
CS483: Analysis of Algorithms
Flow Networks

Prof. Ivan Avramovic, GMU

Max Flow

Imagine that in a weighted graph, our edge weights are capacities.

Goal of a max flow problem:

The capacities indicate how much of something can pass across an edge.
• Example: Amount of traffic.
• Example: Amount of network data.
• Example: Amount of liquid.

Find how much flow can be sent across the network without violating capacities.

𝑠 𝑡

3 1

2

Max Flow

Imagine that in a weighted graph, our edge weights are capacities.

Goal of a max flow problem:

The capacities indicate how much of something can pass across an edge.
• Example: Amount of traffic.
• Example: Amount of network data.
• Example: Amount of liquid.

Find how much flow can be sent across the network without violating capacities.

𝑠 𝑡

1/3 1/1

2/2
A flow of 2 along the upper path and 1 along
the lower path gives a total flow of 2 + 1 = 3.

Flow Definitions

In a flow network for a directed graph 𝐺 = 𝑉, 𝐸 :
• Node 𝒔 is the source node and 𝒕 is the sink node.

• For any edge 𝑒 ∈ 𝐸, its capacity is given by 𝑐!.
• An 𝑠-𝑡 flow is a function 𝑓 defined over the edges of the graph.

𝑠

𝑢

𝑡

1/3 1/1

2/2

The flow originates from node 𝒔 and flows into node 𝒕.

Intuitively, a flow represents how much “stuff” is flowing across the network on that particular edge.

In this example, 𝑐(",$) = 3
 and 𝑓 𝑠, 𝑢 = 1.

Max Flow, Objective

The value of a flow: total flow leaving the source or entering the sink.

A max flow problem tries to maximize the value subject to constraints.

Value of the flow =	∑&∈ ())	&+,&")&(-./,	" 	 𝑓(𝑒) = ∑&∈ ())	&+,&"	&/0&1./,	0 𝑓 𝑒 .

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Assume that all capacities are positive integers. This is a very hard problem to solve if not.

Note that this will be the same number either way!

Max Flow, Constraints

Flow is conserved at each node other than 𝑠 and 𝑡.

Flow must respect capacity.

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

4
&∈ &+,&"	&/0&1./,	$

𝑓 𝑒 	 = 4
&∈ &+,&")&(-./,	$

𝑓(𝑒)

0 ≤ 𝑓 𝑒 ≤ 𝑐&.

Max Flow, Constraints

Flow is conserved at each node other than 𝑠 and 𝑡.

Flow must respect capacity.

𝑠

𝑣

𝑡

1/4

𝑢

3

1/1

2

4
&∈ &+,&"	&/0&1./,	$

𝑓 𝑒 	 = 4
&∈ &+,&")&(-./,	$

𝑓(𝑒)

0 ≤ 𝑓 𝑒 ≤ 𝑐&.

1/3

Max Flow, Constraints

Flow is conserved at each node other than 𝑠 and 𝑡.

Flow must respect capacity.

𝑠

𝑣

𝑡

4/4

𝑢

3/3

1/1

2/2

4
&∈ &+,&"	&/0&1./,	$

𝑓 𝑒 	 = 4
&∈ &+,&")&(-./,	$

𝑓(𝑒)

0 ≤ 𝑓 𝑒 ≤ 𝑐&.

3/3 In this example, the max flow will
saturate every edge, but this is
not always possible in every problem.

Max Flow Example

What is the max flow of the following network?

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

Max Flow Example

What is the max flow of the following network?

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Example: Max flow value is 8.

Capacity of a Cut

A cut is a partition into two sets of nodes: 𝑠 on one side; 𝑡 on the other.

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

This is defined similarly to when we used cuts while computing minimum spanning trees.

The nodes inside a cut do not have to be touching.

Capacity of a Cut

The capacity of a cut is the sum of the capacities leaving a cut.

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

Example: Capacity of the cut = 5 + 4 + 4 + 2 = 15.
 Note that edge (𝒅, 𝒃) does not count against the capacity.

