Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.

Strings
Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

Strings
Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.

We use 22 = zx, zF = zzF—1, 20 = A

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.

We use 22 = zx, zF = zzF—1, 20 = A

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6.

Strings

Alphabet: An alphabet is a set of symbols. E.g.
21 ={a,bcd,e, f,g,h,i,5,k,l,m,n,0,p,q,7, 5t uv,wuzyz} or B3 ={0,1}.

String: A string is a finite sequence of characters.
A string over some alphabet X is a finite sequence of characters from that alphabet.
Example: dog is a string over X1. So is doogle. 001010 is a string over o.

A is a special string, called the empty string. It exists, regardless of the alphabet being
used.

Concatenation: The primary operator we use on strings is concatenation. This takes
two strings as input and outputs a new string. Because we use it so often, we don’t
bother with a symbol: the concatenation of strings x and y is written xy.

Example: dog concatenated with doogle is dogdoogle.

We use 22 = zx, zF = zzF—1, 20 = A

Length: The length of a string is the number characters in the string.
Example: |doogle| = 6. Example: [A| =0

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.

Languages

Language: A language is a set of strings. It can be finite or infinite.
Example: {ab, bab, bbaab} is a language of size 3.
Example: L = {A,a,b, aa, ab, ba, bb}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}

We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:
Ly ULy {a,aa, A, ba}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LiNLo {aa}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LiNLo {aa}

Lo\ Ly {A, ba}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}

We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}
LiNLo {aa}
L2 \ Ll {A7 ba}

Li\ L2 {a}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}
LiNLo {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LiNLo {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}

LiLy ={zy|z € L1 ANy € L2} {a,aa,aaqa,aba,aaaa, aaba}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LiNLo {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}

LiLy={zy |z € L1 ANy € L2} {a,aa,aaa,aba,acaa,aaba}
Loly {a, aa, aaa, aaaa, baa, baaa}

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LinNLe {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
LiLy={zy |z € L1 ANy € L2} {a,aa,aaa,aba,acaa,aaba}

Loly {a, aa, aaa, aaaa, baa, baaa}

L0 = {A} for any L

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LinNLe {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
LiLys ={zy|xz € Li ANy € L2} {a,aa,aaa,aba,aaaa,aaba}t

Loly {a, aa, aaa, aaaa, baa, baaa}

L0 = {A} for any L
L2 =LL and L* = LL*1

Languages

Language: A language is a set of strings. It can be finite or infinite.

Example: {ab, bab, bbaab} is a language of size 3.

Example: L = {A,a,b, aa, ab, ba, bb}

Example: ¥ = {0,1,+}, L={0+0,0+1,14+0,14+1,0+04+0,0+0+1,...}
While a language may have infinite size, each string in the language has finite size.

¥* is the language containing all possible strings over the alphabet 3.
Example: ¥ = {a,b}, £* = {A, a, b, aa, ab, ba, bb, aaa, . ..}
We sometimes write this as {a,b}*

3 ={a,b}, L1 ={a,aa}, Ly = {A,aa,ba}, L3 = {A,a,aa,aaaq,...}
Language operators:

Ly ULy {a,aa, A, ba}

LinNLe {aa}

Lo\ Ly {A, ba}

L\ L2 {a}

L=%¥*\L L3 = {b, ab, ba, bb, aab, aba, abb, baa, bab, bba, bbb . . .}
LiLys ={zy|xz € Li ANy € L2} {a,aa,aaa,aba,aaaa,aaba}t

Loly {a, aa, aaa, aaaa, baa, baaa}

L0 = {A} for any L
I? = LL and Lk = LLk1
L*=J Lt

i=0

Languages
Example: L = {a, bb}

Languages

Example: L = {a, bb}
L0 = {A}

Languages
Example: L = {a, bb}
LY ={A}
L' = {a,bb}

Languages

Example: L = {a, bb}
10 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

Languages

Example: L = {a, bb}

10 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

Languages

Example: L = {a, bb}

10 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

Languages

Example: L = {a, bb}

10 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings.

