

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

- ▶ Base case: they begin at 0.
- ▶ Inductive Hypothesis: Let $f_i(e)$ be the flow on edge e after i iterations. Assume $\forall e \in E, f_i(e)$ is an integer.
- ▶ In iteration $i + 1$ we modify each flow along the chosen path by some bottleneck value, which is either $c(e) - f_i(e)$ if the bottleneck is a forwards edge, or $f_i(e)$ if it is a backwards edge. Since all capacities are integer values, by the inductive hypothesis, both of these are integer values.

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

- ▶ The new path augmentation P , starts at s .
- ▶ It never returns to s , because s has no incoming edges.
- ▶ The value of the flow leaving s increases by the bottleneck along P .

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let $C = \sum_{e \text{ out of } s} c_e$. The algorithm terminates after at most C iterations.

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let $C = \sum_{e \text{ out of } s} c_e$. The algorithm terminates after at most C iterations.

This follows immediately from the previous two claims. Note that if the algorithm hasn't already halted, then after the C th iteration, the edges out of s must be saturated, and there cannot be any paths from s to t in the residual graph anymore.

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let $C = \sum_{e \text{ out of } s} c_e$. The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:

$O(m + n)$ for path finding.

$O(n)$ for augmenting the path, and the residual graph.

If we assume the graph is connected, $m \geq n - 1$, so this is $O(Cm)$.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\begin{aligned} v(f) &= f^{\text{out}}(s) \\ &= \sum_{v \in A} f^{\text{out}}(v) - \sum_{v \in A} f^{\text{in}}(v) \\ &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \end{aligned}$$

- ▶ The first equality is our definition of the value of a flow.
- ▶ The second equality holds by conservation of flow: for every $v \in A$ other than s (note, $t \notin A$), $f^{\text{out}}(v) = f^{\text{in}}(v)$, so we're simply adding a bunch of 0s to $f^{\text{out}}(s)$.
- ▶ The third equality is a bit subtle. Consider 4 types of edges, $\hat{e} = (x, y)$. If $x, y \in A$, then $f(\hat{e})$ appears in both $\sum_{v \in A} f^{\text{out}}(v)$ and $\sum_{v \in A} f^{\text{in}}(v)$, so they cancel each other out. If $x, y \notin A$, then \hat{e} doesn't appear in either summation. If $x \in A, y \notin A$, then $f(\hat{e})$ appears only in the first sum, and finally if $x \notin A, y \in A$, it only appears in the second sum.

Intuitively, this means we can measure the value of the flow by measuring how much flow goes across any cut.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

$$\begin{aligned} v(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) \\ &\leq \sum_{e \text{ out of } A} f(e) \\ &\leq \sum_{e \text{ out of } A} c(e) \\ &= c(A, B) \end{aligned}$$

Intuitively, this means that the value of *every* flow is less than or equal to the capacity of *every* cut. In particular, the value of the *maximum* flow is at most the capacity of the *minimum* cut.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Let \bar{f} be the flow output by Ford-Fulkerson on graph $G = (E, V)$.

Let $G_{\bar{f}}$ be the residual graph that results from executing the algorithm.

Let $A^* \subset V$ be the set of nodes reachable from s in $G_{\bar{f}}$.

We claim that (A^*, B^*) is an s - t cut such that $v(\bar{f}) = c(A^*, B^*)$.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Let \bar{f} be the flow output by Ford-Fulkerson on graph $G = (E, V)$.

Let $G_{\bar{f}}$ be the residual graph that results from executing the algorithm.

Let $A^* \subset V$ be the set of nodes reachable from s in $G_{\bar{f}}$.

We claim that (A^*, B^*) is an s - t cut such that $v(\bar{f}) = c(A^*, B^*)$.

Claim: (A^*, B^*) is an s - t cut.

Clearly it is a partition of the vertices, since “reachability” is a binary property.

$s \in A^*$, since s is always reachable from itself.

$t \in B^*$, because the algorithm terminates when there is no s - t path in $G_{\bar{f}}$.

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Let \bar{f} be the flow output by Ford-Fulkerson on graph $G = (E, V)$.

Let $G_{\bar{f}}$ be the residual graph that results from executing the algorithm.

Let $A^* \subset V$ be the set of nodes reachable from s in $G_{\bar{f}}$.

We claim that (A^*, B^*) is an s - t cut such that $v(\bar{f}) = c(A^*, B^*)$.

Claim: for $e = (u, v) \in E$, with $u \in A^*$, $v \in B^*$, $f(e) = c(e)$.

Suppose to the contrary. Then there is a forward edge in $G_{\bar{f}}$ from u to v , contradicting the assumption that $v \in B^*$. (Since we have $s \rightsquigarrow u \in G_{\bar{f}}$, adding e gives a path to v .)

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Let \bar{f} be the flow output by Ford-Fulkerson on graph $G = (E, V)$.

Let $G_{\bar{f}}$ be the residual graph that results from executing the algorithm.

Let $A^* \subset V$ be the set of nodes reachable from s in $G_{\bar{f}}$.

We claim that (A^*, B^*) is an s - t cut such that $v(\bar{f}) = c(A^*, B^*)$.

Claim: for $e = (u, v) \in E$, with $u \in A^*$, $v \in B^*$, $f(e) = c(e)$.

Claim: for $e = (u, v) \in E$, with $u \in B^*$, $v \in A^*$, $f(e) = 0$.

Suppose to the contrary. Then there is a backward edge in $G_{\bar{f}}$ from v to u , contradicting the assumption that $u \in B^*$. (Since we have $s \rightsquigarrow v \in G_{\bar{f}}$, adding e gives a path to u .)

Correctness of Ford-Fulkerson

Claim: Let f be any s - t flow, and let (A, B) be any s - t cut.

$$\text{Then } v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

Claim: Let f be any s - t flow, and (A, B) any s - t cut. Then $v(f) \leq c(A, B)$.

Ford-Fulkerson finds the maximum flow.

Let \bar{f} be the flow output by Ford-Fulkerson on graph $G = (E, V)$.

Let $G_{\bar{f}}$ be the residual graph that results from executing the algorithm.

Let $A^* \subset V$ be the set of nodes reachable from s in $G_{\bar{f}}$.

We claim that (A^*, B^*) is an s - t cut such that $v(\bar{f}) = c(A^*, B^*)$.

Claim: for $e = (u, v) \in E$, with $u \in A^*$, $v \in B^*$, $f(e) = c(e)$.

Claim: for $e = (u, v) \in E$, with $u \in B^*$, $v \in A^*$, $f(e) = 0$.

$$\begin{aligned} v(f) &= \sum_{e \text{ out of } A^*} f(e) - \sum_{e \text{ into } A^*} f(e) \\ &= \sum_{e \text{ out of } A^*} c(e) - 0 \\ &= c(A^*, B^*) \end{aligned}$$