Min Cut Problem

The min cut problem asks what is the minimum capacity over all cuts?

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

Example: What is the bottleneck in a data network?

Min Cut Problem

The min cut problem asks what is the minimum capacity over all cuts?

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

Example: Capacity = 4 + 1 + 3 = 8.

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Answer: 3 + 3 = 6.

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Answer: 3 + 1 + 2 = 6.

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Answer: 3 + 4 = 7.

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: What is the capacity of the cut shown?

Answer: 2 + 4 = 6.

Min Cut Example

𝑠

𝑣

𝑡

3

4

𝑢

3

1

2

Example: The min cut for this network is 6, because of all possible cuts, these were the smallest.

Note that multiple cuts may have
the same min cut capacity.

Net Flow Across a Cut

Net flow across a cut: difference between outgoing and incoming flows.

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Net flow = ∑&∈ &+,&")&(-./,	2$0 𝑓(𝑒) − ∑&∈ &+,&"	&/0&1./,	2$0 𝑓(𝑒)

Net Flow Across a Cut

Net flow across a cut: difference between outgoing and incoming flows.

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Net flow = ∑&∈ &+,&")&(-./,	2$0 𝑓(𝑒) − ∑&∈ &+,&"	&/0&1./,	2$0 𝑓(𝑒)

Example: Net flow = (4 + 4 + 1 + 2) − (3) = 8.
 Capacity = 5 + 4 + 4 + 2 = 15.

Net Flow Example

What is the net flow across the following cut?

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Net Flow Example

What is the net flow across the following cut?

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Answer: Net Flow = (4 + 4 + 1 + 2) − (3) = 8.
 Capacity = 	4	 + 	4	 + 	4	 + 	2	 = 	14.

Net Flow Example

What is the net flow across the following cut?

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Net Flow Example

What is the net flow across the following cut?

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Answer: Net flow = (4 + 4 + 3 + 2) − (3 + 2) = 8.
 Capacity = 4 + 4 + 3 + 4 = 15.

Net Flow Across a Cut

Net flow across a cut: difference between outgoing and incoming flows.

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Observation 1: The net flow will always be the same no matter which cut we choose.
• This can be deduced from the conservation principle as we add or remove nodes.

Net Flow Across a Cut

Net flow across a cut: difference between outgoing and incoming flows.

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Observation 2: The max flow cannot be larger than the capacity of a cut.
• The capacity is an upper bound for net flow.

Net Flow Across a Cut

Net flow across a cut: difference between outgoing and incoming flows.

𝑠

𝑐

𝑡

4/5

2/4

𝑎

3/3

1/1

2/2

𝑏

𝑑

𝑒

𝑓

5/8

1/4

4/4

4/4

1/1
3/4

Observation 3: Some cut must have a capacity which equals the max flow.
• If not, then we could have still sent more flow across the network.

Max Flow/Min Cut Duality

Conclusion: the max flow value equals the min cut value!
If we can compute one, then we have computed the other.

𝑠

𝑐

𝑡

5

4

𝑎

3

1

2

𝑏

𝑑

𝑒

𝑓

8

4

4

4

1
4

Practice

Find a max flow and a min cut for the following graph:

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10

20

12

15

1 4

15

5

2

Practice

Find a max flow and a min cut for the following graph:

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

9/20

12/12

9/15

0/1 2/4

14/15

5/5

2/2
Flow value = 19

Min cut capacity = 19

Algorithmic Max Flow: Baby Steps

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10

20

12

15

1 4

15

5

2

Before we produce an algorithm for max flow, let’s start simple… can we find any flow through this graph?

Algorithmic Max Flow: Baby Steps

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

20

10/12

15

1 4

10/15

5

2

Before we produce an algorithm for max flow, let’s start simple… can we find any flow through this graph?

Suggestion: Let us find any path from source to sink. That path implies a flow.

How would we find a path from source to sink?

Algorithmic Max Flow: Baby Steps

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

20

10/12

15

1 4

10/15

5

2

Before we produce an algorithm for max flow, let’s start simple… can we find any flow through this graph?

