

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

If, when using a production, we start with string γ_1 and end up with γ_2 , we denote this by $\gamma_1 \Rightarrow \gamma_2$

Example:

$\Phi = \{a, b, A, B\}$,

$P = \{ab \rightarrow AB; bab \rightarrow a; A \rightarrow bb\}$

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

If, when using a production, we start with string γ_1 and end up with γ_2 , we denote this by $\gamma_1 \Rightarrow \gamma_2$

Example:

$\Phi = \{a, b, A, B\}$,

$P = \{ab \rightarrow AB; bab \rightarrow a; A \rightarrow bb\}$

Then, $ababAA \Rightarrow aaAA \Rightarrow aabbA \Rightarrow aABbA$

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

If, when using a production, we start with string γ_1 and end up with γ_2 , we denote this by $\gamma_1 \Rightarrow \gamma_2$

Example:

$\Phi = \{a, b, A, B\}$,

$P = \{ab \rightarrow AB; bab \rightarrow a; A \rightarrow bb\}$

Then, $ababAA \Rightarrow aaAA \Rightarrow aabbA \Rightarrow aABbA$

We will sometimes write: $ababAA \xrightarrow{*} aABbA$

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

If, when using a production, we start with string γ_1 and end up with γ_2 ,
we denote this by $\gamma_1 \Rightarrow \gamma_2$

S : special “start” symbol, $S \in V$.

Grammars

A grammar G is defined by a quadruple: $G = \{V, \Sigma, S, P\}$

Σ : is the alphabet. G generates strings over Σ .

V : a set of symbols, disjoint from Σ : $\Sigma \cap V = \emptyset$

P : a set of *productions*, which are substitutions rules:

For $\alpha, \beta \in \Phi$, $\alpha \neq \Lambda$, $\alpha \rightarrow \beta$ indicates that you can substitute β for α .

If, when using a production, we start with string γ_1 and end up with γ_2 ,
we denote this by $\gamma_1 \Rightarrow \gamma_2$

S : special “start” symbol, $S \in V$.

The language generated by G , $\mathcal{L}(G) = \{x \mid S \xrightarrow{*} x \wedge x \in \Sigma^*\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language?

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \Rightarrow aA, S \Rightarrow \Lambda, A \Rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow \Lambda;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow \Lambda; S \Rightarrow aS;$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \Rightarrow aA, S \Rightarrow \Lambda, A \Rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow \Lambda; S \Rightarrow aS; S \Rightarrow bcS; \}$

Grammar Examples

Example:

Let $G_1 = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow \Lambda, A \rightarrow bS\})$

$S \Rightarrow aA \Rightarrow abS \Rightarrow ab$

$S \Rightarrow aA \Rightarrow abS \Rightarrow abaA \Rightarrow ababS \Rightarrow abab$

What is the language? It is: $(ab)^*$

Give a grammar for RE $r = a + bc^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow a; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + b)c^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow aC; S \Rightarrow bC; C \Rightarrow cC; C \Rightarrow \Lambda\}$

$V = \{S, C\}$

Give a grammar for RE $r = (a + bc)^*$

$G = \{\{S, ?\}, \{a, b, c\}, S, P = \{?\}\}$

$P = \{S \Rightarrow \Lambda; S \Rightarrow aS; S \Rightarrow bcS;\}$

$V = \{S\}$

Connection to Natural Language

$\langle \text{sentence} \rangle \rightarrow \langle \text{noun} - \text{phrase} \rangle \langle \text{verb} - \text{phrase} \rangle$

$\langle \text{noun} - \text{phrase} \rangle \rightarrow \langle \text{article} \rangle \langle \text{noun} \rangle$

$\langle \text{noun} - \text{phrase} \rangle \langle \text{auxillary} \rangle \rightarrow \langle \text{auxillary} \rangle \langle \text{noun} - \text{phrase} \rangle$

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Proof by induction on k , the length of the derivation $S \xrightarrow{*} x$.

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Proof by induction on k , the length of the derivation $S \xrightarrow{*} x$.

If $k = 0$, then $x = S, y = \Lambda, B = S$

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Proof by induction on k , the length of the derivation $S \xrightarrow{*} x$.

If $k = 0$, then $x = S, y = \Lambda, B = S$

Suppose the claim holds for a derivation using k production rules.

A derivation of length $k + 1$ must have been of the form $S \xrightarrow{*} yB$ after k steps.

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Proof by induction on k , the length of the derivation $S \xrightarrow{*} x$.

If $k = 0$, then $x = S, y = \Lambda, B = S$

Suppose the claim holds for a derivation using k production rules.

A derivation of length $k + 1$ must have been of the form $S \xrightarrow{*} yB$ after k steps.