Languages

Example: L = {a, bb}

10 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}

extensional form: enumerate the strings. Only finite sets, or possibly use

«

Languages

Example: L = {a, bb}

L0 = {A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}
extensional form: enumerate the strings. Only finite sets, or possibly use “...”
intensional form: specify the properties of the strings.

Languages

Example: L = {a, bb}

9= (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}
extensional form: enumerate the strings. Only finite sets, or possibly use “...”
intensional form: specify the properties of the strings.

Informally: L = {z | contains an equal number of as and bs }

Languages

Example: L = {a, bb}

L9 = (A}

L' = {a,bb}

L? = {aa, abb, bba, bbbb}

L3 = {aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb}

L* = {A, a,bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbb, bbaa, . . .}
extensional form: enumerate the strings. Only finite sets, or possibly use “...”
intensional form: specify the properties of the strings.

Informally: L = {z | contains an equal number of as and bs }

Formally: L = {z | z € {a,b}* A Na(z) = Np(x)}, where N, () denotes the number
of as in string x.

Now What?

Until now we've talked about how to prove things.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L

» How do we recognize the strings of a language?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L
» How do we recognize the strings of a language?
> given some x and some description of a language L, how do we decide whether z € L?

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L
» How do we recognize the strings of a language?
> given some x and some description of a language L, how do we decide whether z € L?
»> An automaton for L is a simple machine that allows us to decide, given some z,
whether x € L

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L
» How do we recognize the strings of a language?
> given some x and some description of a language L, how do we decide whether z € L?
»> An automaton for L is a simple machine that allows us to decide, given some z,
whether x € L

We will see that there are different classes of language: some are easier to generate /
recognize than others.

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L
» How do we recognize the strings of a language?
> given some x and some description of a language L, how do we decide whether z € L?
»> An automaton for L is a simple machine that allows us to decide, given some z,
whether x € L

We will see that there are different classes of language: some are easier to generate /
recognize than others.

Ly = {z | z € {a}* and z contains an even number of symbols}

Ly ={z | z € {a}* and z contains a prime number of symbols}

Now What?

Until now we've talked about how to prove things.
Now we're going to start proving things about the nature of computation.

Central questions:

> How do we generate the strings of some language L?
> Note that many languages have infinite size, so we need to take a finite representation
of that language, and use it to construct all of the strings!
> A grammar for L gives a description of how to enumerate the strings of L
» How do we recognize the strings of a language?
> given some x and some description of a language L, how do we decide whether z € L?
»> An automaton for L is a simple machine that allows us to decide, given some z,
whether x € L

We will see that there are different classes of language: some are easier to generate /
recognize than others.

Ly = {z | z € {a}* and z contains an even number of symbols}

Ly ={z | z € {a}* and z contains a prime number of symbols}

All languages

Context-free Languages

Regular Languages

Figure 7.1: Containment of some language classes.

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *
Regular Languages

Let R be the set of all regular languages over symbol set 3.
»eR, {A}eR, VoeX:{c} R

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

Let R be the set of all regular languages over symbol set 3.
»eR, {A}eR, VoeX:{c} R
» If LeR, then L* € R
If Li,La € R, then L1 Ly € R
If L1,La € R, then L1 ULy € R

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

Let R be the set of all regular languages over symbol set 3.
»PeR {A}eR VoeX:{c}eR
» If LeR, then L* € R
If L1,La € R, then L1Ls € R
If L1,Ls € R, then L1 ULy € R
> There are no other regular languages over X.

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

Let R be the set of all regular languages over symbol set 3.
»PeR {A}eR VoeX:{c}eR
» If LeR, then L* € R
If L1,La € R, then L1Ls € R
If L1,Ls € R, then L1 ULy € R
> There are no other regular languages over X.

Example: ¥ = {a, b, c}.
Ly = {a}, Lo = {b}, L3 = {c} are all regular

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

Let R be the set of all regular languages over symbol set 3.
»PeR {A}eR VoeX:{c}eR
» If LeR, then L* € R
If L1,La € R, then L1Ls € R
If L1,Ls € R, then L1 ULy € R
> There are no other regular languages over X.

