
Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

I Base case: they begin at 0.

I Inductive Hypothesis: Let fi (e) be the flow on edge e after i iterations. Assume
∀e ∈ E , fi (e) is an integer.

I In iteration i + 1 we modify each flow along the chosen path by some bottleneck
value, which is either c(e)− fi (e) if the bottleneck is a forwards edge, or fi (e) if
it is a backwards edge. Since all capacities are integer values, by the inductive
hypothesis, both of these are integer values.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

I The new path augmentation P, starts at s.

I It never returns to s, because s has no incoming edges.

I The value of the flow leaving s increases by the bottleneck along P.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

This follows immediately from the previous two claims. Note that if the algorithm
hasn’t already halted, then after the C th iteration, the edges out of s must be
saturated, and there cannot be any paths from s to t in the residual graph anymore.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Runtime of Ford-Fulkerson

Does the algorithm necessarily terminate?

Claim: Flow values are always integers.

Claim: The value of the flow increases in each iteration.

Let C =
∑

e out of s
ce . The algorithm terminates after at most C iterations.

Runtime in each of the (at most) C iterations:
O(m + n) for path finding.
O(n) for augmenting the path, and the residual graph.

If we assume the graph is connected, m ≥ n − 1, so this is O(Cm).

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

v(f) = f out(s)

=
∑
v∈A

f out(v)−
∑
v∈A

f in(v)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

I The first equality is our definition of the value of a flow.
I The second equality holds by conservation of flow: for every v ∈ A other than s

(note, t /∈ A), f out(v) = f in(v), so we’re simply adding a bunch of 0s to f out(s).
I The third equality is a bit subtle. Consider 4 types of edges, ê = (x , y). If

x , y ∈ A, then f (ê) appears in both
∑
v∈A

f out(v) and
∑
v∈A

f in(v), so they cancel

each other out. If x , y /∈ A, then ê doesn’t appear in either summation. If
x ∈ A, y /∈ A, then f (ê) appears only in the first sum, and finally if x /∈ A, y ∈ A,
it only appears in the second sum.

Intuitively, this means we can measure the value of the flow by measuring how much
flow goes across any cut.

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

v(f) =
∑

e out of A

f (e)−
∑

e into A

f (e)

≤
∑

e out of A

f (e)

≤
∑

e out of A

c(e)

= c(A,B)

Intuitively, this means that the value of every flow is less than or equal to the capacity
of every cut. In particular, the value of the maximum flow is at most the capacity of
the minimum cut.

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: (A∗,B∗) is an s-t cut.
Clearly it is a partition of the vertices, since “reachability” is a binary property.
s ∈ A∗, since s is always reachable form itself.
t ∈ B∗, because the algorithm terminates when there is no s-t path in Gf .

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Suppose to the contrary. Then there is a forward edge in Gf from u to v , contradicting
the assumption that v ∈ B∗. (Since we have s u ∈ Gf , adding e gives a path to v .)

Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.
Suppose to the contrary. Then there is a backward edge in Gf from v to u,
contradicting the assumption that u ∈ B∗. (Since we have s v ∈ Gf , adding e gives
a path to u.)

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

Correctness of Ford-Fulkerson

Claim: Let f be any s-t flow, and let (A,B) be any s-t cut.
Then v(f) =

∑
e out of A

f (e)−
∑

e into A
f (e)

Claim: Let f be any s-t flow, and (A,B) any s-t cut. Then v(f) ≤ c(A,B).

Ford-Fulkerson finds the maximum flow.

Let f be the flow output by Ford-Fulkerson on graph G = (E ,V).
Let Gf be the residual graph that results from executing the algorithm.
Let A∗ ⊂ V be the set of nodes reachable from s in Gf .

We claim that (A∗,B∗) is an s-t cut such that v(f) = c(A∗,B∗).

Claim: for e = (u, v) ∈ E , with u ∈ A∗, v ∈ B∗, f (e) = c(e).
Claim: for e = (u, v) ∈ E , with u ∈ B∗, v ∈ A∗, f (e) = 0.

v(f) =
∑

e out of A∗
f (e)−

∑
e into A∗

f (e)

=
∑

e out of A∗
c(e)− 0

= c(A∗,B∗)

