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extensional form: enumerate the strings. Only finite sets, or possibly use “...”
intensional form: specify the properties of the strings.

Informally: L = {z |  contains an equal number of as and bs }

Formally: L = {z | z € {a,b}* A Na(z) = Np(x)}, where N, () denotes the number
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Figure 7.1: Containment of some language classes.
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Regular Languages

Let R be the set of all regular languages over symbol set 3.
»PeR {A}eR VoeX:{c}eR
» If LeR, then L* € R
If L1,La € R, then L1Ls € R
If L1,Ls € R, then L1 ULy € R
> There are no other regular languages over X.

Example: ¥ = {a, b, c}.
Ly = {a}, Lo = {b}, L3 = {c} are all regular
L =1L;UL2L%: L ={a,b,bc,bec, bec, ...}
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