Suggestion: Let us find any path from source to sink. That path implies a flow.

How would we find a path from source to sink?

Our ordinary graph search algorithms will find one.
• Breadth first search (BFS).
• Depth first search (DFS).

On the other hand, if there is no path,
then there is no possible flow.

Algorithmic Max Flow: Baby Steps

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

20

10/12

15

1 4

10/15

5

2

Before we produce an algorithm for max flow, let’s start simple… can we find any flow through this graph?

Suggestion: Let us find any path from source to sink. That path implies a flow.

We will prefer a BFS, for reasons we shall see later.

If we find a path, we can use a bottleneck edge to
maximize flow along that path.

Algorithmic Max Flow: Augmenting

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

5/20

10/12

5/15

1 4

10/15

5/5

2

Observation: If we find a second path, we can combine it with the first to form a larger flow,
 provided that the two together do not violate any capacities.

Algorithmic Max Flow: Augmenting

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

5+2/20

10/12

5+2/15

1 4

10+2/15

5/5

2/2

Observation: If we find a second path, we can combine it with the first to form a larger flow,
 provided that the two together do not violate any capacities.

This works even if the new path overlaps an existing path. These added paths are called augmenting paths.
• Augmenting paths will only increase flow value.

Algorithmic Max Flow: Augmenting

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

5+2/20

10/12

5+2/15

1 4

10+2/15

5/5

2/2

How would we find new paths once we have already used some of the paths?
• We do not want to waste time revisiting paths which are already used.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

0

13

2

8

1 4

3

0

0

Suggestion: Consider only the capacity which is “left over” after using known paths.

Algorithmic Max Flow: Augmenting

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

5+2+2/20

10+2/12

5+2+2/15

1 2/4

10+2+2/15

5/5

2/2

How would we find new paths once we have already used some of the paths?
• We do not want to waste time revisiting paths which are already used.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

0

13

2

8

1 4

3

0

0

Suggestion: Consider only the capacity which is “left over” after using known paths.

Algorithmic Max Flow: Augmenting

If we want to find max flow, we would prefer to use an algorithm.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

10/10

9/20

12/12

9/15

0/1 2/4

14/15

5/5

2/2

How would we find new paths once we have already used some of the paths?
• We do not want to waste time revisiting paths which are already used.

𝑠

𝑐

𝑏 𝑑

𝑎

𝑡

0

11

0

6

1 2

1

0

0

Suggestion: Consider only the capacity which is “left over” after using known paths.

Note that there is now no more path from source to sink.

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1

2 1

1

2

What is the max flow here?

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1/1

2 1/1

1/1

2

What is the max flow here?

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1/1

2 1/1

1/1

2

What is the max flow here?

𝑠

𝑣

𝑡

𝑢
0

2 0

0

2

There are no more paths to find, yet we can easily see that
the true max flow is better than this!

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1/1

2 1/1

1/1

2

What is the max flow here?

𝑠

𝑣

𝑡

𝑢
0

2 0

0

2

The best result does not use the middle 𝑢, 𝑣 edge.
Is there a way for us to undo a selection?

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1/1

2 1/1

1/1

2

What is the max flow here?

𝑠

𝑣

𝑡

𝑢

2

2

Solution: We can create a virtual edge in the opposite direction to show how much
less flow we could have had across that edge. This lets us undo a selection.

It is still true that any path from source to sink increases the flow value.

1

1

1

Reliably Finding Augmenting Paths
If we always removed used capacity from the graph whenever we find a flow, will that always lead us to a max flow?

Maybe that is not enough. Consider:

𝑠

𝑣

𝑡

𝑢
1/1

1/2 1/1

0/1

1/2

𝑠

𝑣

𝑡

𝑢

1

1

Now, our “left over” graph – called a residual graph – has no remaining 𝒔-𝒕 path.
• We can truly say that no more flow can be added – we have a max flow!