Example: ¥ = {a, b, c}.
Ly = {a}, Lo = {b}, L3 = {c} are all regular
L=L1U L2L§:

Regular Languages

The class of regular languages is the set of languages that can be built out of 3 simple
operators: U, concatenation, and *

Regular Languages

Let R be the set of all regular languages over symbol set 3.
»PeR {A}eR VoeX:{c}eR
» If LeR, then L* € R
If L1,La € R, then L1Ls € R
If L1,Ls € R, then L1 ULy € R
> There are no other regular languages over X.

Example: ¥ = {a, b, c}.
Ly = {a}, Lo = {b}, L3 = {c} are all regular
L =1L;UL2L%: L ={a,b,bc,bec, bec, ...}

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.

RE (r) Corresponding Language (L£(7))

a+ be

a(b+c)

(a+b)(a+c)(A+a)

a*(b+ cc)

a+ bb*

(a + bb)*

a*b*

((a+b)(at+b)”

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))
a+ be

a(b+c)

@ b)(a+IA+a)
a*(b+ cc)

a + bb*

(a + bb)*

a*b*
(CEDICEIDS

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))
a+ bc {a, bc}

a(b+c)

@I @t ta)
a*(b+ cc)

a + bb*

(a + bb)*

a*b*
(CEDICED)N

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))
a+ bc {a, bc}

a(b+c) {ab, ac}

@I @t ta)
a*(b+ cc)

a + bb*

(a + bb)*

a*b*
(CEDICED)N

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))
a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}
a*(b+ cc)

a+ bb*

(a + bb)*

a*b*
(CEDICEIDE

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a + bb*

(a + bb)*

a*b*

(CEDICEIDE

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .}

(a + bb)*

a*b*

(CEDICEIDE

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .}

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b*

(CEDICEIDE

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .}

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
(CEDICEDE

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Some notational conveniences (that do not change the class of languages.):
Let » be a RE. r9 = A, and Vk > 0,rFt1 = prk

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Some notational conveniences (that do not change the class of languages.):
Let 7 be a RE. 9 = A, and Vk > 0, rFt1 = ppk
(a + b)*: all strings over {a, b} of length exactly k

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Some notational conveniences (that do not change the class of languages.):
Let 7 be a RE. 9 = A, and Vk > 0, rFt1 = ppk

(a + b)*: all strings over {a, b} of length exactly k

(a4 b+ A)*: all strings of length at most k.

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Some notational conveniences (that do not change the class of languages.):
Let 7 be a RE. 9 = A, and Vk > 0, rFt1 = ppk

(a + b)*: all strings over {a, b} of length exactly k

(a4 b+ A)*: all strings of length at most k.

Positive closure: r+ = rr*

Regular Expressions

We write U with 4, and we remove set notation.
Example: ({a}{b}* U{c}*{d})*{e} becomes (ab* + c*d)*e.
Given some regular expression, r, we use £(r) to represent the language it denotes.

RE (r) Corresponding Language (L£(7))

a+ bc {a, bc}

a(b+c) {ab, ac}

(a+b)(a+c)(A+a) | {aa,ac,ba,bc,aaa,aca,baa,bea}

a*(b+ cc) {b, cc, ab, acc, aab, aacc, aaab, aaace, . . .}
a+ bb* {a, b, bb, bbb, bbb, .. .1

(a+ bb)* {A, a,bb, aa, abb, bba, bbbb, aaa, . . .}

a*b* {A,a,b,ab, aa, bb, aaa, aab, abb, bbb, . . .}
((a+b)(a+0b)* {z |z € {a,b} A|z| is even }

Some notational conveniences (that do not change the class of languages.):
Let r be a RE. 70 = A, and Vk > 0,7F+1 = prbk

(a + b)*: all strings over {a, b} of length exactly k

(a4 b+ A)*: all strings of length at most k.

Positive closure: r+ = rr*

(Alternatively, r* = A +rT)