For the last production, we either apply the rule:

$B \rightarrow \Lambda$, in which case, $S \xrightarrow{*} y$, with $y \in \Sigma^*$, or we apply

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Proof by induction on k , the length of the derivation $S \xrightarrow{*} x$.

If $k = 0$, then $x = S, y = \Lambda, B = S$

Suppose the claim holds for a derivation using k production rules.

A derivation of length $k + 1$ must have been of the form $S \xrightarrow{*} yB$ after k steps.

For the last production, we either apply the rule:

$B \rightarrow \Lambda$, in which case, $S \xrightarrow{*} y$, with $y \in \Sigma^*$, or we apply

$B \rightarrow aC$, in which case we have $S \xrightarrow{*} yaC$ for $ya \in \Sigma^*$ and $C \in V$.

Regular Grammars

Regular grammars are the same, but with a restriction on the production rules.

2 types of rule are allowed:

$A \rightarrow \Lambda$ or $A \rightarrow bC$, where $A, C \in V$ and $b \in \Sigma^*$

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.1

For any regular grammar $G = (V, \Sigma, S, P)$, if $S \xrightarrow{*} x$, then either $x \in \Sigma^*$, or $x = yB$, where $y \in \Sigma^*$ and $B \in V$.

Definition

A *unit production* is a production rule of the form $A \rightarrow B$, where $A, B \in V$.

A regular grammar with unit productions is a regular grammar that also allows unit production rules.

Structure of proof of Theorem 8.1

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

Structure of proof of Theorem 8.1

Theorem 8.1

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G such that $\mathcal{L}(G) = L$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

Lemma 8.3

If $L = \mathcal{L}(G)$ for some regular grammar with unit productions, then there exists a regular grammar G' such that $L = \mathcal{L}(G')$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

Algorithm 8.1

Constructing a regular grammar from an RE

Input: A RE r such that $\mathcal{L}(r) \subseteq \Sigma^*$.

Output: A regular grammar $G = (V, \Sigma, S, P)$ with unit productions, $\mathcal{L}(r) = \mathcal{L}(G)$

if r has no operators **then**

if $r = a$ **then return** $(\{S, A\}, \Sigma, S, \{S \rightarrow aA, A \rightarrow \Lambda\})$

if $r = \Lambda$ **then return** $(\{S\}, \Sigma, S, \{S \rightarrow \Lambda\})$

if $r = \emptyset$ **then return** $(\{S\}, \Sigma, S, \emptyset)$

else

if $r = r_1 + r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

if $r = r_1 r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

for each $A \rightarrow \Lambda \in P_1$ **do**

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

if $r = r_1^*$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

for each $A \rightarrow \Lambda \in P_1$ **do**

 replace $A \rightarrow \Lambda$ by $A \rightarrow S$ in P_1

return $(V_1 \cup \{S\}, \Sigma, S, P_1 \cup \{S \rightarrow \Lambda, S \rightarrow S_1\})$

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Since $x \in \mathcal{L}(r)$, we have $x \in \mathcal{L}(r_1) \vee x \in \mathcal{L}(r_2)$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Since $x \in \mathcal{L}(r)$, we have $x \in \mathcal{L}(r_1) \vee x \in \mathcal{L}(r_2)$.

By the strong inductive hypothesis, if $x \in \mathcal{L}(r_1)$, then it can be generated using grammar (V_1, Σ, S_1, P_1) .

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Since $x \in \mathcal{L}(r)$, we have $x \in \mathcal{L}(r_1) \vee x \in \mathcal{L}(r_2)$.

By the strong inductive hypothesis, if $x \in \mathcal{L}(r_1)$, then it can be generated using grammar (V_1, Σ, S_1, P_1) .

Let $S_1 \xrightarrow{*} x$ be the sequence of productions that generates x in that grammar.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Since $x \in \mathcal{L}(r)$, we have $x \in \mathcal{L}(r_1) \vee x \in \mathcal{L}(r_2)$.

By the strong inductive hypothesis, if $x \in \mathcal{L}(r_1)$, then it can be generated using grammar (V_1, Σ, S_1, P_1) .

Let $S_1 \xrightarrow{*} x$ be the sequence of productions that generates x in that grammar.

Then $S \Rightarrow S_1 \xrightarrow{*} x$ is a valid sequence in grammar G .

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1 + r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$.

Since $x \in \mathcal{L}(r)$, we have $x \in \mathcal{L}(r_1) \vee x \in \mathcal{L}(r_2)$.

By the strong inductive hypothesis, if $x \in \mathcal{L}(r_1)$, then it can be generated using grammar (V_1, Σ, S_1, P_1) .

Let $S_1 \xrightarrow{*} x$ be the sequence of productions that generates x in that grammar.