1

1

1
1

1

Ford-Fulkerson Method

The Ford-Fulkerson Method for finding a max flow is as follows:

Repeat:
• Find an augmenting path (e.g. using a search algorithm from 𝑠 to 𝑡).
• If found:

• Add the augmenting path to the flow.
• Recompute a residual graph.

…until no more augmenting paths can be found.

Min Cut Algorithm

Now that we know max flow, can we use it to find min cut?
Hint: What is the relationship between max flow and min cut?

Min Cut Algorithm

Now that we know max flow, can we use it to find min cut?
Hint: What is the relationship between max flow and min cut?

Max flow and min cut must have the same value.

Hint: What is true of the capacity at a min cut?

Min Cut Algorithm

Now that we know max flow, can we use it to find min cut?
Hint: What is the relationship between max flow and min cut?

Max flow and min cut must have the same value.

Hint: What is true of the capacity at a min cut?

The capacity at the min cut equals the max flow value.
• In fact, the net flow must be the same as well.

Hint: What is true of the residual graph relative to the min cut?

Min Cut Algorithm

Now that we know max flow, can we use it to find min cut?
Hint: What is the relationship between max flow and min cut?

Max flow and min cut must have the same value.

Hint: What is true of the capacity at a min cut?

The capacity at the min cut equals the max flow value.
• In fact, the net flow must be the same as well.

Hint: What is true of the residual graph relative to the min cut?

The flow must have saturated the cut, so the residual graph will have no edges leaving the cut.
• Conclusion: We can find a min cut by finding max flow and computing the residual graph.
• The set of nodes which are still reachable will form a min cut.

Min Cut Algorithm
1. Find max flow.
2.
3.

𝑠

𝑣

𝑡

𝑢
1/1

1/2 1/1

0/1

1/2

Min Cut Algorithm
1. Find max flow.
2. Compute residual graph.
3.

𝑠

𝑣

𝑡

𝑢
1/1

1/2 1/1

0/1

1/2

𝑠

𝑣

𝑡

𝑢
1

1 1

1

1

1
1

Min Cut Algorithm
1. Find max flow.
2. Compute residual graph.
3. Perform a BFS or DFS to find a min cut.

𝑠

𝑣

𝑡

𝑢
1/1

1/2 1/1

0/1

1/2

𝑠

𝑣

𝑡

𝑢
1

1 1

1

1

1
1

𝑠

𝑣

𝑡

𝑢
1

1 1

1

1

1
1

Practice

Find a max flow, residual graph, and min cut for the following graph:

𝑠

𝑑

𝑡

𝑎

1

𝑏

𝑓

𝑐

𝑒

4

5

8

9

5

3

1

4

3

2

3

Practice

Find a max flow, residual graph, and min cut for the following graph:

𝑠

𝑑

𝑡

𝑎

0/1

𝑏

𝑓

𝑐

𝑒

4/4

1/5

1/8

4/9

0/5

1/3

1/1

0/4

3/3

2/2

3/3

𝑠

𝑑

𝑡

𝑎

1

𝑏

𝑓

𝑐

𝑒

4

7

5

5

2
4

4

1

1

4

1

1

3

2

3

Max flow graph
Max flow value = 5.

Residual graph
Min cut is {𝑠, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓} vs {𝑡}.
Min cut value = 5.

Efficiently Finding Augmenting Paths
How long will it take Ford-Fulkerson to find max flow? That may depend partly on luck…

𝑠

𝑣

𝑡

𝑢
1000

1000 1000

1

1000

Efficiently Finding Augmenting Paths
How long will it take Ford-Fulkerson to find max flow? That may depend partly on luck…

Example: In the graph below, any augmenting path crossing the middle edge will grow by one unit at a time.
 The max number of augmentations is 1000 + 1000 = 2000. That’s a lot for such a simple graph.

𝑠

𝑣

𝑡

𝑢
1000

1000 1000

1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1000 1/1000

1/1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1/1000 1/1000

0/1

1/1000

This keeps going on for 2000 steps…

Can we do anything to guarantee better efficiency?

