length at most k .

Positive closure: $r^+ = rr^*$

(Alternatively, $r^* = \Lambda + r^+$)