Then $S \Rightarrow S_1 \xrightarrow{*} x$ is a valid sequence in grammar G .

A similar argument holds when $x \in \mathcal{L}(r_2)$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

for each $A \rightarrow \Lambda \in P_1$ **do**

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ **then**

$(V_1, \Sigma, S_1, P_1) \Leftarrow$ Algorithm 8.1 (r_1)

$(V_2, \Sigma, S_2, P_2) \Leftarrow$ Algorithm 8.1 (r_2)

for each $A \rightarrow \Lambda \in P_1$ **do**

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow \text{Algorithm 8.1 } (r_1)$

$(V_2, \Sigma, S_2, P_2) \Leftarrow \text{Algorithm 8.1 } (r_2)$

for each $A \rightarrow \Lambda \in P_1$ do

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

By the strong inductive hypothesis, there is a sequence of production rules in P_1 such that $S_1 \xrightarrow{*} x_1$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow \text{Algorithm 8.1 } (r_1)$

$(V_2, \Sigma, S_2, P_2) \Leftarrow \text{Algorithm 8.1 } (r_2)$

for each $A \rightarrow \Lambda \in P_1$ do

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

By the strong inductive hypothesis, there is a sequence of production rules in P_1 such that $S_1 \xrightarrow{*} x_1$.

By Lemma 8.1, the sequence has the form $S_1 \xrightarrow{*} x_1A \Rightarrow x_1$, for some $A \in V_1$, and $A \rightarrow \Lambda \in P_1$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow \text{Algorithm 8.1 } (r_1)$

$(V_2, \Sigma, S_2, P_2) \Leftarrow \text{Algorithm 8.1 } (r_2)$

for each $A \rightarrow \Lambda \in P_1$ do

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

By the strong inductive hypothesis, there is a sequence of production rules in P_1 such that $S_1 \xrightarrow{*} x_1$.

By Lemma 8.1, the sequence has the form $S_1 \xrightarrow{*} x_1 A \Rightarrow x_1$, for some $A \in V_1$, and $A \rightarrow \Lambda \in P_1$.

By the strong inductive hypothesis, there is a sequence of production rules in P_2 such that $S_2 \xrightarrow{*} x_2$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow \text{Algorithm 8.1 } (r_1)$

$(V_2, \Sigma, S_2, P_2) \Leftarrow \text{Algorithm 8.1 } (r_2)$

for each $A \rightarrow \Lambda \in P_1$ do

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

By the strong inductive hypothesis, there is a sequence of production rules in P_1 such that $S_1 \xrightarrow{*} x_1$.

By Lemma 8.1, the sequence has the form $S_1 \xrightarrow{*} x_1 A \Rightarrow x_1$, for some $A \in V_1$, and $A \rightarrow \Lambda \in P_1$.

By the strong inductive hypothesis, there is a sequence of production rules in P_2 such that $S_2 \xrightarrow{*} x_2$.

By the construction of the new grammar, there is a rule $A \rightarrow S_2 \in P_1$.

Lemma 8.2

If $L = \mathcal{L}(r)$ for some Regular Expression r , then there exists a regular grammar G with unit productions such that $\mathcal{L}(G) = L$.

if $r = r_1r_2$ then

$(V_1, \Sigma, S_1, P_1) \Leftarrow \text{Algorithm 8.1 } (r_1)$

$(V_2, \Sigma, S_2, P_2) \Leftarrow \text{Algorithm 8.1 } (r_2)$

for each $A \rightarrow \Lambda \in P_1$ do

 replace $A \rightarrow \Lambda$ by $A \rightarrow S_2$ in P_1

return $(V_1 \cup V_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1\})$

Claim: Let G be the returned grammar. If $x \in \mathcal{L}(r)$, then $x \in \mathcal{L}(G)$

Because $x \in \mathcal{L}(r)$, $\exists x_1, x_2$ such that $(x = x_1x_2) \wedge (x_1 \in \mathcal{L}(r_1)) \wedge (x_2 \in \mathcal{L}(r_2))$.

By the strong inductive hypothesis, there is a sequence of production rules in P_1 such that $S_1 \xrightarrow{*} x_1$.

By Lemma 8.1, the sequence has the form $S_1 \xrightarrow{*} x_1A \Rightarrow x_1$, for some $A \in V_1$, and $A \rightarrow \Lambda \in P_1$.

By the strong inductive hypothesis, there is a sequence of production rules in P_2 such that $S_2 \xrightarrow{*} x_2$.

By the construction of the new grammar, there is a rule $A \rightarrow S_2 \in P_1$.

We have the sequence: $S \Rightarrow S_1 \xrightarrow{*} x_1A \Rightarrow x_1S_2 \xrightarrow{*} x_1x_2$.