Efficiently Finding Augmenting Paths
How long will it take Ford-Fulkerson to find max flow? That may depend partly on luck…

Example: In the graph below, any augmenting path crossing the middle edge will grow by one unit at a time.
 The max number of augmentations is 1000 + 1000 = 2000. That’s a lot for such a simple graph.

𝑠

𝑣

𝑡

𝑢
1000

1000 1000

1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1000 1/1000

1/1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1/1000 1/1000

0/1

1/1000

What if we know the shortest augmenting path from 𝒔 to 𝒕?
• Breadth first search will find the shortest path (in terms of number of steps).
• The middle edge cannot be part of the shortest path from both sides – at most one of the two is shortest.
• If we find augmenting path using BFS, we are guaranteed to not reuse the same edge in this way.

Edmonds-Karp Runtime
If we use BFS to find augmenting paths for the Ford Fulkerson method, we call it the Edmonds-Karp Algorithm.

Any iteration of Edmonds-Karp will perform a BFS and update the flow in 𝑶(𝒎) time.

𝑠

𝑣

𝑡

𝑢
1000

1000 1000

1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1000 1/1000

1/1

1000

𝑠

𝑣

𝑡

𝑢
1/1000

1/1000 1/1000

0/1

1/1000

Every iteration of Edmonds-Karp will fully saturate at least one of 𝑚 edges.
• If two augmenting paths are the same length, one will not undo an edge of the other.
• There are a total of 𝒏 − 𝟏 possible path lengths, which BFS considers in order.

Result: 𝑂 𝑛𝑚3 runtime.

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
1000

1000 1000

1

1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
512/1000

512/1000 512/1000

1

512/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Δ = 512

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
768/1000

768/1000 768/1000

1

768/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Δ = 256

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
896/1000

896/1000 896/1000

1

896/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Δ = 128

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
960/1000

960/1000 960/1000

1

960/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Δ = 64

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
992/1000

992/1000 992/1000

1

992/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ some edge.

Δ = 32

Another Efficient Approach: Capacity Scaling
Premise: Look for higher-capacity augmenting paths first.
• Pick a high value 𝚫.	 Only look for paths whose capacity is ≥ 𝚫.
• If there are no such paths, make 𝚫 smaller and try again.
• By the time 𝚫 = 𝟏, we will find all possible augmenting paths.

𝑠

𝑣

𝑡

𝑢
1000/1000

1000/1000 1000/1000

1

1000/1000

Proposal: Make Δ a power of 2, and divide by 2 when necessary.
• We can compose any number as a sum of powers of 2.
• The initial Δ can be the largest power of 2 that is ≤ source capacity.

Δ = 8

Runtime:
• As before, each augmentation is 𝑶(𝒎) due to search costs.
• For each Δ, at most 𝒎 augmentations can happen.

• Each edge can be increased at most once if we use BFS.
• There are 𝑶(𝒍𝒈	𝑪) values of 𝚫 to check, where 𝐶 is the capacity.

Overall: 𝑶(𝒎𝟐𝒍𝒈	𝑪)

Unlimited Capacity

Some edges might not have practical limits to the flow.
• How would this be represented in a flow network?

𝑐

𝑡

𝑎
4

5

4

𝑑	

𝑏	

5

5

3

3

Example: Suppose there is no limit to the flow from 𝒂 to 𝒃.

𝑠	

Unlimited Capacity

Some edges might not have practical limits to the flow.
• How would this be represented in a flow network?

𝑐

𝑡

𝑎
4

5

4

𝑑	

𝑏	

5

5

3

3

Example: Suppose there is no limit to the flow from 𝒂 to 𝒃.

𝑠	

Solution: Simply label the capacity as infinity.

∞

Producer Nodes

We may want to add simple, practical constraints to our flow network.
Imagine that our source has a limited production capacity.
• We could denote that with a negative capacity value on the source itself.

𝑠
-6 𝑡

4

5

1

6

5

3
5

3

3

Example: The graph on the left is different from a basic
 flow network because it has a source limit of 6.

No more than 6 units of flow can be produced by the source.

We know how to solve an ordinary max flow.
• Can we use what we know to solve this problem?

Producer Nodes

We may want to add simple, practical constraints to our flow network.
Imagine that our source has a limited production capacity.
• We could denote that with a negative capacity value on the source itself.

𝑡

4

5

1

6

5

3
5

3

3s𝑠∗ 6

Simple solution: Create a new source.
• We can only reach 𝒔 from 𝒔∗ by a path with bounded capacity.

Consumer Nodes

What if our sink has limits to what it can consume?.
Imagine that our sink has a limited consumption capacity.
• We could denote that with a capacity value on the sink itself.

𝑡
5

4

5

1

6

5

3
5

3

3s𝑠∗ 6

Consumer Nodes

What if our sink has limits to what it can consume?.
Imagine that our sink has a limited consumption capacity.
• We could denote that with a capacity value on the sink itself.

𝑡

4

5

1

6

5

3
5

3

3 𝑡∗5

As with the source, we can restrict the sink by creating a new sink.
• The only way to reach the new sink is via a capacity-limited edge.

s𝑠∗ 6

Dual Sources

Why would we need to limit capacity at both source and sink?
• Wouldn’t the result be the same either way?

Ah, but consider what happens if we now had two different sources.

𝑡

4

5

1

8

5

10
9

4

3

s3

𝑠6

We would still like to solve this using techniques we already know.

3

2

Dual Sources

Why would we need to limit capacity at both source and sink?
• Wouldn’t the result be the same either way?

Ah, but consider what happens if we now had two different sources.

𝑡

4

5

1

8

5

10
9

4

3

s3

𝑠6

Solution: Feed both sources from a new single source.

3

2

𝑠∗

∞

∞

We do not know how much flow each
source will put out, so we can use
infinite capacity lines to feed each source.

Multiple Sources and Sinks

Can we generalize situation where we have many sources and sinks?

𝑡63

s3

𝑠6

s7

𝑡3

𝑡7

𝑡8

Example: Three different sources and four sinks.

1
3

2
2

1

2

1
2

1
2

1
2

1

Multiple Sources and Sinks

Can we generalize situation where we have many sources and sinks?

𝑡63

s3

𝑠6

s7

𝑡3

𝑡7

𝑡8

Example: Three different sources and four sinks.

1
3

2
2

1

2

1
2

1
2

1
2

1

𝑠∗ 𝑡∗

∞

∞

∞

∞

∞

∞

∞

The key is to be sure we end up with exactly one source and exactly one sink.

Producers and Consumers (circulations)

Suppose we have a network in which:
• Some nodes produce flow. (negative demand, dv < 0)
• Some nodes consume flow. (positive demand, dv > 0)

1

4

−3

−2	

Example: How can we arrange this graph into something we can solve as a max flow?

1

3 1

1 3

2

Producers and Consumers (circulations)

Suppose we have a network in which:
• Some nodes produce flow. (negative demand, dv < 0)
• Some nodes consume flow. (positive demand, dv > 0)
• All nodes should be “satisfied”:

1

4

−3

−2	

Example: How can we arrange this graph into something we can solve as a max flow?

1

3 1

1 3

2

producers send out their full value,
consumers receive their full value.
fout(v) – fin(v) = dv.

Producers and Consumers (circulations)

Suppose we have a network in which:
• Some nodes produce flow. (negative demand, dv < 0)
• Some nodes consume flow. (positive demand, dv > 0)
• All nodes should be “satisfied”:

Solution:
• New source with edges to each producer.

• Edges from source to producer reflects producer capacity.
• New sink with edges from each consumer.

• Edges from consumer to sink reflects sink capacity.
• Feasible solution if max flow = Σ	positive	demands

	 	 	 = Σ	negative	demands

1

3 1

1 3

2

𝑠∗ 𝑡∗

2

3 1

4

producers send out their full value,
consumers receive their full value.
fout(v) – fin(v) = dv.

Producers and Consumers (circulations)

A consumer might also be an internal node

4

2

−3	

−3

2

2

2

3 3

Producers and Consumers (circulations)

A consumer might also be an internal node

4

2

−3	

−3

2

2

2

3 3

4

2

−3	

−3

2

2

2

3

s
3

3

t

2

4

Solution: Find a max flow of 6.

Producers and Consumers (circulations)

A consumer might also be an internal node

4

2

−3	

−3

2

2

2

3 3

4

2

−3	

−3

2

2

2

3

s
3

3

t

2

4

Solution: Find a max flow of 6.

3

3
3

21
2

1

1

4

Limited Capacity Nodes

Suppose that some node by itself has capacity limits?:

2	

Example: Suppose that only 2 units of flow can flow across the middle.

1

3 1

1 3

2

𝑠 𝑡

2

3 1

4

Limited Capacity Nodes

Suppose that some node by itself has capacity limits?:
Example: Suppose that only 2 units of flow can flow across the middle.

1

3 1

1 3

2

𝑠 𝑡

2

3 1

4

Solution: Turn one node into two connected by an edge. Let the edge represent the capacity limit.

2

Practice

Rewrite the following graph as a standard flow network.
Find the max flow.

−8

6

−3

5

8

2

4

5

2

9

5

3

1

3

The blue nodes are capacity-limited producers.
The brown nodes are consumers.

Practice

Rewrite the following graph as a standard flow network.
Find the max flow.

6

4

5

2

9

5
3

1

3

The blue nodes are capacity-limited producers.
The brown nodes are consumers.

2

𝑠

8

3 𝑡

8

5

Flow Graphs for Task Assignment

Let’s consider a practical use of max flow problems.
Goal: We want to assign workers to various tasks.
• Everyone can be assigned a maximum (for example, 2) tasks.
• Some people are capable of performing more than one type of task.
• Not everybody knows how to do every kind of task.

Flow Graphs for Task Assignment

Let’s consider a practical use of max flow problems.
Goal: We want to assign workers to various tasks.
• Everyone can be assigned a maximum (for example, 2) tasks.
• Some people are capable of performing more than one type of task.
• Not everybody knows how to do every kind of task.

We can represent this relationship with a bipartite graph.

A bipartite graph is a graph which has two groups of nodes.
• Edges can only cross from one group to the other, not two nodes in one group.
• Example: One group can be a group of workers, the other a group of tasks.

Task Assignment, Example

The edges show who can do which tasks.

A

B

C

D

u

v

w

x

y

Workers Tasks

Goal: Find the most tasks that can get done.

Hint: this can easily be turned into a flow problem.

Task Assignment, Example

The edges show who can do which tasks.

A

B

C

D

u

v

w

x

y

Workers Tasks

Goal: Find the most tasks that can get done.

Hint: this can easily be turned into a flow problem.

Sample solution
Can we do better?

Task Assignment, Example

The edges show who can do which tasks.

A

B

C

D

u

v

w

x

y

𝑠 𝑡

These weights are all 1.

These weights
are at least 1.

These weights
are at least 1.

What would it mean if we use
weights which are > 1?

Task Assignment, Example

The edges show who can do which tasks.

A

B

C

D

u

v

w

x

y

𝑠 𝑡

These weights are all 1.

These weights
are at least 1.

These weights
are at least 1.

What would it mean if we use
weights which are > 1?

• If a worker can be assigned more
than one task at once.

• If a task can be assigned to
multiple people at once.

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.
Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3 3

4

2…4

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.

2	

Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3 3

4

−2	
2…4

Impose a demand upstream, and
produce the required amount downstream

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.

2	

Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3 3

4

−2	
2

Impose a demand upstream, and
produce the required amount downstream.
Adjust the capacity to reserve space.

Capacity 4, minus 2.

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.

2	

Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3 3

4

−2	
2

Impose a demand upstream, and
produce the required amount downstream.
Adjust the capacity to reserve space.

Capacity 4, minus 2.

𝑠

𝑡

2

2

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.

2	

Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3

3

4

−2	
2

Impose a demand upstream, and
produce the required amount downstream.
Adjust the capacity to reserve space.

Capacity 4, minus 2.

𝑠

𝑡

2

2 3

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.
Example: The middle edge must have a flow of at least 3 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3 3

4

3…4

Minimum Capacity in Circulations

Suppose that some edges also have a minimum capacity.

3	

Example: The middle edge must have a flow of at least 2 and at most 4.

1

3 1

1 3

2

𝑠 𝑡

2

3

3

4

−3	
1

Impose a demand upstream, and
produce the required amount downstream.
Adjust the capacity to reserve space.

Capacity 4, minus 3.

𝑠

𝑡

3

3 3

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

3…5
𝑠

8

𝑡

11

2...44...7

8

6

We use a similar approach.
• Fill in demands

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

−5	

3

3…5
4

8

−2

11

2...44...7

8

6

We use a similar approach.
• Fill in demands

−3 + −4 + (2) gives us -5

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

−5	

3

3…5
4

8

−2

11

2...44...7

8

6

We use a similar approach.
• Fill in demands
• Adjust capacities

−3 + −4 + (2) gives us -5

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

−5	

3

2
4

8

−2

11

23

8

6

We use a similar approach.
• Fill in demands
• Adjust capacities

−3 + −4 + (2) gives us -5

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

−5	

3

2
4

8

−2

11

23

8

6

We use a similar approach.
• Fill in demands
• Adjust capacities
• Create new sources/sinks

−3 + −4 + (2) gives us -5

Min Capacity, Multiple edges

It’s likely that we see graphs with multiple min capacities

−5	

3

2
4

8

−2

11

23

8

6

We use a similar approach.
• Fill in demands
• Adjust capacities
• Create new sources/sinks

𝑠15

5
2

𝑡 3

4

15

Flow Networks for Airline Schedules

We will now use max flow algorithms to plan airline schedules.
Given:
• A fleet of 𝒌 airplanes.
• A set of flight routes (source + destination + times).

Goal:
• Find a flight plan which determines which planes should fly which routes.
• Every route must be serviced by some plane.

Flow Networks for Airline Schedules

We will now use max flow algorithms to plan airline schedules.
Given:
• A fleet of 𝒌 airplanes.
• A set of flight routes (source + destination + times).

Goal:
• Find a flight plan which determines which planes should fly which routes.
• Every route must be serviced by some plane.

This is an interesting problem, because although we frame it as max flow, we are
 not interested in maximizing flow as much as we are interested in satisfying minimums.

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

The source has a capacity of 𝒌.

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

The source has a capacity of 𝒌.

A flight is represented by an edge with both min and max capacity = 1.

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

The source has a capacity of 𝒌.

A flight is represented by an edge with both min and max capacity = 1.

Edge from the source to the start of every flight.

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

The source has a capacity of 𝒌.

A flight is represented by an edge with both min and max capacity = 1.

Edge from the source to the start of every flight.

Edge from the end of every flight to the sink

Airline Schedule, Network Setup

• Our fleet has 𝑘 airplanes.

• Every flight must be serviced.

• Airplanes can begin the day anywhere.

• Airplanes can end the day anywhere.

• A plane can fly its next leg out of the same airport at a later time.

The source has a capacity of 𝒌.

A flight is represented by an edge with both min and max capacity = 1.

Edge from the source to the start of every flight.

Edge from the end of every flight to the sink

Capacity 1 edges from the end of any flight to the start of all other flights at the same airport + later time.

Airline Schedule, Example

Washington DC

New York

San Fransisco

Time

Assume 𝑘 = 2 airplanes.

Airline Schedule, Example

Washington DC

New York

San Fransisco

Time

1…1

1…1

1…1

−2

𝑡

Airline Schedule, Example

Washington DC

New York

San Fransisco

Time

1…1

1…1

1…1

−2

𝑡1

1

1

1

1

1

Airline Schedule, Example

Washington DC

New York

San Fransisco

Time

1…1

1…1

1…1

−2

𝑡1

1

1

1

1

1

1

